搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种基于BSIM4的屏蔽栅沟槽MOSFET紧凑型模型

江逸洵 乔明 高文明 何小东 冯骏波 张森 张波

引用本文:
Citation:

一种基于BSIM4的屏蔽栅沟槽MOSFET紧凑型模型

江逸洵, 乔明, 高文明, 何小东, 冯骏波, 张森, 张波

A compact model of shield-gate trench MOSFET based on BSIM4

Jiang Yi-Xun, Qiao Ming, Gao Wen-Ming, He Xiao-Dong, Feng Jun-Bo, Zhang Sen, Zhang Bo
PDF
HTML
导出引用
  • 提出了一种基于BSIM4的屏蔽栅沟槽MOSFET紧凑型模型. 在直流模型中使用两端电势建立JFET区等效电阻模型, 并引入电子扩散区等效电阻, 解决了因忽视JFET区源端电势导致的电流存在误差的问题. 在电容模型中, 漏源电容模型在BSIM4的基础上添加了屏蔽栅-漏等效电容模型, 栅漏电容模型将栅漏偏置电压修改为栅极同栅-漂移区重叠区末端节点的电势差. 使用泊松方程求解该节点电势, 并引入栅氧厚度因子k1、屏蔽栅氧化层厚度因子k2、等效栅-漂移区重叠长度Lovequ和等效屏蔽栅长LSHequ对栅和屏蔽栅的结构进行等效, 以简化泊松方程的计算并确保该节点电势曲线的光滑性. 使用Verilog-A编写模型程序, 搭建实验平台测试屏蔽栅沟槽MOSFET的直流特性、电容特性和开关特性, 模型仿真结果与测试数据有较好的拟合, 验证了所建模型的有效性.
    Shield-gate trench MOSFET in a low-to-medium voltage range (12-250 V) plays a key role in the power conversion market due to its low power loss caused by the sheild-gate structure. In order to eliminate the faults resulting from the parasitic effects of the device and improve the conversion efficiency, the device model is indispensable in designing a circuit system. In this paper, a compact model of shield-gate trench MOSFET based on BSIM4 is proposed, including the DC model and the capacitance model. In the DC model, the basic MOSFET structure uses BSIM4, and the equivalent resistances of the basic MOSFET in series are divided into three parts. The equivalent resistance model of JFET region is established by using the electric potential difference between both ends for the first time, and the equivalent resistance model of electron diffusion region is also introduced, in order to solve the problem of current error caused by neglecting the source potential of JFET region. The equivalent resistance between drain and JFET region and the equivalent resistance of electron diffusion region both prove to be constant. In the capacitance model based on BSIM4, the model of shield-gate to drain capacitance is added to the model of drain to source capacitance, and the voltage bias between drain and gate in the model of gate to drain capacitance is modified into the potential difference between the node at the end of the gate-drift overlap region and the gate. Poisson equations are used to solve the electric potential of this node. Furthermore, the gate oxide thickness factor k1, the shield-gate oxide thickness factor k2, the equivalent length of gate-drift overlap Lovequ and the equivalent length of shield-gate LSHequ are introduced to redefine the position of gate and shield-gate, thereby simplifying the Poisson equations and ensuring the smoothness of the potential curve of the node. Comparison of the data from the simulation by using Verilog-A program with the test results from the experimental platform shows that the model simulation results fit well with the test data, Therefore, the proposed model is verified.
      通信作者: 乔明, qiaoming@uestc.edu.cn
      Corresponding author: Qiao Ming, qiaoming@uestc.edu.cn
    [1]

    Wang Y, Hu H F, Yu C H, Wei J T 2015 IET Power Electronics 8 678Google Scholar

    [2]

    Sarkar T, Sapp S, Challa A 2013 28th Annual IEEE Applied Power Electronics Conference and Exposition (APEC) Long Beach, USA, March 17−21, 2013 p507

    [3]

    Park C, Havanur S, Shibib A, Terrill K 2016 28th International Symposium on Power Semiconductor Devices and ICs (ISPSD) Prague, Czech Republic, June 12–16, 2016 p387

    [4]

    Tong C F, Cortes I, Mawby P A, Covington J A, Morancho F 2009 IEEE Spanish Conference on Electron Devices Santiago de Compostela Santiago de Compostela, Spain, February 11–13, 2009 p250

    [5]

    Choi W, Son D, Young S 2012 27th Annual IEEE Applied Power Electronics Conference and Exposition (APEC) Orlando, USA, February 5–9, 2012 p1676

    [6]

    Wang Y, Yu C H, Li M S, Cao F, Liu Y J 2017 IEEE Trans. Electron Devices 64 1455Google Scholar

    [7]

    Bao J, Qi H, Zhang J, Zhang Y, Hao Z 2011 6th IEEE Joint International Information Technology and Artificial Intelligence Conference Chongqing, China, August 20–22, 2011 p245

    [8]

    王磊, 杨华岳 2010 物理学报 59 0571Google Scholar

    Wang L, Yang Y H 2010 Acta Phys. Sin. 59 0571Google Scholar

    [9]

    Shi L, Jia K, Sun W 2013 IEEE Trans. Electron Devices 60 346Google Scholar

    [10]

    Tanaka A, Oritsuki Y, Kikuchihara H, Miyake M 2011 IEEE Trans. Electron Devices 58 2072Google Scholar

    [11]

    Victory J, Pearson S, Benczkowski S, Sarkar T, Jang H, Yazdi M B, Mao K 2016 28th International Symposium on Power Semiconductor Devices and ICs Prague, Czech Republic, June 12–16, 2016 p219

    [12]

    Xiao Y, Victory J, Pearson S, Sarkar T, Challa A, Dagan M, Collanton P, Andreev C 2019 34th Annual IEEE Applied Power Electronics Conference and Exposition Anaheim, USA, March 17–21, 2019 p508

    [13]

    Xi X, Dunga M, He J, Liu W, Cao K M, Jin X, Ou J J, Chan M, Niknejad A M http://cmosedu.com/cmos1/BSIM4_manual. pdf[2020-1-28]

    [14]

    巴利伽 B J 著 (韩郑生, 陆江, 宋李梅译) 2013 功率半导体器件基础 (北京: 电子工业出版社) 第197—198页

    Baliga B J (translated by Han Z S, Lu J, Song L M) 2013 Fundamentals of Power Semiconductor Devices (Beijing: Publishing House of Electronics Industry) pp197–198 (in Chinese)

    [15]

    Klein P 1997 IEEE Trans. Electron Devices 44 1483Google Scholar

    [16]

    Daniel B J, Parikh C D, Patil M B 2002 IEEE Trans. Electron Devices 49 916Google Scholar

    [17]

    Arribas A P, Shang F, Krishnamurthy M, Shenai K 2015 IEEE Trans. Electron Devices 62 1449Google Scholar

    [18]

    Ren M, Chen Z, Niu B, Cao X, Li S, Li Z, Zhang B 2016 IEEE International Nanoelectronics Conference (INEC) Chengdu, China, May 9–11, 2016 p1

    [19]

    Chauhan Y S, Gillon R, Declercq M, Ionescu A M 2007 37th European Solid State Device Research Conference Munich, Germany, September 11–13, 2007 p426

    [20]

    Shenai K 1991 IEEE Trans. Power Electron 6 539Google Scholar

    [21]

    Agarwal H, Gupta C, Goel R, Kushwaha P, Lin Y K, Kao M Y, Duarte J P, Chang H L, Chauhan Y S, Salahuddin S, Hu C 2019 IEEE Trans. Electron Devices 66 4258Google Scholar

    [22]

    Zhang W T, Ye L, Fang D, Qiao M, Xiao K, He B, Li Z, Zhang B 2019 IEEE Trans. Electron Devices 66 1416Google Scholar

  • 图 1  SGT MOS的等效电阻分布(a)和直流等效电路(b)

    Fig. 1.  (a) Distribution of equivalent resistance of SGT MOS; (b) equivalent DC circuit of SGT MOS.

    图 2  SGT MOS的电容和电荷的分布(a)及电容等效电路(b)

    Fig. 2.  (a) Distribution of capacitance and charge of SGT MOS; (b) equivalent capacitance circuit of SGT MOS.

    图 3  SGT MOS栅和屏蔽栅 (a) 等效前的结构示意图和 (b) 等效后的结构示意图

    Fig. 3.  Schematic diagrams of structure before equivalence (a) and after equivalence (b).

    图 4  25 ℃下的 (a) 转移特性曲线, (b) 跨导Gm曲线, (c) 输出特性曲线和 (d) 输出电导GDS曲线

    Fig. 4.  The curves of (a) transfer characteristic, (b) transconductance Gm, (c) output characteristic and (d) output conductance GDS at 25 ℃.

    图 5  150 ℃下的 (a) 转移特性曲线, (b) 跨导Gm曲线, (c) 输出特性曲线和 (d) 输出电导GDS曲线

    Fig. 5.  The curves of (a) transfer characteristic, (b) transconductance Gm, (c) output characteristic and (d) output conductance GDS at 150 ℃.

    图 6  电容-偏压变化曲线 (a) CGD-VDS曲线; (b) CGS-VDS曲线; (c) CDS-VDS曲线; (d) Ciss, Coss, Crss关于VDS的曲线

    Fig. 6.  Capacitance curves on bias voltage: (a) Curve of CGD on VDS; (b) curve of CGS on VDS; (c) curve of CDS on VDS; (d) curves of Ciss, Coss and Crss on VDS.

    图 7  开关特性验证 (a) 测试电路; (b) 工作电流Ion = 10 A下的开关特性曲线

    Fig. 7.  Verification of switching characteristic: (a) Switching characteristic test circuit; (b) switching characteristic curve at Ion = 10 A

    表 1  SGT MOS的尺寸

    Table 1.  The size of SGT MOS.

    参数名含义大小/μm
    tox栅氧厚度0.07
    ti屏蔽栅与漂移区间氧化层厚度0.18
    ts槽右侧漂移区宽度0.30
    tDB屏蔽栅底部与漂移区的距离0.07
    Lch沟道长度0.53
    Lov栅与漂移区重叠部分的长度0.10
    LDT栅与屏蔽栅间距0.52
    LSH屏蔽栅长度0.87
    Wcell元胞宽度1.20
    下载: 导出CSV
  • [1]

    Wang Y, Hu H F, Yu C H, Wei J T 2015 IET Power Electronics 8 678Google Scholar

    [2]

    Sarkar T, Sapp S, Challa A 2013 28th Annual IEEE Applied Power Electronics Conference and Exposition (APEC) Long Beach, USA, March 17−21, 2013 p507

    [3]

    Park C, Havanur S, Shibib A, Terrill K 2016 28th International Symposium on Power Semiconductor Devices and ICs (ISPSD) Prague, Czech Republic, June 12–16, 2016 p387

    [4]

    Tong C F, Cortes I, Mawby P A, Covington J A, Morancho F 2009 IEEE Spanish Conference on Electron Devices Santiago de Compostela Santiago de Compostela, Spain, February 11–13, 2009 p250

    [5]

    Choi W, Son D, Young S 2012 27th Annual IEEE Applied Power Electronics Conference and Exposition (APEC) Orlando, USA, February 5–9, 2012 p1676

    [6]

    Wang Y, Yu C H, Li M S, Cao F, Liu Y J 2017 IEEE Trans. Electron Devices 64 1455Google Scholar

    [7]

    Bao J, Qi H, Zhang J, Zhang Y, Hao Z 2011 6th IEEE Joint International Information Technology and Artificial Intelligence Conference Chongqing, China, August 20–22, 2011 p245

    [8]

    王磊, 杨华岳 2010 物理学报 59 0571Google Scholar

    Wang L, Yang Y H 2010 Acta Phys. Sin. 59 0571Google Scholar

    [9]

    Shi L, Jia K, Sun W 2013 IEEE Trans. Electron Devices 60 346Google Scholar

    [10]

    Tanaka A, Oritsuki Y, Kikuchihara H, Miyake M 2011 IEEE Trans. Electron Devices 58 2072Google Scholar

    [11]

    Victory J, Pearson S, Benczkowski S, Sarkar T, Jang H, Yazdi M B, Mao K 2016 28th International Symposium on Power Semiconductor Devices and ICs Prague, Czech Republic, June 12–16, 2016 p219

    [12]

    Xiao Y, Victory J, Pearson S, Sarkar T, Challa A, Dagan M, Collanton P, Andreev C 2019 34th Annual IEEE Applied Power Electronics Conference and Exposition Anaheim, USA, March 17–21, 2019 p508

    [13]

    Xi X, Dunga M, He J, Liu W, Cao K M, Jin X, Ou J J, Chan M, Niknejad A M http://cmosedu.com/cmos1/BSIM4_manual. pdf[2020-1-28]

    [14]

    巴利伽 B J 著 (韩郑生, 陆江, 宋李梅译) 2013 功率半导体器件基础 (北京: 电子工业出版社) 第197—198页

    Baliga B J (translated by Han Z S, Lu J, Song L M) 2013 Fundamentals of Power Semiconductor Devices (Beijing: Publishing House of Electronics Industry) pp197–198 (in Chinese)

    [15]

    Klein P 1997 IEEE Trans. Electron Devices 44 1483Google Scholar

    [16]

    Daniel B J, Parikh C D, Patil M B 2002 IEEE Trans. Electron Devices 49 916Google Scholar

    [17]

    Arribas A P, Shang F, Krishnamurthy M, Shenai K 2015 IEEE Trans. Electron Devices 62 1449Google Scholar

    [18]

    Ren M, Chen Z, Niu B, Cao X, Li S, Li Z, Zhang B 2016 IEEE International Nanoelectronics Conference (INEC) Chengdu, China, May 9–11, 2016 p1

    [19]

    Chauhan Y S, Gillon R, Declercq M, Ionescu A M 2007 37th European Solid State Device Research Conference Munich, Germany, September 11–13, 2007 p426

    [20]

    Shenai K 1991 IEEE Trans. Power Electron 6 539Google Scholar

    [21]

    Agarwal H, Gupta C, Goel R, Kushwaha P, Lin Y K, Kao M Y, Duarte J P, Chang H L, Chauhan Y S, Salahuddin S, Hu C 2019 IEEE Trans. Electron Devices 66 4258Google Scholar

    [22]

    Zhang W T, Ye L, Fang D, Qiao M, Xiao K, He B, Li Z, Zhang B 2019 IEEE Trans. Electron Devices 66 1416Google Scholar

  • [1] 冉冲冲, 吴鸣杰, 曾永灿, 吴正茂, 杨俊波, 吴加贵. 基于改进遗传算法设计的超紧凑型片上硅光隔离器. 物理学报, 2025, 74(4): 1-9. doi: 10.7498/aps.74.20241228
    [2] 朱文璐, 郭红霞, 李洋帆, 马武英, 张凤祁, 白如雪, 钟向丽, 李济芳, 曹彦辉, 琚安安. 双沟槽SiC MOSFET总剂量效应研究. 物理学报, 2025, 74(5): . doi: 10.7498/aps.74.20241641
    [3] 沈晓阳, 成一灏, 夏林. 紧凑型冷原子高分辨成像系统光学设计. 物理学报, 2024, 73(6): 066701. doi: 10.7498/aps.73.20231689
    [4] 苏乐, 王彩琳, 杨武华, 梁晓刚, 张超. SGT-MOSFET电场解析模型的建立. 物理学报, 2023, 72(14): 148501. doi: 10.7498/aps.72.20230550
    [5] 孙淑鹏, 程用志, 罗辉, 陈浮, 李享成. 基于戟形人工表面等离激元的紧凑型宽带外抑制带通滤波器. 物理学报, 2023, 72(6): 064101. doi: 10.7498/aps.72.20222291
    [6] 陆梦佳, 恽斌峰. 基于硅基砖砌型亚波长光栅的紧凑型模式转换器. 物理学报, 2023, 72(16): 164203. doi: 10.7498/aps.72.20230673
    [7] 郭建飞, 李浩, 王梓名, 钟鸣浩, 常帅军, 欧树基, 马海伦, 刘莉. 非钳位感性开关测试下双沟槽4H-SiC 功率MOSFET失效机理研究. 物理学报, 2022, 71(13): 137302. doi: 10.7498/aps.71.20220095
    [8] 罗端, 惠丹丹, 温文龙, 李立立, 辛丽伟, 钟梓源, 吉超, 陈萍, 何凯, 王兴, 田进寿. 超紧凑型飞秒电子衍射仪的设计. 物理学报, 2020, 69(5): 052901. doi: 10.7498/aps.69.20191157
    [9] 辛艳辉, 刘红侠, 范小娇, 卓青青. 非对称Halo异质栅应变Si SOI MOSFET的二维解析模型. 物理学报, 2013, 62(15): 158502. doi: 10.7498/aps.62.158502
    [10] 李聪, 庄奕琪, 韩茹, 张丽, 包军林. 非对称HALO掺杂栅交叠轻掺杂漏围栅MOSFET的解析模型. 物理学报, 2012, 61(7): 078504. doi: 10.7498/aps.61.078504
    [11] 李劲, 刘红侠, 李斌, 曹磊, 袁博. 高k栅介质应变Si SOI MOSFET的阈值电压解析模型. 物理学报, 2010, 59(11): 8131-8136. doi: 10.7498/aps.59.8131
    [12] 刘欢, 巩马理. 紧凑型LD端面抽运Nd:YAG内腔三倍频准连续355 nm紫外激光器. 物理学报, 2009, 58(8): 5443-5449. doi: 10.7498/aps.58.5443
    [13] 刘欢, 巩马理. 紧凑型激光二极管抽运全固态355 nm连续波紫外激光器. 物理学报, 2009, 58(10): 7000-7004. doi: 10.7498/aps.58.7000
    [14] 栾苏珍, 刘红侠, 贾仁需, 蔡乃琼. 高k介质异质栅全耗尽SOI MOSFET二维解析模型. 物理学报, 2008, 57(6): 3807-3812. doi: 10.7498/aps.57.3807
    [15] 代月花, 陈军宁, 柯导明, 孙家讹, 胡 媛. 纳米MOSFET迁移率解析模型. 物理学报, 2006, 55(11): 6090-6094. doi: 10.7498/aps.55.6090
    [16] 徐静平, 李春霞, 吴海平. 4H-SiC n-MOSFET的高温特性分析. 物理学报, 2005, 54(6): 2918-2923. doi: 10.7498/aps.54.2918
    [17] 林宝勤, 徐利军, 袁乃昌. 以各向异性介质为衬底的共面紧凑型光子带隙结构. 物理学报, 2005, 54(8): 3711-3715. doi: 10.7498/aps.54.3711
    [18] 周俐娜, 王新兵. 微空心阴极放电的流体模型模拟. 物理学报, 2004, 53(10): 3440-3446. doi: 10.7498/aps.53.3440
    [19] 徐昌发, 杨银堂, 刘莉. 4H-SiC MOSFET的温度特性研究. 物理学报, 2002, 51(5): 1113-1117. doi: 10.7498/aps.51.1113
    [20] 冯士德, 鸟原道久. 用格子Boltzmann模型模拟激波现象. 物理学报, 2001, 50(6): 1006-1010. doi: 10.7498/aps.50.1006
计量
  • 文章访问数:  9685
  • PDF下载量:  190
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-11
  • 修回日期:  2020-05-29
  • 上网日期:  2020-05-29
  • 刊出日期:  2020-09-05

/

返回文章
返回