-
铋纳米片作为一种新型二维材料, 具有合适的带隙、较高的载流子迁移率和较好的室温稳定性, 加上优异的电学和光学特性, 是实现中红外脉冲激光的有效调制器件. 中红外单晶光纤兼备晶体和光纤的优势, 是实现高功率激光的首选增益介质. 本文采用超声波法成功制备了铋纳米片可饱和吸收体, 并首次将其用于二极管抽运Er:CaF2单晶光纤中红外被动调Q脉冲激光器中. 在吸收抽运功率为1.52 W时, 获得平均输出功率为190 mW的脉冲激光, 最窄脉冲宽度为607 ns, 重复频率为58.51 kHz, 对应的单脉冲能量和峰值功率分别为3.25 μJ和5.35 W. 结果表明, 使用铋纳米片作为可饱和吸收体, 是实现结构紧凑的小型中红外单晶光纤脉冲激光的有效技术途径.
-
关键词:
- 被动调Q激光 /
- 中红外激光 /
- 铋纳米片 /
- Er:CaF2单晶光纤
As a new two-dimensional material, bismuth nanosheet is an effective modulator for realizing a mid-infrared pulsed laser, which benefits from its suitable band gap, higher carrier mobility and better room temperature stability, as well as its excellent electrical and optical properties. The mid-infrared single-crystal fiber is a preferable gain medium for high-power laser because of its advantages of both crystal and fiber. In this paper, a bismuth nanosheet saturable absorber is successfully prepared by the ultrasonic method and used for the first time in a diode-pumped Er:CaF2 single-crystal fiber mid-infrared passively Q-switching pulsed laser. A compact concave planar linear resonator is designed to study the Q-switching Er:CaF2 single-crystal fiber laser with bismuth nanosheets serving as saturable absorbers. The pump source is a fiber-coupled semiconductor laser with a core diameter of 105 μm, a numerical aperture of 0.22, and a central emission wavelength of 976 nm. The pump light is focused onto the front end of the gain medium through a coupled collimating system with a coupling ratio of 1∶2. The gain medium is a 4 at.% Er3+:CaF2 single-crystal fiber grown by the temperature gradient method, and this fiber has two polished but not coated ends, a diameter of 1.9 mm, and a length of 10 mm. To reduce the thermal effect, the single-crystal fiber is tightly wrapped with indium foil and mounted on a copper block with a constant temperature of 12 ℃. The input mirror has a high reflection coating at 2.7–2.95 μm and an antireflection coating at 974 nm, with a curvature radius of 100 mm. A group of partially transmitting plane mirrors are used as output couplers, respectively, with transmittances of 1%, 3%, and 5% at 2.7–2.95 μm. The total length of the resonant cavity is 26 mm. By inserting the bismuth nanosheet into the resonator and carefully adjusting its position and angle, a stable mid-infrared Q-switching laser is obtained. At the absorbed pump power of 1.52 W, a pulsed laser with an average output power of 190 mW is obtained for an output mirror with a transmittance of 3%. The shortest pulse width is 607 ns, the repetition frequency is 58.51 kHz, and the corresponding single pulse energy and peak power are 3.25 μJ and 5.35 W, respectively.-
Keywords:
- passively Q-switching laser /
- mid-infrared laser /
- bismuth nanosheets /
- single-crystal fiber
[1] Uehara H, Tokita S, Kawanaka J, Konishi D, Murakami M, Yasuhara R 2019 App. Phys. Express 12 022002Google Scholar
[2] Sun Y, Tu C, You Z, Liao J, Wang Y, Xu J 2018 Opt. Mater. Express 8 165
[3] Yang Y, Nie H, Zhang B, Yang K, Zhang P, Sun X, Yan B, Li G, Wang Y, Liu J, Shi B, Wang R, Hang Y, He J 2018 App. Phys. Express 11 112704Google Scholar
[4] Yan Z, Li T, Zhao S, Yang K, Li D, Li G, Zhang S, Gao Z 2018 Opt. Laser Technol. 100 261Google Scholar
[5] Guan X, Wang J, Zhang Y, Xu B, Luo Z, Xu H, Cai Z, Xu X, Zhang J, Xu J 2018 Photonics Res. 6 830Google Scholar
[6] Fan M, Li T, Zhao S, Li G, Ma H, Gao X, Kränkel C, Huber G 2016 Opt. Lett. 41 540Google Scholar
[7] Burrus C A, Stone J 1975 Appl. Phys. Lett. 26 318Google Scholar
[8] de Camargo A S S, Andreeta M R B, Hernandes A C, Nunes L A O 2006 Opt. Mater. 28 551Google Scholar
[9] Markovic V, Rohrbacher A, Hofmann P, Pallmann W, Pierrot S, Resan B 2015 Opt. Express 23 25883Google Scholar
[10] Li Y, Miller K, Johnson E G, Nie C D, Bera S, Harrington J A, Shori R 2016 Opt. Express 24 9751Google Scholar
[11] Wang S, Tang F, Liu J, Qian X, Wu Q, Wu A, Liu J, Mei B, Su L 2019 Opt. Mater. 95 109255Google Scholar
[12] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar
[13] Sun Z, Martinez A, Wang F 2016 Nat. Photonics 10 227Google Scholar
[14] Wang J, Mu X, Sun M, Mu T 2019 Appl. Mater. Today 16 1Google Scholar
[15] 孙锐, 陈晨, 令维军, 张亚妮, 康翠萍, 许强 2019 物理学报 68 104207Google Scholar
Sun R, Chen C, Ling W J, Zhang Y N, Kang C P, Xu Q 2019 Acta Phys. Sin. 68 104207Google Scholar
[16] Sun X, Zhang B, Li Y, Luo X, Li G, Chen Y, Zhang C, He J 2018 ACS Nano 12 11376Google Scholar
[17] Zhang Y, Yu H, Zhang R, Zhao G, Zhang H, Chen Y, Mei L, Tonelli M, Wang J 2017 Opt. Lett. 42 547Google Scholar
[18] Yan B, Zhang B, Nie H, Li G, Sun X, Wang Y, Liu J, Shi B, Liu S, He J 2018 Nanoscale 10 20171Google Scholar
[19] Hu Q, Zhang X, Liu Z, Li P, Li M, Cong Z, Qin Z, Chen X 2019 Opt. Laser Technol. 119 105639Google Scholar
[20] Zhang M, Wu Q, Zhang F, Chen L, Jin X, Hu Y, Zheng Z, Zhang H 2019 Adv. Opt. Mater. 7 1800224Google Scholar
[21] Xu Y, Shi Z, Shi X, Zhang K, Zhang H 2019 Nanoscale 11 14491Google Scholar
[22] Li C, Liu J, Guo Z, Zhang H, Ma W, Wang J, Xu X, Su L 2018 Opt. Commun. 406 158Google Scholar
[23] Liu J, Liu J, Guo Z, Zhang H, Ma W, Wang J, Su L 2016 Opt. Express 24 30289Google Scholar
[24] Liu X, Yang K, Zhao S, Li T, Qiao W, Zhang H, Zhang B, He J, Bian J, Zheng L, Su L, Xu J 2017 Photonics Res. 5 461Google Scholar
[25] Wang Y, Sung W, Su X, Zhao Y, Zhang B, Wu C, He G, Lin Y, Liu H, He J, Lee C 2018 IEEE Photonics J. 10 1504110Google Scholar
[26] 王聪, 刘杰, 张晗 2019 物理学报 68 188101Google Scholar
Wang C, Liu J, Zhang H 2019 Acta Phys. Sin. 68 188101Google Scholar
[27] Li Z, Li R, Pang C, Dong N, Wang J, Yu H, Chen F 2019 Opt. Express 27 8727Google Scholar
[28] Liu W, Liu M, Chen X, Shen T, Lei M, Guo J, Deng H, Zhang W, Dai C, Zhang X, Wei Z 2020 Commun. Phys. 3 15Google Scholar
[29] Hao Q, Liu J, Zhang Z, Zhang B, Zhang F, Yang J, Liu J, Su L, Zhang H 2019 Appl. Phys. Express 12 085506Google Scholar
[30] Nie H, Zhang P, Zhang B, Yang K, Zhang L, Li T, Zhang S, Xu J, Hang Y, He J 2017 Opt. Lett. 42 699Google Scholar
[31] Yang Q, Zhang F, Zhang N, Zhang H 2019 Opt. Mater. Express 9 1795Google Scholar
[32] Feng X, Lin Y, Yu X, Wu Q, Huang H, Zhang F, Ning T, Liu J, Su L, Zhang H 2019 Appl. Opt. 58 6545Google Scholar
[33] Lu L, Liang Z, Wu L, Chen Y, Song Y, Dhanabalan S C, Ponraj J S, Dong B, Xiang Y, Xing F, Fan D, Zhang H 2018 Laser Photon. Rev. 12 1870012Google Scholar
[34] Liu J, Huang H, Zhang F, Zhang Z, Liu J, Zhang H, Su L 2018 Photonics Res. 6 762Google Scholar
[35] Feng X, Hao Q, Lin Y, Yu X, Wu Q, Huang H, Zhang F, Liu J, Su L, Zhang H 2020 Opt. Laser Technol. 127 106152Google Scholar
[36] Wang Y, Wang S, Wang J, Zhang Z, Zhang Z, Liu R, Zu Y, Liu J, Su L 2020 Opt. Express 28 6684Google Scholar
[37] Li C, Liu J, Jiang S, Xu S, Ma W, Wang J, Xu X, Su L 2016 Opt. Mater. Express 6 1570Google Scholar
-
表 1 吸收抽运功率1.52 W时, 不同透过率下的调Q激光特性
Table 1. Q-switched laser characteristics at the absorption pump power of 1.52 W
透过
率最大输出
功率/mW脉冲宽度/ns 重复频率/kHz 单脉冲
能量/μJ峰值功率/W 1% 120 650 55.36 2.16 3.33 3% 190 607 58.51 3.25 5.35 5% 81 878 36.54 2.22 2.53 表 2 掺铒氟化物中红外被动调Q激光特性比较
Table 2. Comparison of Er-doped mid-infrared passively Q-switched laser
-
[1] Uehara H, Tokita S, Kawanaka J, Konishi D, Murakami M, Yasuhara R 2019 App. Phys. Express 12 022002Google Scholar
[2] Sun Y, Tu C, You Z, Liao J, Wang Y, Xu J 2018 Opt. Mater. Express 8 165
[3] Yang Y, Nie H, Zhang B, Yang K, Zhang P, Sun X, Yan B, Li G, Wang Y, Liu J, Shi B, Wang R, Hang Y, He J 2018 App. Phys. Express 11 112704Google Scholar
[4] Yan Z, Li T, Zhao S, Yang K, Li D, Li G, Zhang S, Gao Z 2018 Opt. Laser Technol. 100 261Google Scholar
[5] Guan X, Wang J, Zhang Y, Xu B, Luo Z, Xu H, Cai Z, Xu X, Zhang J, Xu J 2018 Photonics Res. 6 830Google Scholar
[6] Fan M, Li T, Zhao S, Li G, Ma H, Gao X, Kränkel C, Huber G 2016 Opt. Lett. 41 540Google Scholar
[7] Burrus C A, Stone J 1975 Appl. Phys. Lett. 26 318Google Scholar
[8] de Camargo A S S, Andreeta M R B, Hernandes A C, Nunes L A O 2006 Opt. Mater. 28 551Google Scholar
[9] Markovic V, Rohrbacher A, Hofmann P, Pallmann W, Pierrot S, Resan B 2015 Opt. Express 23 25883Google Scholar
[10] Li Y, Miller K, Johnson E G, Nie C D, Bera S, Harrington J A, Shori R 2016 Opt. Express 24 9751Google Scholar
[11] Wang S, Tang F, Liu J, Qian X, Wu Q, Wu A, Liu J, Mei B, Su L 2019 Opt. Mater. 95 109255Google Scholar
[12] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V, Firsov A A 2004 Science 306 666Google Scholar
[13] Sun Z, Martinez A, Wang F 2016 Nat. Photonics 10 227Google Scholar
[14] Wang J, Mu X, Sun M, Mu T 2019 Appl. Mater. Today 16 1Google Scholar
[15] 孙锐, 陈晨, 令维军, 张亚妮, 康翠萍, 许强 2019 物理学报 68 104207Google Scholar
Sun R, Chen C, Ling W J, Zhang Y N, Kang C P, Xu Q 2019 Acta Phys. Sin. 68 104207Google Scholar
[16] Sun X, Zhang B, Li Y, Luo X, Li G, Chen Y, Zhang C, He J 2018 ACS Nano 12 11376Google Scholar
[17] Zhang Y, Yu H, Zhang R, Zhao G, Zhang H, Chen Y, Mei L, Tonelli M, Wang J 2017 Opt. Lett. 42 547Google Scholar
[18] Yan B, Zhang B, Nie H, Li G, Sun X, Wang Y, Liu J, Shi B, Liu S, He J 2018 Nanoscale 10 20171Google Scholar
[19] Hu Q, Zhang X, Liu Z, Li P, Li M, Cong Z, Qin Z, Chen X 2019 Opt. Laser Technol. 119 105639Google Scholar
[20] Zhang M, Wu Q, Zhang F, Chen L, Jin X, Hu Y, Zheng Z, Zhang H 2019 Adv. Opt. Mater. 7 1800224Google Scholar
[21] Xu Y, Shi Z, Shi X, Zhang K, Zhang H 2019 Nanoscale 11 14491Google Scholar
[22] Li C, Liu J, Guo Z, Zhang H, Ma W, Wang J, Xu X, Su L 2018 Opt. Commun. 406 158Google Scholar
[23] Liu J, Liu J, Guo Z, Zhang H, Ma W, Wang J, Su L 2016 Opt. Express 24 30289Google Scholar
[24] Liu X, Yang K, Zhao S, Li T, Qiao W, Zhang H, Zhang B, He J, Bian J, Zheng L, Su L, Xu J 2017 Photonics Res. 5 461Google Scholar
[25] Wang Y, Sung W, Su X, Zhao Y, Zhang B, Wu C, He G, Lin Y, Liu H, He J, Lee C 2018 IEEE Photonics J. 10 1504110Google Scholar
[26] 王聪, 刘杰, 张晗 2019 物理学报 68 188101Google Scholar
Wang C, Liu J, Zhang H 2019 Acta Phys. Sin. 68 188101Google Scholar
[27] Li Z, Li R, Pang C, Dong N, Wang J, Yu H, Chen F 2019 Opt. Express 27 8727Google Scholar
[28] Liu W, Liu M, Chen X, Shen T, Lei M, Guo J, Deng H, Zhang W, Dai C, Zhang X, Wei Z 2020 Commun. Phys. 3 15Google Scholar
[29] Hao Q, Liu J, Zhang Z, Zhang B, Zhang F, Yang J, Liu J, Su L, Zhang H 2019 Appl. Phys. Express 12 085506Google Scholar
[30] Nie H, Zhang P, Zhang B, Yang K, Zhang L, Li T, Zhang S, Xu J, Hang Y, He J 2017 Opt. Lett. 42 699Google Scholar
[31] Yang Q, Zhang F, Zhang N, Zhang H 2019 Opt. Mater. Express 9 1795Google Scholar
[32] Feng X, Lin Y, Yu X, Wu Q, Huang H, Zhang F, Ning T, Liu J, Su L, Zhang H 2019 Appl. Opt. 58 6545Google Scholar
[33] Lu L, Liang Z, Wu L, Chen Y, Song Y, Dhanabalan S C, Ponraj J S, Dong B, Xiang Y, Xing F, Fan D, Zhang H 2018 Laser Photon. Rev. 12 1870012Google Scholar
[34] Liu J, Huang H, Zhang F, Zhang Z, Liu J, Zhang H, Su L 2018 Photonics Res. 6 762Google Scholar
[35] Feng X, Hao Q, Lin Y, Yu X, Wu Q, Huang H, Zhang F, Liu J, Su L, Zhang H 2020 Opt. Laser Technol. 127 106152Google Scholar
[36] Wang Y, Wang S, Wang J, Zhang Z, Zhang Z, Liu R, Zu Y, Liu J, Su L 2020 Opt. Express 28 6684Google Scholar
[37] Li C, Liu J, Jiang S, Xu S, Ma W, Wang J, Xu X, Su L 2016 Opt. Mater. Express 6 1570Google Scholar
计量
- 文章访问数: 8256
- PDF下载量: 287
- 被引次数: 0