搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

金刚石氮-空位缺陷发光的温度依赖性

王凯悦 郭睿昂 王宏兴

引用本文:
Citation:

金刚石氮-空位缺陷发光的温度依赖性

王凯悦, 郭睿昂, 王宏兴

Temperature dependence of nitrogen-vacancy optical center in diamond

Wang Kai-Yue, Guo Rui-Ang, Wang Hong-Xing
PDF
HTML
导出引用
  • 利用低温光致发光光谱研究了金刚石氮-空位(NV)缺陷发光对测试温度的依赖性, 并利用电子-声子耦合理论研究了NV缺陷零声子线的增宽机制. 结果表明, 随着测试温度的升高, NV缺陷零声子线发生位置红移、强度减弱、半高宽增加的现象, 这些可以归因于金刚石晶格膨胀与电子-声子耦合协同作用. 在波动场的作用下, NV缺陷零声子线呈现明显的均匀增宽机制.
    Diamond, a wide band gap semiconductor material, has been attracting interest in several fields from electrics and optics to biomedicine and quantum computing due to its outstanding properties. These properties of diamond are related to its unique lattice and optically active defect centers. In this paper, the dependence of nitrogen-vacancy (NV) center on measurement temperature is studied by using the low-temperature photoluminescence (PL) spectroscopy in a temperature range of 80–200 K. The results show that with the increase of the measurement temperature, the zero phonon lines of NV defects are red-shifted, its intensity decreases and its full width at half maximum increases. These results are attributed to the synergetic process of the lattice expansion and quadratic electron-phonon coupling. The NV and NV0 centers have similar values in the quenching activation energy and the thermal softening coefficient, resulting from their similar structures. The small differences may be associated with the electron-phonon coupling. The broadening mechanism of the NV centers is carefully distinguished by $T^3,\; T^5,\; T^7$ Voigt function fitting with the relation. These results show that the full width at half maximum of the Gaussian component of NV and NV0 centers are randomly distributed near 0.1 meV and 2.1 meV, respectively, while the full width at half maximum of the Lorentz component of NV and NV0 centers increase with measurement temperature increasing. The full width at half maximum of Lorentz of NV and NV0 centers conform to the $ T^3 $ relationship. It can be proved that under the action of the fluctuating field, the zero phonon lines of the NV defects exhibit an obvious homogeneous widening mechanism.
      通信作者: 王凯悦, wangkaiyue8@163.com
    • 基金项目: 国家级-国家自然科学基金(61705176)
      Corresponding author: Wang Kai-Yue, wangkaiyue8@163.com
    [1]

    张秀芝, 王凯悦, 李志宏, 朱玉梅, 田玉明, 柴跃生 2015 物理学报 64 247802Google Scholar

    Zhang X Z, Wang K Y, Li Z H, Zhu Y M, Tian Y M, Chai Y S 2015 Acta Phys. Sin. 64 247802Google Scholar

    [2]

    Neumann P, Beck J, Steiner M, Rempp F, Fedder H, Hemmer P R 2010 Science 329 542Google Scholar

    [3]

    Capelli M, Heffernan A H, Ohshima T, Abe H, Jeske J, Hope A, Greentree A D, Reineck P, Gibson B C 2019 Carbon 143 714Google Scholar

    [4]

    Davies G 1974 J. Phys. C Solid State Phys. 7 3797Google Scholar

    [5]

    Wang K, Zhang Y, Wang H, Wang H 2019 Mater. Lett. 234 45Google Scholar

    [6]

    Chen X D, Dong C H, Sun F W, Zou C L, Cui J M 2011 Appl. Phys. Lett. 99 161903Google Scholar

    [7]

    Doherty M W, Acosta V M, Jarmola A, Barson M S J, Manson N B, Budker D, Hollenberg L C L 2014 Phys. Rev. B 90 041201Google Scholar

    [8]

    王凯悦, 朱玉梅, 李志宏, 田玉明, 柴跃生, 赵志刚, 刘开 2013 物理学报 62 097803Google Scholar

    Wang K Y, Zhu Y M, Li Z H, Tian Y M, Chai Y S, Zhao Z G, Liu K 2013 Acta Phys. Sin. 62 097803Google Scholar

    [9]

    王凯悦, 张文晋, 张宇飞, 丁森川, 常森, 王慧军 2018 人工晶体学报 47 2334Google Scholar

    Wang K Y, Zhang W J, Zhang Y F, Ding S C, Chang S, Wang H J 2018 J. Synthetic Cryst. 47 2334Google Scholar

    [10]

    耿传文, 马志斌, 夏禹豪, 李艳春, 衡凡 2018 真空科学与技术学报 38 384Google Scholar

    Geng C W, Ma Z B, Xia Y H, Li Y C, Heng F 2018 Vac. Sci. Techno. 38 384Google Scholar

    [11]

    李灿华, 廖源, 常超, 王冠中, 方容川 2000 物理学报 49 1756Google Scholar

    Li C H, Liao Y, Chang C, Wang G Z, Fang R C 2000 Acta Phys. Sin. 49 1756Google Scholar

    [12]

    Liang Q, Chin C Y, Lai J, Yan C, Meng Y, Mao H, Hemley R J 2009 Appl. Phys. Lett. 94 024103Google Scholar

    [13]

    王凯悦, 李志宏, 田玉明, 朱玉梅, 赵媛媛, 柴跃生 2013 物理学报 62 067802Google Scholar

    Wang K Y, Li Z H, Tian Y M, Zhu Y M, Zhao Y Y, Chai Y S 2013 Acta Phys. Sin. 62 067802Google Scholar

    [14]

    Wang K, Steeds J W, Li Z, Tian Y 2016 Microsc. Microanal. 102 108Google Scholar

    [15]

    Steeds J W, Charles S J, Davies J, Griffin I 2000 Diamond Relat. Mater. 9 397Google Scholar

    [16]

    Shames A I, Osipov V Y, Bogdanov K V, Baranov A V, Zhukovskaya M V, Dalis A, Vagarali S S, Rampersaud A 2017 J. Phys. Chem. C 121 5232Google Scholar

    [17]

    Bogdanov K V, Zhukovskaya M V, Osipov V Y, Ushakova E V, Baranov M A, Takai K, Rampersaud A, Baranov A V 2018 APL Mater. 6 086104Google Scholar

    [18]

    Lawson S C, Kanda H, Watanabe K, Kiflflawi I, Sato Y 1996 J. Appl. Phys. 79 4348Google Scholar

    [19]

    Varshni Y P 1967 Physica 34 149Google Scholar

    [20]

    Hizhnyakov V, Kaasik H, Sildos I 2002 Phys. Status Solidi B 234 644Google Scholar

    [21]

    Neu E, Hepp C, Hauschild M, Gsell S, Fischer M, Sternschulte H, Steinmüller-Nethl D, Schreck M, Becher C 2013 New J. Phys. 15 043005Google Scholar

    [22]

    Benabdesselam M, Petitfifils A, Wrobel F, Butler J E, Mady F 2008 J. Appl. Phys. 103 114908Google Scholar

    [23]

    Khomich A A, Khmelnitskii R A, Poklonskaya O N, Averin A A, Bokova-Sirosh S N, Poklonskii N A, Ralchenko V G, Khomicha A V 2019 J. Appl. Spectrosc 86 597Google Scholar

    [24]

    Zaitsev A M 2001 Optical Properties of Diamond: a Data Handbook (Berlin: Springer) p458

    [25]

    Ricci P C, Casu A, Anedda A 2009 J. Phys. Chem. A 113 13901Google Scholar

    [26]

    Siyushev P, Jacques V, Aharonovich I, Kaiser F, Müller T, Lombez L, Atatüre M, Castelletto S, Prawer S, Jelezko F 2009 New J. Phys. 11 113029Google Scholar

    [27]

    Tandon N, Albrecht J D, Ram-Mohan L R 2015 Diamond Relat. Mater. 56 1Google Scholar

    [28]

    Reshchikova M A 2014 J. Appl. Phys. 115 012010Google Scholar

    [29]

    Fu K, Santori C, Barclay P, Rogers L, Manson N, Beausoleil R 2009 Phys. Rev. Lett. 103 256404Google Scholar

    [30]

    Hizhnyakov V, Boltrushko V, Kaasik H, Sildos I 2004 J. Lumin. 107 351Google Scholar

  • 图 1  低氮金刚石氮杂质的SIMS数据

    Fig. 1.  SIMS data of nitrogen impurities in low nitrogen diamond.

    图 2  低氮金刚石的光学照片

    Fig. 2.  Optical photograph of low nitrogen diamond.

    图 3  低氮金刚石的低温PL光谱 (a) 辐照前; (b) 辐照后; (c) 900 ℃退火后

    Fig. 3.  Low temperature PL spectra of low nitrogen diamond: (a) Before irradiation; (b) after irradiation; (c) 900 ℃ annealing.

    图 4  低氮金刚石辐照退火后不同激发功率的低温PL光谱(最大激发功率为50 mW (选用100%功率档))

    Fig. 4.  Low temperature PL spectra of low nitrogen diamond at different laser powers after irradiation and annealing (The maximum laser power is 50 mW (100%)).

    图 5  低氮金刚石经辐照退火后在80—200 K测试温度下的PL光谱

    Fig. 5.  PL spectra of low nitrogen diamond at 80–200 K after irradiation and annealing.

    图 6  零声子线随测试温度的变化 (a) 零声子线位置; (b) 零声子线强度; (c) 零声子线半高宽

    Fig. 6.  Variation curves of zero phonon lines with measurement temperature: (a) Position; (b) intensity; (c) full width at half maximum.

    图 7  不同温度下PL光谱的Voigt曲线拟合 (a) 1.945 eV; (b) 2.155 eV

    Fig. 7.  Voigt curve fitting of PL spectra at different temperatures: (a) 1.945 eV; (b) 2.155 eV.

    图 8  NV缺陷零声子线高斯分量半高宽和洛伦兹分量半高宽随测试温度的变化 (a) NV; (b) NV0

    Fig. 8.  Temperature dependence of Gaussian width and Lorentzian width derived from the deconvolution routine for the NV center: (a) NV; (b) NV0.

    表 1  金刚石合成参数(1 sccm = 1 mL/min, 1 Torr $ \approx $ 133.322 Pa)

    Table 1.  Synthetic parameters of diamond.

    参数H2流量/sccmCH4/H2体积分数/%微波功率/W压强/Torr温度/℃
    数值30053100901060
    下载: 导出CSV
  • [1]

    张秀芝, 王凯悦, 李志宏, 朱玉梅, 田玉明, 柴跃生 2015 物理学报 64 247802Google Scholar

    Zhang X Z, Wang K Y, Li Z H, Zhu Y M, Tian Y M, Chai Y S 2015 Acta Phys. Sin. 64 247802Google Scholar

    [2]

    Neumann P, Beck J, Steiner M, Rempp F, Fedder H, Hemmer P R 2010 Science 329 542Google Scholar

    [3]

    Capelli M, Heffernan A H, Ohshima T, Abe H, Jeske J, Hope A, Greentree A D, Reineck P, Gibson B C 2019 Carbon 143 714Google Scholar

    [4]

    Davies G 1974 J. Phys. C Solid State Phys. 7 3797Google Scholar

    [5]

    Wang K, Zhang Y, Wang H, Wang H 2019 Mater. Lett. 234 45Google Scholar

    [6]

    Chen X D, Dong C H, Sun F W, Zou C L, Cui J M 2011 Appl. Phys. Lett. 99 161903Google Scholar

    [7]

    Doherty M W, Acosta V M, Jarmola A, Barson M S J, Manson N B, Budker D, Hollenberg L C L 2014 Phys. Rev. B 90 041201Google Scholar

    [8]

    王凯悦, 朱玉梅, 李志宏, 田玉明, 柴跃生, 赵志刚, 刘开 2013 物理学报 62 097803Google Scholar

    Wang K Y, Zhu Y M, Li Z H, Tian Y M, Chai Y S, Zhao Z G, Liu K 2013 Acta Phys. Sin. 62 097803Google Scholar

    [9]

    王凯悦, 张文晋, 张宇飞, 丁森川, 常森, 王慧军 2018 人工晶体学报 47 2334Google Scholar

    Wang K Y, Zhang W J, Zhang Y F, Ding S C, Chang S, Wang H J 2018 J. Synthetic Cryst. 47 2334Google Scholar

    [10]

    耿传文, 马志斌, 夏禹豪, 李艳春, 衡凡 2018 真空科学与技术学报 38 384Google Scholar

    Geng C W, Ma Z B, Xia Y H, Li Y C, Heng F 2018 Vac. Sci. Techno. 38 384Google Scholar

    [11]

    李灿华, 廖源, 常超, 王冠中, 方容川 2000 物理学报 49 1756Google Scholar

    Li C H, Liao Y, Chang C, Wang G Z, Fang R C 2000 Acta Phys. Sin. 49 1756Google Scholar

    [12]

    Liang Q, Chin C Y, Lai J, Yan C, Meng Y, Mao H, Hemley R J 2009 Appl. Phys. Lett. 94 024103Google Scholar

    [13]

    王凯悦, 李志宏, 田玉明, 朱玉梅, 赵媛媛, 柴跃生 2013 物理学报 62 067802Google Scholar

    Wang K Y, Li Z H, Tian Y M, Zhu Y M, Zhao Y Y, Chai Y S 2013 Acta Phys. Sin. 62 067802Google Scholar

    [14]

    Wang K, Steeds J W, Li Z, Tian Y 2016 Microsc. Microanal. 102 108Google Scholar

    [15]

    Steeds J W, Charles S J, Davies J, Griffin I 2000 Diamond Relat. Mater. 9 397Google Scholar

    [16]

    Shames A I, Osipov V Y, Bogdanov K V, Baranov A V, Zhukovskaya M V, Dalis A, Vagarali S S, Rampersaud A 2017 J. Phys. Chem. C 121 5232Google Scholar

    [17]

    Bogdanov K V, Zhukovskaya M V, Osipov V Y, Ushakova E V, Baranov M A, Takai K, Rampersaud A, Baranov A V 2018 APL Mater. 6 086104Google Scholar

    [18]

    Lawson S C, Kanda H, Watanabe K, Kiflflawi I, Sato Y 1996 J. Appl. Phys. 79 4348Google Scholar

    [19]

    Varshni Y P 1967 Physica 34 149Google Scholar

    [20]

    Hizhnyakov V, Kaasik H, Sildos I 2002 Phys. Status Solidi B 234 644Google Scholar

    [21]

    Neu E, Hepp C, Hauschild M, Gsell S, Fischer M, Sternschulte H, Steinmüller-Nethl D, Schreck M, Becher C 2013 New J. Phys. 15 043005Google Scholar

    [22]

    Benabdesselam M, Petitfifils A, Wrobel F, Butler J E, Mady F 2008 J. Appl. Phys. 103 114908Google Scholar

    [23]

    Khomich A A, Khmelnitskii R A, Poklonskaya O N, Averin A A, Bokova-Sirosh S N, Poklonskii N A, Ralchenko V G, Khomicha A V 2019 J. Appl. Spectrosc 86 597Google Scholar

    [24]

    Zaitsev A M 2001 Optical Properties of Diamond: a Data Handbook (Berlin: Springer) p458

    [25]

    Ricci P C, Casu A, Anedda A 2009 J. Phys. Chem. A 113 13901Google Scholar

    [26]

    Siyushev P, Jacques V, Aharonovich I, Kaiser F, Müller T, Lombez L, Atatüre M, Castelletto S, Prawer S, Jelezko F 2009 New J. Phys. 11 113029Google Scholar

    [27]

    Tandon N, Albrecht J D, Ram-Mohan L R 2015 Diamond Relat. Mater. 56 1Google Scholar

    [28]

    Reshchikova M A 2014 J. Appl. Phys. 115 012010Google Scholar

    [29]

    Fu K, Santori C, Barclay P, Rogers L, Manson N, Beausoleil R 2009 Phys. Rev. Lett. 103 256404Google Scholar

    [30]

    Hizhnyakov V, Boltrushko V, Kaasik H, Sildos I 2004 J. Lumin. 107 351Google Scholar

  • [1] 李俊鹏, 任泽阳, 张金风, 王晗雪, 马源辰, 费一帆, 黄思源, 丁森川, 张进成, 郝跃. 多晶金刚石薄膜硅空位色心形成机理及调控. 物理学报, 2023, 72(3): 038102. doi: 10.7498/aps.72.20221437
    [2] 何健, 贾燕伟, 屠菊萍, 夏天, 朱肖华, 黄珂, 安康, 刘金龙, 陈良贤, 魏俊俊, 李成明. 碳离子注入金刚石制备氮空位色心的机理. 物理学报, 2022, 71(18): 188102. doi: 10.7498/aps.71.20220794
    [3] 吴建冬, 程智, 叶翔宇, 李兆凯, 王鹏飞, 田长麟, 陈宏伟. 金刚石氮-空位色心单电子自旋的电场驱动相干控制研究. 物理学报, 2022, 0(0): . doi: 10.7498/aps.71.20220410
    [4] 吴建冬, 程智, 叶翔宇, 李兆凯, 王鹏飞, 田长麟, 陈宏伟. 金刚石氮-空位色心单电子自旋的电场驱动相干控制. 物理学报, 2022, 71(11): 117601. doi: 10.7498/aps.70.20220410
    [5] 李香草, 刘宝安, 李猛, 闫春燕, 任杰, 刘畅, 巨新. 用光致发光研究不同通量辐照磷酸二氢钾晶体的缺陷. 物理学报, 2020, 69(17): 174208. doi: 10.7498/aps.69.20200482
    [6] 陈隆, 陈成克, 李晓, 胡晓君. 氧化对单颗粒层纳米金刚石薄膜硅空位发光和微结构的影响. 物理学报, 2019, 68(16): 168101. doi: 10.7498/aps.68.20190422
    [7] 房超, 贾晓鹏, 颜丙敏, 陈宁, 李亚东, 陈良超, 郭龙锁, 马红安. 高温高压下氮氢协同掺杂对{100}晶面生长宝石级金刚石的影响. 物理学报, 2015, 64(22): 228101. doi: 10.7498/aps.64.228101
    [8] 张秀芝, 王凯悦, 李志宏, 朱玉梅, 田玉明, 柴跃生. 氮对金刚石缺陷发光的影响. 物理学报, 2015, 64(24): 247802. doi: 10.7498/aps.64.247802
    [9] 颜丙敏, 贾晓鹏, 秦杰明, 孙士帅, 周振翔, 房超, 马红安. 氮氢共掺杂金刚石中氢的典型红外特征峰的表征. 物理学报, 2014, 63(4): 048101. doi: 10.7498/aps.63.048101
    [10] 田玉明, 王凯悦, 李志宏, 朱玉梅, 柴跃生, 曾雨顺, 王强. 高能电子照射对金刚石中缺陷电荷状态的影响. 物理学报, 2013, 62(18): 188101. doi: 10.7498/aps.62.188101
    [11] 王凯悦, 李志宏, 田玉明, 朱玉梅, 赵媛媛, 柴跃生. 金刚石中GR1中心的光致发光特性研究. 物理学报, 2013, 62(6): 067802. doi: 10.7498/aps.62.067802
    [12] 林雪玲, 潘凤春. 氮掺杂的金刚石磁性研究. 物理学报, 2013, 62(16): 166102. doi: 10.7498/aps.62.166102
    [13] 王凯悦, 朱玉梅, 李志宏, 田玉明, 柴跃生, 赵志刚, 刘开. 氮掺杂金刚石{100}晶面的缺陷发光特性. 物理学报, 2013, 62(9): 097803. doi: 10.7498/aps.62.097803
    [14] 王凯悦, 李志宏, 张博, 朱玉梅. 光致发光光谱研究金刚石光学中心的振动结构. 物理学报, 2012, 61(12): 127804. doi: 10.7498/aps.61.127804
    [15] 王凯悦, 李志宏, 高凯, 朱玉梅. 电子辐照金刚石的光致发光研究. 物理学报, 2012, 61(9): 097803. doi: 10.7498/aps.61.097803
    [16] 周凯, 李辉, 王柱. 正电子湮没谱和光致发光谱研究掺锌GaSb质子辐照缺陷. 物理学报, 2010, 59(7): 5116-5121. doi: 10.7498/aps.59.5116
    [17] 梁中翥, 梁静秋, 郑娜, 贾晓鹏, 李桂菊. 掺氮金刚石的光学吸收与氮杂质含量的分析研究. 物理学报, 2009, 58(11): 8039-8043. doi: 10.7498/aps.58.8039
    [18] 李荣斌. 硼/氮原子共注入金刚石的原子级研究. 物理学报, 2007, 56(1): 395-399. doi: 10.7498/aps.56.395
    [19] 刘燕燕, E. Bauer-Grosse, 张庆瑜. 微波等离子体化学气相沉积合成掺氮金刚石薄膜的缺陷和结构特征及其生长行为. 物理学报, 2007, 56(4): 2359-2368. doi: 10.7498/aps.56.2359
    [20] 胡晓君, 李荣斌, 沈荷生, 何贤昶, 邓 文, 罗里熊. 掺杂金刚石薄膜的缺陷研究. 物理学报, 2004, 53(6): 2014-2018. doi: 10.7498/aps.53.2014
计量
  • 文章访问数:  9065
  • PDF下载量:  193
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-16
  • 修回日期:  2020-04-16
  • 刊出日期:  2020-06-20

/

返回文章
返回