搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

倾斜多孔介质方腔内纳米流体自然对流的格子Boltzmann方法模拟

张贝豪 郑林

引用本文:
Citation:

倾斜多孔介质方腔内纳米流体自然对流的格子Boltzmann方法模拟

张贝豪, 郑林

Numerical simulation of natural convection of nanofluids in an inclined square porous enclosure by lattice Boltzmann method

Zhang Bei-Hao, Zheng Lin
PDF
HTML
导出引用
  • 利用格子玻尔兹曼方法(lattice Boltzmann method, LBM)对倾斜多孔介质方腔内Al2O3-H2O纳米流体的自然对流进行数值模拟, 考虑了孔隙率(0.3 ≤ $\epsilon $ ≤ 0.9)、瑞利数(103Ra ≤ 106)、纳米颗粒体积分数(0 ≤ ϕ ≤ 0.04)和倾斜角(0° ≤ γ ≤ 120°)等因素的影响, 研究了正弦温度分布边界条件下倾斜多孔介质方腔内纳米流体的自然对流传热机理. 结果表明: 若$\epsilon $γ保持不变时, 随着Ra数的增大, 热壁面处的平均努塞尔数(Nuave数)呈现出先减小后增大的趋势; 对于给定的Ra数, 当γ = 0°时, 随着孔隙率的增大, 热壁面处Nuave数逐渐增大, 当γ = 40°, 80°和120°时, Nuave数在$\epsilon $ = 0.7左右时达到最大值; 若$\epsilon $Ra数保持不变, 当γ = 40°时, 方腔内的自然对流换热效率最强, 当γ = 80°时热壁面自然对流换热效率被削弱. 最后, 研究了纳米颗粒体积份数的影响, 当方腔施加一定倾角时, 热壁面处的Nuave数随着纳米颗粒体积分数的增大而增大.
    In this work, numerical simulation of nature convection of Al2O3-H2O nanofluid in an inclined square porous enclosure is investigated to analyze the influence of different physical parameters on fluid flow and heat transfer via the lattice Boltzmann method. Due to stable chemical properties and low price in the dispersion system, Al2O3-H2O nanofluid is widely used in the field of industrial heat transfer enhancement, which is the focus of present work. When the nanofluid is transport in a porous media, the Darcy-Brinkman-Forchheimer model is usually used to describe the porous media effects on nanofluid flow. Compared with uniform thermal boundary condition, the natural convection of nanofluids with non-uniform thermal boundary condition has not received much attention. In this paper, the sinusoidal boundary condition is applied to the left side wall to analyze the heat transfer mechanism of Al2O3-H2O nanofluid in the inclined square porous enclosure. The effect of porosity (0.3 ≤ $\epsilon $ ≤ 0.9), Rayleigh number (103Ra ≤ 106), volume fraction of nanoparticle (0 ≤ ϕ ≤ 0.04), tilt angle (0° ≤ γ ≤ 120°) on the heat transfer performance are systematically investigated. Numerical results show that the non-uniform boundary condition can affect the heat transfer performance on Al2O3-H2O nanofluid with different physical quantities, which is different from the uniform boundary condition. When γ = 0° and Ra is fixed, the Nuave number (average Nusselt number) at the heated wall increases with porosity. When γ = 40°, 80° or 120°, the Nuave reaches its maximum value at $\epsilon $ = 0.7. In addition, if $\epsilon $ and Ra are fixed, the results show that the heat transfer performance is most efficient at γ = 40° whereas it is weakened at γ = 80°. Moreover, when different inclination angles are applied to the square cavity, the Nuave increases slightly with an augmentation of ϕ. In all, compared with the uniform temperature boundary condition, the effect of volume fraction of nanoparticles on the enhanced heat transfer is not significant, therefore, to improve the heat transfer performance of nanofluids with given ϕ and Ra, it is necessary to take advantage of the improvement of effective thermal conductivity for the nanofluids in porous media and the perturbation influence of inclination angles on the system together with using appropriate porosity and square cavity tilt angle to intervene the flow.
      通信作者: 郑林, lz@njust.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 51876092, 51506097)资助的课题
      Corresponding author: Zheng Lin, lz@njust.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51876092, 51506097)
    [1]

    Kefayati G 2017 Int. J. Heat Mass Transfer 112 709Google Scholar

    [2]

    李新芳, 朱冬生 2009 低温与超导 37 67Google Scholar

    Li X F, Zhu D S 2009 Cryogenics & Superconductivity 37 67Google Scholar

    [3]

    张晶, 白国君, 马文强, 王刚 2017 甘肃科学学报 29 110

    Zhang J, Bai G J, Ma W Q, Wang G 2017 Journal of Gansu Sciences 29 110

    [4]

    Khanafer K, Vafai K, Lightstone M 2003 Int. J. Heat Mass Transfer 46 3639Google Scholar

    [5]

    Hatami M 2017 J. Mol. Liq. 233 1Google Scholar

    [6]

    Chen S, Du R 2011 Energy 36 1721Google Scholar

    [7]

    Selimefendigil F, Öztop H F 2016 J. Mol. Liq. 216 67Google Scholar

    [8]

    Hatami M 2017 Journal of Molecular Liquids 233 1

    [9]

    Jahanshahi M, Hosseinizadeh S F, Alipanah M, Dehghani A, Vakilinejad G R 2010 Int. Commun. Heat Mass Transfer 37 687Google Scholar

    [10]

    Mackie C, Desai P, Meyers C 1999 Int. J. Heat Mass Transfer 42 3337Google Scholar

    [11]

    Khair K 1985 Int. J. Heat Mass Transfer 28 909Google Scholar

    [12]

    Lam P, Prakash K 2014 Int. J. Heat Mass Transfer 69 390Google Scholar

    [13]

    Kaluri R, Basak T 2011 Energy 36 5065Google Scholar

    [14]

    Alsabery A, Chamkha A, Saleh H, Hashim I 2017 Int. J. Heat Mass Transfer 7 2357

    [15]

    Toosi M H, Siavashi M 2017 J. Mol. Liq. 238 553Google Scholar

    [16]

    Wu F, Zhou W, Ma X 2015 Int. J. Heat Mass Transfer 85 756Google Scholar

    [17]

    Basak T, Roy S, Paul T, Pop I 2006 Int. J. Heat Mass Transfer 49 1430Google Scholar

    [18]

    Ghasemi K, Siavashi M 2017 J. Mol. Liq. 233 415Google Scholar

    [19]

    Sivasankaran S, Alsabery A I, Hashim I 2018 Phys. A (Amsterdam, Neth.) 509 275Google Scholar

    [20]

    Ho C J, Chen M W, Li Z W 2008 Int. J. Heat Mass Transfer 51 4506Google Scholar

    [21]

    Ashorynejad H R, Hoseinpour B 2017 J. Theor. Appl. Mech. 62 86

    [22]

    Nield D A, Bejan A 2006 Convection in Porous Media (Vol. 3) (New York: Springer) pp37–55

    [23]

    Grott M, Knollenberg J, Krause C 2010 J. Geophys. Res.: Planets 115 E11005Google Scholar

    [24]

    Reddy K S, Sreedhar D 2016 Int. J. Curr. Eng. Technol. 6 2277

    [25]

    Sheikholeslami M, Gorji-Bandpy M, Domiri Ganji D 2013 Energy 60 501Google Scholar

    [26]

    Selimefendigil F, Öztop H 2014 Int. J. Heat Mass Transfer 78 741Google Scholar

    [27]

    Seta T, Takegoshi E, Okui K 2006 Math. Comput. Simul. 72 195Google Scholar

    [28]

    Mohamad A, Kuzmin A 2010 Int. J. Heat Mass Transfer 53 990Google Scholar

    [29]

    Sajjadi H, Delouei A A, Atashafrooz M, Sheikholeslami M 2018 Int. J. Heat Mass Transfer 126 489Google Scholar

    [30]

    Sajjadi H, Kefayati G 2015 Heat Transf. Asian Res. 45 795

    [31]

    Javadi K, Kazemi K 2018 Phys. Fluids 30 017104Google Scholar

    [32]

    Sadr M, Gorji H 2017 Phys. Fluids 29 122007Google Scholar

    [33]

    Davis G D V, Jones I P 1983 Int. J. Numer. Methods Fluids 3 227Google Scholar

    [34]

    Nithiarasu P, Seetharamu K N, Sundararajan T 1997 Int. J. Heat Mass Transfer 40 3955Google Scholar

    [35]

    Wang J, Lou Q, Xu H, Chen J, Yang M 2018 Int. Commun. Heat Mass Transf. 35 405

    [36]

    Kefayati G H R 2018 Int. J. Heat Mass Transfer 116 762Google Scholar

  • 图 1  物理模型示意图

    Fig. 1.  Schematic diagram of the physical model.

    图 2  不同$ \epsilon $下温度场和流场的分布图像 (a) $\epsilon $ = 0.3; (b) $\epsilon $ = 0.5; (c) $\epsilon $ = 0.7; (d) $\epsilon $ = 0.9

    Fig. 2.  Streamlines, isotherms contours for different $\epsilon $: (a) $\epsilon $ = 0.3; (b) $\epsilon $ = 0.5; (c) $\epsilon $ = 0.7; (d) $\epsilon $ = 0.9.

    图 3  (a)不同$ \epsilon $X = 0处的竖直速度分布; (b) Y = 1处的水平速度分布图

    Fig. 3.  (a) Vertical velocity distribution at X = 0; (b) horizontal velocity distribution at Y = 1 for different$\epsilon $.

    图 4  (a)不同$\epsilon $下热壁面处Nuave数分布曲线; (b)热壁面处局部Nu数分布曲线

    Fig. 4.  (a) At the heated wall Nuave number; (b) local Nu number for different $\epsilon $.

    图 5  不同Ra下温度场和流场的分布图像 (a) Ra = 103; (b) Ra = 104; (c) Ra = 105; (d) Ra = 106

    Fig. 5.  Streamlines, isotherms contours for different Ra number: (a) Ra = 103; (b) Ra = 104; (c) Ra = 105; (d) Ra = 106.

    图 6  (a) 不同RaX = 0处的竖直速度分布; (b) Y = 1处的水平速度分布图

    Fig. 6.  (a) Vertical velocity distribution at X = 0; (b) horizontal velocity distribution at Y = 1 for different $\epsilon $.

    图 7  (a)不同下Ra热壁面处Nuave数; (b)热壁面处局部Nu数分布曲线

    Fig. 7.  (a) At the heated wall Nuave number; (b) local Nu number for different Ra.

    图 8  不同γ下温度场和流场的分布图像 (a) γ = 0°; (b) γ = 40°; (c) γ = 80°; (d) γ = 120°

    Fig. 8.  Streamlines, isotherms contours for different γ number: (a) γ = 0°; (b) γ = 40°; (c) γ = 80°; (d) γ = 120°.

    图 9  (a)不同γY = 0.5处局部温度分布曲线; (b)热壁面处Vave/Nuave的分布曲线

    Fig. 9.  (a) Local temperature distribution along the Y = 0.5; (b) average velocity in the y direction & Nuave number at the heated wall in different γ.

    图 10  (a)不同γ下热壁面处局部竖直速度V; (b)热壁面处局部Nu数的分布曲线

    Fig. 10.  (a) Local velocity in the y direction; (b) local Nuave number at the heated wall in different γ.

    图 11  (a)随着$\epsilon $的增加不同γ时热壁面Nuave数分布曲线; (b)当γ = 0°, 40°时, 不同$\epsilon $下局部Nu数的分布曲线

    Fig. 11.  (a) Variation of Nuave number as a function of $\epsilon $ in different γ at the heated wall; (b) when γ = 0°, 40°, variation of local Nu number at the heated wall in different $\epsilon $.

    图 12  (a)随着ϕ的增加不同γ下热壁面Nuave数分布曲线; (b)当γ = 0°, 40°时, 不同ϕ下局部Nu数的分布曲线

    Fig. 12.  (a) Variation of Nuave number as a function of ϕ in different γ at the heated wall; (b) when γ = 0°, 40°, variation of local Nu number at the heated wall in different ϕ.

    表 1  H2O, Al2O3和玻璃纤维的热物理性质

    Table 1.  Thermophysical properties of water, Al2O3 and glass fibers.

    物性参数H2OAl2O3Glass fiber[23,24]
    ρ/kg·m–3997.13971650
    Cp/J·kg–1·K–14179765750
    k/W·m–1·K–10.613251.2
    β/K–121 × 10–51.89 × 10–5
    ds/nm47
    下载: 导出CSV

    表 2  纳米流体的热物性参数计算公式

    Table 2.  Calculation formula for thermodynamic properties of nanofluids.

    热物性参数计算表达式
    纳米流体粘度$\mu {}_{nf} = \dfrac{{{\mu _f}}}{{{{\left( {1 - \phi } \right)}^{2.5}}}}$
    纳米流体密度${\rho _{nf}} = \left( {1 - \phi } \right){\rho _f} + \phi {\rho _s}$
    纳米流体热容${\left( {\rho {C_p}} \right)_{nf}} = \left( {1 - \phi } \right){\left( {\rho {C_p}} \right)_f} + \phi {\left( {\rho {C_p}} \right)_s}$
    纳米流体热扩散系数${\alpha _{nf}} = \dfrac{{{k_{nf}}}}{{{{\left( {\rho {C_p}} \right)}_{nf}}}}$
    纳米流体热膨胀系数${\left( {\rho \beta } \right)_{nf}} = \left( {1 - \phi } \right){\left( {\rho \beta } \right)_f} + \phi {\left( {\rho \beta } \right)_s}$
    纳米流体导热系数${k_{nf}} = \dfrac{{{k_p} + 2{k_f} - 2\left( {{k_f} - {k_p}} \right)\phi }}{{{k_p} + 2{k_f} + 2\left( {{k_f} - {k_p}} \right)\phi }}{k_f}$
    多孔介质有效
    导热系数
    ${k_m} = \left( {1 - \epsilon} \right){k_p} + {\epsilon k_{nf}}$
    下载: 导出CSV

    表 3  不同网格数与文献[33]的Nuave数比较

    Table 3.  Comparison of Nuave number with literature[33] in different grids number.

    不同网格数下的Nuave
    80 × 80100 × 100120 × 120140 × 140
    Nuave8.5288.6708.7448.785
    误差/%3.39%1.70%0.83%0.36%
    下载: 导出CSV

    表 4  本文与文献[33]的Nuave数值结果的比较

    Table 4.  Comparison of Nuave number with previous literature[33].

    Ra文献[27]本文结果误差/%
    1031.1161.1230.63
    1042.2382.2661.25
    1054.5094.5561.04
    1068.8178.7440.83
    下载: 导出CSV

    表 5  本文与文献[34]的Nuave数值结果的对比

    Table 5.  Comparison of Nuave number with previous literature[34].

    NO.DaRa文献[34]本文结果误差/%
    110–21041.5301.4972.16
    210–21053.5553.4413.09
    310–25 × 1055.7405.6940.87
    下载: 导出CSV
  • [1]

    Kefayati G 2017 Int. J. Heat Mass Transfer 112 709Google Scholar

    [2]

    李新芳, 朱冬生 2009 低温与超导 37 67Google Scholar

    Li X F, Zhu D S 2009 Cryogenics & Superconductivity 37 67Google Scholar

    [3]

    张晶, 白国君, 马文强, 王刚 2017 甘肃科学学报 29 110

    Zhang J, Bai G J, Ma W Q, Wang G 2017 Journal of Gansu Sciences 29 110

    [4]

    Khanafer K, Vafai K, Lightstone M 2003 Int. J. Heat Mass Transfer 46 3639Google Scholar

    [5]

    Hatami M 2017 J. Mol. Liq. 233 1Google Scholar

    [6]

    Chen S, Du R 2011 Energy 36 1721Google Scholar

    [7]

    Selimefendigil F, Öztop H F 2016 J. Mol. Liq. 216 67Google Scholar

    [8]

    Hatami M 2017 Journal of Molecular Liquids 233 1

    [9]

    Jahanshahi M, Hosseinizadeh S F, Alipanah M, Dehghani A, Vakilinejad G R 2010 Int. Commun. Heat Mass Transfer 37 687Google Scholar

    [10]

    Mackie C, Desai P, Meyers C 1999 Int. J. Heat Mass Transfer 42 3337Google Scholar

    [11]

    Khair K 1985 Int. J. Heat Mass Transfer 28 909Google Scholar

    [12]

    Lam P, Prakash K 2014 Int. J. Heat Mass Transfer 69 390Google Scholar

    [13]

    Kaluri R, Basak T 2011 Energy 36 5065Google Scholar

    [14]

    Alsabery A, Chamkha A, Saleh H, Hashim I 2017 Int. J. Heat Mass Transfer 7 2357

    [15]

    Toosi M H, Siavashi M 2017 J. Mol. Liq. 238 553Google Scholar

    [16]

    Wu F, Zhou W, Ma X 2015 Int. J. Heat Mass Transfer 85 756Google Scholar

    [17]

    Basak T, Roy S, Paul T, Pop I 2006 Int. J. Heat Mass Transfer 49 1430Google Scholar

    [18]

    Ghasemi K, Siavashi M 2017 J. Mol. Liq. 233 415Google Scholar

    [19]

    Sivasankaran S, Alsabery A I, Hashim I 2018 Phys. A (Amsterdam, Neth.) 509 275Google Scholar

    [20]

    Ho C J, Chen M W, Li Z W 2008 Int. J. Heat Mass Transfer 51 4506Google Scholar

    [21]

    Ashorynejad H R, Hoseinpour B 2017 J. Theor. Appl. Mech. 62 86

    [22]

    Nield D A, Bejan A 2006 Convection in Porous Media (Vol. 3) (New York: Springer) pp37–55

    [23]

    Grott M, Knollenberg J, Krause C 2010 J. Geophys. Res.: Planets 115 E11005Google Scholar

    [24]

    Reddy K S, Sreedhar D 2016 Int. J. Curr. Eng. Technol. 6 2277

    [25]

    Sheikholeslami M, Gorji-Bandpy M, Domiri Ganji D 2013 Energy 60 501Google Scholar

    [26]

    Selimefendigil F, Öztop H 2014 Int. J. Heat Mass Transfer 78 741Google Scholar

    [27]

    Seta T, Takegoshi E, Okui K 2006 Math. Comput. Simul. 72 195Google Scholar

    [28]

    Mohamad A, Kuzmin A 2010 Int. J. Heat Mass Transfer 53 990Google Scholar

    [29]

    Sajjadi H, Delouei A A, Atashafrooz M, Sheikholeslami M 2018 Int. J. Heat Mass Transfer 126 489Google Scholar

    [30]

    Sajjadi H, Kefayati G 2015 Heat Transf. Asian Res. 45 795

    [31]

    Javadi K, Kazemi K 2018 Phys. Fluids 30 017104Google Scholar

    [32]

    Sadr M, Gorji H 2017 Phys. Fluids 29 122007Google Scholar

    [33]

    Davis G D V, Jones I P 1983 Int. J. Numer. Methods Fluids 3 227Google Scholar

    [34]

    Nithiarasu P, Seetharamu K N, Sundararajan T 1997 Int. J. Heat Mass Transfer 40 3955Google Scholar

    [35]

    Wang J, Lou Q, Xu H, Chen J, Yang M 2018 Int. Commun. Heat Mass Transf. 35 405

    [36]

    Kefayati G H R 2018 Int. J. Heat Mass Transfer 116 762Google Scholar

  • [1] 隋鹏翔. 颗粒尺寸对纳米流体自然对流模式影响的格子Boltzmann方法模拟研究. 物理学报, 2024, 73(23): 1-13. doi: 10.7498/aps.73.20241332
    [2] 冯晶森, 闵敬春. 直通道内两相流动的格子玻尔兹曼方法模拟. 物理学报, 2023, 72(8): 084701. doi: 10.7498/aps.72.20222421
    [3] 鲁维, 陈硕, 于致远, 赵嘉毅, 张凯旋. 基于能量守恒耗散粒子动力学方法的自然对流模拟改进研究. 物理学报, 2023, 72(18): 180203. doi: 10.7498/aps.72.20230495
    [4] 刘哲, 王雷磊, 时朋朋, 崔海航. 纳米流体液滴内的光驱流动实验及其解析解. 物理学报, 2020, 69(6): 064701. doi: 10.7498/aps.69.20191508
    [5] 张智奇, 钱胜, 王瑞金, 朱泽飞. 纳米颗粒聚集形态对纳米流体导热系数的影响. 物理学报, 2019, 68(5): 054401. doi: 10.7498/aps.68.20181740
    [6] 胡梦丹, 张庆宇, 孙东科, 朱鸣芳. 纳米结构超疏水表面冷凝现象的三维格子玻尔兹曼方法模拟. 物理学报, 2019, 68(3): 030501. doi: 10.7498/aps.68.20181665
    [7] 冯黛丽, 冯妍卉, 石珺. 介孔复合材料声子输运的格子玻尔兹曼模拟. 物理学报, 2016, 65(24): 244401. doi: 10.7498/aps.65.244401
    [8] 黄鑫, 彭述明, 周晓松, 余铭铭, 尹剑, 温成伟. 黑腔冷冻靶传热与自然对流的数值模拟研究. 物理学报, 2015, 64(21): 215201. doi: 10.7498/aps.64.215201
    [9] 刘飞飞, 魏守水, 魏长智, 任晓飞. 基于总能形式的耦合的双分布函数热晶格玻尔兹曼数值方法. 物理学报, 2015, 64(15): 154401. doi: 10.7498/aps.64.154401
    [10] 齐聪, 何光艳, 李意民, 何玉荣. 方腔内Cu/Al2O3水混合纳米流体自然对流的格子Boltzmann模拟. 物理学报, 2015, 64(2): 024703. doi: 10.7498/aps.64.024703
    [11] 雷娟棉, 杨浩, 黄灿. 基于弱可压与不可压光滑粒子动力学方法的封闭方腔自然对流数值模拟及算法对比. 物理学报, 2014, 63(22): 224701. doi: 10.7498/aps.63.224701
    [12] 陈海楠, 孙东科, 戴挺, 朱鸣芳. 凝固前沿和气泡相互作用的大密度比格子玻尔兹曼方法模拟. 物理学报, 2013, 62(12): 120502. doi: 10.7498/aps.62.120502
    [13] 孙东科, 项楠, 陈科, 倪中华. 格子玻尔兹曼方法模拟弯流道中粒子的惯性迁移行为. 物理学报, 2013, 62(2): 024703. doi: 10.7498/aps.62.024703
    [14] 郭亚丽, 徐鹤函, 沈胜强, 魏兰. 利用格子Boltzmann方法模拟矩形腔内纳米流体Raleigh-Benard对流. 物理学报, 2013, 62(14): 144704. doi: 10.7498/aps.62.144704
    [15] 王增, 董刚, 杨银堂, 李建伟. 考虑非均匀温度分布效应的缓冲器插入最优尺寸研究. 物理学报, 2012, 61(5): 054102. doi: 10.7498/aps.61.054102
    [16] 肖波齐, 范金土, 蒋国平, 陈玲霞. 纳米流体对流换热机理分析. 物理学报, 2012, 61(15): 154401. doi: 10.7498/aps.61.154401
    [17] 周丰茂, 孙东科, 朱鸣芳. 偏晶合金液-液相分离的格子玻尔兹曼方法模拟. 物理学报, 2010, 59(5): 3394-3401. doi: 10.7498/aps.59.3394
    [18] 孙东科, 朱鸣芳, 杨朝蓉, 潘诗琰, 戴挺. 强制对流和自然对流作用下枝晶生长的数值模拟. 物理学报, 2009, 58(13): 285-S291. doi: 10.7498/aps.58.285
    [19] 谢华清, 陈立飞. 纳米流体对流换热系数增大机理. 物理学报, 2009, 58(4): 2513-2517. doi: 10.7498/aps.58.2513
    [20] 谢华清, 奚同庚, 王锦昌. 纳米流体介质导热机理初探. 物理学报, 2003, 52(6): 1444-1449. doi: 10.7498/aps.52.1444
计量
  • 文章访问数:  9420
  • PDF下载量:  135
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-02-28
  • 修回日期:  2020-04-08
  • 上网日期:  2020-05-18
  • 刊出日期:  2020-08-20

/

返回文章
返回