搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

齿鲸生物声呐发射特性与波束调控研究

宋忠长 张宇 魏翀 杨武夷 徐晓辉

引用本文:
Citation:

齿鲸生物声呐发射特性与波束调控研究

宋忠长, 张宇, 魏翀, 杨武夷, 徐晓辉

Biosonar emission characteristics and beam control of odontocetes

Song Zhong-Chang, Zhang Yu, Wei Chong, Yang Wu-Yi, Xu Xiao-Hui
PDF
HTML
导出引用
  • 齿鲸生物经过长期自然选择, 进化出小巧、灵敏、高效的声呐系统. 齿鲸生物声呐研究涉及海洋物理、声学、生物学、仿生学和信息学等学科, 对于生物仿生、水声声呐、信号处理、水下探测与通信等领域具有参考价值. 本文从声呐系统解剖结构、声呐信号与声呐波束调控三方面出发介绍齿鲸声呐发射系统. 首先, 介绍如何利用计算机断层扫描成像与超声测量技术重建齿鲸声呐发射系统的高精度三维结构, 获取其声速、密度分布, 为声呐系统的功能研究建立基础. 随后, 探究声呐系统发出的声信号的特性, 研究声信号与生物行为之间的联系. 最后, 参考齿鲸生物声呐解剖结构与声呐信号特性建立数值模型研究声发射系统的气质结构、软组织结构和骨质结构组成的声学多相介质对声波传播的控制作用. 齿鲸生物能利用其声呐信号的多样性与声呐发射系统结构的复杂特性动态调整声波传播与波束形成. 探究齿鲸生物声呐工作原理能加深对生物多相介质中的声传播过程的理解, 有望为水下仿生声探测与感知技术的发展提供新思路.
    Odontocetes have evolved for millions of years to own a unique echolocation system. The exceptional performance of odontocetes echolocation system can provide reference to artificial sonar systems, acoustic metamaterials and sound control designs. Research on odontocetes biosonar requires interdisciplinary effort, including acoustics, biology, biomimetics, anatomy, physiology and signal analysis. In this paper, we review odontoctes’ biosonar emission process from aspects of anatomy, biosonar signal and beam formation. To begin, computed tomography scanning and untrasound measurements are combined to reconstruct the sound speed and density distributions. To follow, efforts are thrown to probe into the biosonar signal and its corresponding acoustic behavior. Numerical simulations are used to investigate the odontocetes’ biosonar beam formation. The secret of exceptional performance of odontocetes’ echolocation system lies in their unique anatomy. Odontocete integrates acoustic structures with different acoustic impedances, namely solid bony structures, air space and soft tissues as a whole emission system to efficiently modulate sound propagation and sound beam formation. These acoustic structures are well organized in the forehead, forming a natural acoustic metamaterial to perform a good control of sounds. These results can enlighten artificial sonar designs.
      通信作者: 张宇, yuzhang@xmu.edu.cn
    • 基金项目: 国家重点研发计划 (批准号: 2018YFC1407504) 和国家自然科学基金(批准号: 41676023, 41276040)资助的课题
      Corresponding author: Zhang Yu, yuzhang@xmu.edu.cn
    • Funds: Project supported by the National Key Research and Development Program of China (Grant No. 2018YFC1407504) and the National Natural Science Foundation of China (Grant Nos. 41676023, 41276040)
    [1]

    Au W W L 1993 The Sonar of Dolphins (1st Ed.) (New York: Springer-Verlag) pp1−21

    [2]

    Au W W L, Simmons J A 2007 Phys. Today 60 40Google Scholar

    [3]

    Jepsen G L 1970 Biology of Bats (1st Ed.) (New York: Academic Press) pp1−64

    [4]

    Griffin D R 1946 Nature 158 46Google Scholar

    [5]

    Schevill W E, McBride A F 1956 Deep-Sea Res. 3 153Google Scholar

    [6]

    Wood F G 1953 B. Mar. Sci. 3 120

    [7]

    Kellogg W N, Kohler R 1952 Sci. 116 250Google Scholar

    [8]

    Kellogg W N, Kohler R, Morris H N 1953 Sci. 117 239Google Scholar

    [9]

    Norris K S 1964 Marine Bio-acoustics (1st Ed.) (New York: Pergamon) pp316−336

    [10]

    Au W W L, Floyd R W, Penner R H, Murchison A E 1974 J. Acoust. Soc. Am. 56 1280Google Scholar

    [11]

    Au W W L, Penner R H 1981 J. Acoust. Soc. Am. 70 687Google Scholar

    [12]

    Au W W L, Pawloski J L, Nachtigall, P E, Blonz M, Gisner R C 1995 J. Acoust. Soc. Am. 98 51Google Scholar

    [13]

    Au W W L, Kastelein R A, Rippe T, Schooneman N M 1999 J.Acoust. Soc. Am. 106 3699Google Scholar

    [14]

    Sayigh L S, Janik V M 2009 Encyclopedia of Marine Mammals (2nd Ed.) (Amsterdam: Elsevier Inc) pp1014−1016

    [15]

    Li S H, Wang K X, Wang D, Akamatsu T 2005 J. Acoust. Soc. Am. 117 3288Google Scholar

    [16]

    Goold J C, Jefferson T A 2002 Raffles. Bull. Zool. 10 131

    [17]

    Song Z C, Zhang Y, Wang X Y, Wei C, Wu F X, Miao X 2017 J. Biobased Mater. Bioenergy 11 45Google Scholar

    [18]

    Gong Z N, Dong L J, Caruso F, Li M L, Liu M M, Dong J C, Li S H 2019 J. Acoust. Soc. Am. 145 3480Google Scholar

    [19]

    Zimmer W M, Johnson M P, Madsen P T, Tyack P L 2005 J. Acoust. Soc. Am. 117 3919Google Scholar

    [20]

    Li S H, Wang D, Wang K, Akamatsu T, Ma Z Q, Han J B 2007 J. Acoust. Soc. Am. 121 3938Google Scholar

    [21]

    Li S H, Wang K, Wang D, Dong S Y, Akamatsu T 2008 J. Acoust. Soc. Am. 124 716Google Scholar

    [22]

    Evans W E, Prescott J H 1962 Zool 47 121

    [23]

    Norris K S, Dormer K J, Pegg J, Liese G T 1971 Proceedings of Conference on VIIIth Conference on Biolology of Sonar Diving Mammals, Menlo Park, CA, USA, 1971 p113

    [24]

    Evans W E, Maderson P F A 1973 Am. Zool 13 1205Google Scholar

    [25]

    Cranford T W, Amundin M, Norris K S 1996 J. Morphol 228 223Google Scholar

    [26]

    Cranford T W 1988 Animal Sonar: Processes and Performance (1st Ed.) (New York: Springer) pp67−77

    [27]

    Dubrovskiy N A, Urusovskiy I A 2006 J. Acoust. Soc. Am 119 3276Google Scholar

    [28]

    Aroyan J L, Cranford T W, Kent J, Norris K S 1992 J. Acoust. Soc. Am. 92 2539Google Scholar

    [29]

    Cranford T W, Trijoulet V, Smith C R, Krysl P 2014 Bioacoustics 23 161Google Scholar

    [30]

    Wei C, Au W W L, Ketten D R, Zhang Y 2018 J. Acoust. Soc. Am. 143 2611Google Scholar

    [31]

    Wei C, Au W W L, Ketten D R, Song Z C, Zhang Y 2017 J. Acoust. Soc. Am. 141 4179Google Scholar

    [32]

    Moore P W, Mankiewicz L A, Houser D S 2008 T J. Acoust. Soc. Am. 124 3324Google Scholar

    [33]

    Wisniewska D M, Ratcliffe J M, Beedholm K, Christensen C B, Johnson M, Koblitz J C, Wahlberg M, Madsen P T 2015 eLife 4 e05651Google Scholar

    [34]

    Zhang Y, Song Z C, Wang X Y, Cao W W, Au W W L 2017 Phys. Rev. Applied 8 064002Google Scholar

    [35]

    Song Z C, Zhang Y, Thornton S W, Dong J C, Li S H 2017 J. Acoust. Soc. Am. 142 2443Google Scholar

    [36]

    Song Z C, Xu X, Dong J C, Xing R L, Zhang M, Liu X C, Zhang Y, Li S H, Berggren P 2015 J. Acoust. Soc. Am. 138 3129Google Scholar

    [37]

    Cranford T W, Krysl P 2015 PLoS ONE 10 e0122298Google Scholar

    [38]

    Song Z C, Zhang Y, Berggren P, Wei C 2017 J. Acoust. Soc. Am. 141 681Google Scholar

    [39]

    荆显英, 肖友芙, 景荣才 1983 海洋学报 1 11Google Scholar

    Jing X Y, Xiao Y F, Jing R C 1983 Acta. Oceanol. Sin. 1 11Google Scholar

    [40]

    王丁, 刘仁俊, 陈佩薰, 王至藩, 卢文祥, 杨叔子 1989 水生生物学报 3 210

    Wang D, Liu R J, Chen P X, Wang Z F, Lu W X 1989 Acta. Hydrobiol. Sin. 3 210

    [41]

    王克雄 2005 博士学位论文 (武汉: 中国科学院水生生物研究所)

    Wang K X 2005 Ph. D. Dissertation (Wuhan: Institute of Hydrobiology, Chinese Academy of Sciences) (in Chinese)

    [42]

    王丁, 王克雄, 刘仁俊, 陈佩薰 1989 湘潭大学学报(自然科学) 2 116

    Wang D, Wang K X, Liu R J, Chen P X 1989 Nat. Sci. J. Xiangtan. Univ. 2 116

    [43]

    肖友芙, 王丁, 王克雄 1993 海洋学报 1 125

    Xiao Y F, Wang D, Wang K X 1993 Acta. Oceanol. Sin. 1 125

    [44]

    王丁, 王克雄, 刘仁俊, 谌刚, 卢文祥 1988 华中理工大学学报 3 55Google Scholar

    Wang D, Wang K X, Liu R J, Chen G, Lu W X 1988 J. Huazhong. Univ. Sci. Tech. 3 55Google Scholar

    [45]

    Akamatsu T, Wang D, Wang K, Naito Y 2000 J. Acoust. Soc. Am. 108 1353Google Scholar

    [46]

    Akamatsu T, Wang D, Wang K, Wei Z 2001 J. Acoust. Soc. Am. 109 1723Google Scholar

    [47]

    Li S, Wang D, Wang K, Akamatsu T 2006 J. Acoust. Soc. Am. 120 1803Google Scholar

    [48]

    Soldevilla M S, Henderson E E, Campbell G S, Wiggins S M, Hildebrand J A, Roch M A 2008 J. Acoust. Soc. Am. 124 609Google Scholar

    [49]

    Janik V M, King S L 2013 Mar. Mamm. Sci. 29 109Google Scholar

    [50]

    Lilly J C, Miller A M 1961 Sci. 133 1689Google Scholar

    [51]

    Lilly J C 1966 Whales, Dolphins and Porpoises (1st Ed.) (Berkeley: University of California Press) pp503−509

    [52]

    Yang W Y, Luo W Y, Zhang Y 2017 Electron. Lett. 53 367Google Scholar

    [53]

    杨武夷, 孙馨喆, 宋忠长, 张宇, 杨燕明 2017 声学学报 42 445Google Scholar

    Yang W Y, Sun X Z, Song Z C, Zhang Y, Yang Y M 2017 Acta. Acust. 42 445Google Scholar

    [54]

    Luo W Y, Yang W Y, Zhang Y 2019 J. Acoust. Soc. Am. 145 EL7Google Scholar

    [55]

    Driscoll A D 1995 M. S. Thesis (Santa Cruz: University of California Santa Cruz)

    [56]

    Bazúa-Duran C 1997 M. S. Thesis (Mexico: Universidad Nacional Autonoma De Mexico)

    [57]

    Bazúa-Duran C, Au W W L 2002 J. Acoust. Soc. Am. 112 3064Google Scholar

    [58]

    魏翀 2016 博士学位论文 (厦门: 厦门大学)

    Wei C 2016 Ph. D. Dissertation (Xiamen: Xiamen University) (in Chinese)

    [59]

    魏翀, 许肖梅, 张宇, 牛富强 2014 声学学报 39 452Google Scholar

    Wei C, Xu X M, Zhang Y, Niu F Q 2014 Acta. Acust. 39 452Google Scholar

    [60]

    King S L, Sayigh L S, Wells R S, Feller W, Janik V M 2013 P. Roy. Soc. B 280 20130053Google Scholar

    [61]

    Wang Z T, Fang L, Shi W J, Wang K X, Wang D 2013 J. Acoust. Soc. Am. 133 2479Google Scholar

    [62]

    Belikov R A, Belkovich V M 2007 Acoust. Phys. 53 528Google Scholar

    [63]

    Au W W L, Floyd R W, Haun J E 1978 J. Acoust. Soc. Am. 64 411Google Scholar

    [64]

    Au W W L, Moore P W, Pawloski D 1986 J. Acoust. Soc. Am. 80 688Google Scholar

    [65]

    Au W W L, Branstetter B, Moore P W, Finneran J J 2012 J. Acoust. Soc. Am. 131 569Google Scholar

    [66]

    Wahlberg M, Jensen F H, Soto N A, Beedholm K, Bejder L, Oliveira C, Rasmussen M, Simon M, Villadsgaard A, Madsen P T 2011 J. Acoust. Soc. Am. 130 2263Google Scholar

    [67]

    Au W W L, Penner R H, Turl C W 1987 J. Acoust. Soc. Am. 82 807Google Scholar

    [68]

    Zimmer W M, Tyack P L, Johnson M P, Madsen P T 2005 J. Acoust. Soc. Am. 117 1473Google Scholar

    [69]

    Madsen P T, Johnson M, de Soto N A, Zimmer W M X, Tyack P 2005 J. Exp. Biol. 208 181Google Scholar

    [70]

    Kyhn L A, Jensen F H, Beedholm K, Tougaard J, Hansen M, Madsen P T 2010 J. Exp. Biol. 213 1940Google Scholar

    [71]

    Dible S A, Flint J A, Lepper P A 2009 Bioinspir. Biomim. 4 015005Google Scholar

    [72]

    Dobbins P F 2007 Bioinspir. Biomim. 2 19Google Scholar

    [73]

    Graf S, Megill W M, Blondel P, Clift S E 2008 J. Acoust. Soc. Am. 123 3360Google Scholar

    [74]

    Song Z, Zhang Y, Wei C, Wang X Y 2016 Phys. Rev. E 93 012411Google Scholar

    [75]

    Wei C, Au W W L, Song Z C, Zhang Y 2016 J. Acoust. Soc. Am. 139 875Google Scholar

    [76]

    Wei C, Song Z C, Au W W L, Zhang Y, Wang D 2018 J. Comput. Acoust. 26 1850009Google Scholar

    [77]

    Wei C, Zhang Y, Au W W L 2014 J. Acoust. Soc. Am. 136 423Google Scholar

    [78]

    Norris K S, Harvey G W 1974 J. Acoust. Soc. Am. 56 659Google Scholar

    [79]

    Zhang Y, Gao X W, Zhang S, Cao WW, Tang L G, Wang D, Li Y 2014 Appl. Phys. Lett. 105 123502Google Scholar

    [80]

    Dong E Q, Zhang Y, Song Z C, Zhang T Y, Cai C, Fang N X 2019 Natl. Sci. Rev. 6 921Google Scholar

  • 图 1  (a) 东亚江豚头部的三维重建; (b) 小抹香鲸头部的三维重建; (c) 中华白海豚头部的三维重建

    Fig. 1.  (a) Three-dimensional reconstruction of a finless porpoise head; (b) three-dimensional reconstruction of a pygmy sperm whale head; (c) three-dimensional reconstruction of an Indo-Pacific humpback dolphin.

    图 2  (a) 东亚江豚头部声学结构的三维重建; (b)小抹香鲸头部声学结构的三维重建; (c) 中华白海豚头部声学结构的三维重建结果; 青色、棕色、红色、黄色和灰色分别表示结缔组织、额隆、声源、气囊与上颌骨

    Fig. 2.  (a) Three-dimensional acoustic structure reconstructions of a finless porpoise; (b) three-dimensional acoustic structure reconstructions of a pygmy sperm whale; (c) three-dimensional acoustic structure reconstructions of an Indo-Pacific humpback dolphin. Upper jaw, sound source, air components (including the air sacs and nasal passage) are represented in different colors.

    图 3  (a)东亚江豚头部声发射系统的水平截面声速重建; (b)东亚江豚头部声发射系统的垂直截面声速重建[34]; (c)小抹香鲸头部声发射系统的水平截面声速重建; (d)小抹香鲸头部声发射系统的垂直截面声速重建[36]; (e)中华白海豚头部声发射系统的水平截面声速重建; (f)中华白海豚头部声发射系统的垂直截面声速重建[38]

    Fig. 3.  (a) Sound speed reconstructions of finless porpoise for sound emission system in horizontal section; (b) sound speed reconstructions of finless porpoise for sound emission system in vertical section[34]; (c) sound speed reconstructions of pygmy sperm whale for sound emission system in horizontal section; (d) sound speed reconstructions of pygmy sperm whale for sound emission system in vertical section[36]; (e) sound speed reconstructions of the Indo-Pacific humpback dolphin for sound emission system in horizontal section; (f) sound speed reconstructions of the Indo-Pacific humpback dolphin for sound emission system in vertical section[38].

    图 4  沿着图3(d)垂直截面中的截线的声速分布(Mu为肌肉组织的缩写, Me为额隆组织的缩写而T则为结缔组织罩的缩写)[36]

    Fig. 4.  Sound velocity distribution along the y axis corresponds to the line in the right part of Fig. 3(d). Mu, muscle; Me, melon; T, theca[36].

    图 5  (a)中华白海豚不同能量回声定位脉冲的频谱分布; (b) 东亚江豚不同能量回声定位脉冲信号的频谱分布; 图中的–3 dB, –6 dB, –10 dB以及–20 dB分别表示能量处于最高能量声信号–3 dB到0 dB范围, –6 dB到–3 dB范围, –10 dB到–6 dB范围以及–20 dB到–10 dB范围的回声定位信号

    Fig. 5.  (a) Mean spectrum of the clicks from –3 dB, –6 dB, and –10 dB groups for the Indo-Pacific humpback dolphin; (b) the mean spectrum of the clicks from –3 dB, –6 dB, –10 dB and –20 dB groups for the finless porpoise.

    图 6  (a)宽吻海豚固定频率型通信声信号时频图; (b)宽吻海豚正弦型通信声信号时频图; (c)宽吻海豚凸型通信声信号时频图; (d)宽吻海豚凹型通信声信号时频图; (e) 宽吻海豚上扫频型通信声信号时频图; (f) 宽吻海豚下扫频型通信声信号时频图[58,59]; 其中颜色深浅表示声信号强度大小

    Fig. 6.  (a) Spectrogram of constant frequency whistles of the bottlenose dolphins; (b) the spectrogram sinusoidal whistles of the bottlenose dolphins; (c) the spectrogram of convex or hill whistles of the bottlenose dolphins; (d) the spectrogram of concave or valley whistles of the bottlenose dolphins; (e) the spectrogram of upsweep whistles of the bottlenose dolphins; (f) the spectrogram of down sweep frequency whistles of the bottlenose dolphins[58,59].

    图 7  (a) 厦门五缘湾圈养两只宽吻海豚处在自由游动状态; (b) 宽吻海豚处于训练状态; (c)宽吻海豚处于自由游动时发出的通信声信号类别及其占比; (d) 宽吻海豚处于训练状态下发出的通信信号的类别及其占比[58,59]

    Fig. 7.  (a) Two captive free swimming bottlenose dolphins in Xiamen; (b) bottlenose dolphins under training; (c) pie chart of the classified whistles of two bottlenose dolphins under free swimming; (d) pie chart of the classified whistles of two bottlenose dolphins under training conditions[58,59].

    图 8  (a) 中心频率为130 kHz的声脉冲经过鼠海豚无头骨模型调控形成的声波波束; (b) 中心频率为130 kHz的声脉冲经过鼠海豚完整模型调控形成的声波波束[31]

    Fig. 8.  (a) Beam directivity of a sound pulse with a centroid frequency of 130 kHz for No-Skull model of harbor porpoise; (b) the beam directivity of a sound pulse with a centroid frequency of 130 kHz for a complete model of harbor porpoise[31].

    图 9  (a) 声波在白鱀豚垂直截面第一传播时刻的声场分布; (b) 声波在白鱀豚垂直截面第二传播时刻的声场分布, 其中RW与IW分别表示传播过程中的反射波与表面波; (c) 声波在白鱀豚垂直截面第三传播时刻的声场分布; (d)第一传播时刻声场分布放大; (e)第二传播时刻声场分布放大; (f)第三传播时刻声场分布放大[74]

    Fig. 9.  (a) Propagation plot of a short-duration impulse source for Baiji in vertical section at time 1; (b) propagation plot of a short-duration impulse source for Baiji in vertical section at time 2; (c) propagation plot of a short-duration impulse source for Baiji in vertical section at time 3; (d) enlarged details of (a); (e) enlarged details of (b); (f) enlarged details of (c)[74].

    图 10  白鱀豚上颌骨表面20个点的固体位移分布情况[74]

    Fig. 10.  Solid displacements of the 20 maxilla points of baiji[74].

    图 11  (a) 声波在小抹香鲸完整头部模型第一传播时刻的声场分布; (b) 声波在小抹香鲸完整头部模型第二传播时刻的声场分布; (c) 声波在小抹香鲸完整头部模型第三传播时刻的声场分布; (d)声波在小抹香鲸头部无气体结构模型第一传播时刻的声场分布; (e) 声波在小抹香鲸头部无气体结构模型第二传播时刻的声场分布; (f) 声波在小抹香鲸头部无气体结构模型第三传播时刻的声场分布; (g) 峰值频率为125 kHz的声脉冲经过小抹香鲸头部完整模型调控形成的声波波束; (h) 峰值频率为125 kHz的声脉冲经过小抹香鲸头部无气体结构模型调控形成的声波波束[35]

    Fig. 11.  (a) Propagation plot of the transient sound waves at time 1 under a full model case of pygmy sperm whale; (b) propagation plot of the transient sound waves at time 2 under a full model case of pygmy sperm whale; (c) propagation plot of the transient sound waves at time 3 under a full model case of pygmy sperm whale; (d) propagation plot of the transient sound waves at time 1 under a model case without air components; (e) propagation plot of the transient sound waves at time 2 under a model case without air components; (f) propagation plot of the transient sound waves at time 3 under a model case without air components; (g) the beam directivity of a sound pulse with a peak frequency of 125 kHz for the full model case of the pygmy sperm whale; (h) the beam directivity of a sound pulse with a peak frequency of 125 kHz for the model case of pygmy sperm whale without air components[35].

    图 12  (a)鼠海豚无额隆模型和完整模型在第一传播时刻的传播声场分布; (b)鼠海豚无额隆模型和完整模型在第二传播时刻的声场分布; (c) 鼠海豚无额隆模型和完整模型在第三传播时刻的声场分布; (d) 鼠海豚无额隆模型和完整模型在第四传播时刻的声场分布; (e) 中心频率为130 kHz的声脉冲经过鼠海豚无额隆模型调控形成的声波波束; (f) 中心频率为130 kHz的声脉冲经过鼠海豚完整模型调控形成的声波波束[31]

    Fig. 12.  (a) Acoustic field of no-melon and full head cases at time 1; (b) acoustic field of no-melon and full head cases at time 2; (c) acoustic field of no-melon and full head cases at time 3; (d) acoustic field of no-melon and full head cases at time 4; (e) the beam directivity of a sound pulse with a centroid frequency of 130 kHz for no-melon case of harbor porpoise; (f) the beam directivity of a sound pulse with a centroid frequency of 130 kHz for the full head case[31].

    图 13  (a) 头部压缩对峰值频率为125 kHz的声脉冲传播形成的声场的影响, 其中θ表示的是前庭囊的倾斜角, NA代表的是相对于原始模型的归一化面积; (b) 五种模型相应的波束分布特性; (c) 五种模型形成的声波波束的–3 dB带宽与主瓣角分布[34]

    Fig. 13.  (a) Compressing effect of models I, II, III, IV, and V on acoustic field of the sound pulse with a peak frequency of 125 kHz inside the head, where θ represents the orientation angle of the vestibular sac and NA represents the normalized area of the forehead tissues with respect to those of the original model I; (b) beam directivities of the five cases; (c) sound beams’ –3 dB beam widths and main beam angle distribution of the five cases[34].

  • [1]

    Au W W L 1993 The Sonar of Dolphins (1st Ed.) (New York: Springer-Verlag) pp1−21

    [2]

    Au W W L, Simmons J A 2007 Phys. Today 60 40Google Scholar

    [3]

    Jepsen G L 1970 Biology of Bats (1st Ed.) (New York: Academic Press) pp1−64

    [4]

    Griffin D R 1946 Nature 158 46Google Scholar

    [5]

    Schevill W E, McBride A F 1956 Deep-Sea Res. 3 153Google Scholar

    [6]

    Wood F G 1953 B. Mar. Sci. 3 120

    [7]

    Kellogg W N, Kohler R 1952 Sci. 116 250Google Scholar

    [8]

    Kellogg W N, Kohler R, Morris H N 1953 Sci. 117 239Google Scholar

    [9]

    Norris K S 1964 Marine Bio-acoustics (1st Ed.) (New York: Pergamon) pp316−336

    [10]

    Au W W L, Floyd R W, Penner R H, Murchison A E 1974 J. Acoust. Soc. Am. 56 1280Google Scholar

    [11]

    Au W W L, Penner R H 1981 J. Acoust. Soc. Am. 70 687Google Scholar

    [12]

    Au W W L, Pawloski J L, Nachtigall, P E, Blonz M, Gisner R C 1995 J. Acoust. Soc. Am. 98 51Google Scholar

    [13]

    Au W W L, Kastelein R A, Rippe T, Schooneman N M 1999 J.Acoust. Soc. Am. 106 3699Google Scholar

    [14]

    Sayigh L S, Janik V M 2009 Encyclopedia of Marine Mammals (2nd Ed.) (Amsterdam: Elsevier Inc) pp1014−1016

    [15]

    Li S H, Wang K X, Wang D, Akamatsu T 2005 J. Acoust. Soc. Am. 117 3288Google Scholar

    [16]

    Goold J C, Jefferson T A 2002 Raffles. Bull. Zool. 10 131

    [17]

    Song Z C, Zhang Y, Wang X Y, Wei C, Wu F X, Miao X 2017 J. Biobased Mater. Bioenergy 11 45Google Scholar

    [18]

    Gong Z N, Dong L J, Caruso F, Li M L, Liu M M, Dong J C, Li S H 2019 J. Acoust. Soc. Am. 145 3480Google Scholar

    [19]

    Zimmer W M, Johnson M P, Madsen P T, Tyack P L 2005 J. Acoust. Soc. Am. 117 3919Google Scholar

    [20]

    Li S H, Wang D, Wang K, Akamatsu T, Ma Z Q, Han J B 2007 J. Acoust. Soc. Am. 121 3938Google Scholar

    [21]

    Li S H, Wang K, Wang D, Dong S Y, Akamatsu T 2008 J. Acoust. Soc. Am. 124 716Google Scholar

    [22]

    Evans W E, Prescott J H 1962 Zool 47 121

    [23]

    Norris K S, Dormer K J, Pegg J, Liese G T 1971 Proceedings of Conference on VIIIth Conference on Biolology of Sonar Diving Mammals, Menlo Park, CA, USA, 1971 p113

    [24]

    Evans W E, Maderson P F A 1973 Am. Zool 13 1205Google Scholar

    [25]

    Cranford T W, Amundin M, Norris K S 1996 J. Morphol 228 223Google Scholar

    [26]

    Cranford T W 1988 Animal Sonar: Processes and Performance (1st Ed.) (New York: Springer) pp67−77

    [27]

    Dubrovskiy N A, Urusovskiy I A 2006 J. Acoust. Soc. Am 119 3276Google Scholar

    [28]

    Aroyan J L, Cranford T W, Kent J, Norris K S 1992 J. Acoust. Soc. Am. 92 2539Google Scholar

    [29]

    Cranford T W, Trijoulet V, Smith C R, Krysl P 2014 Bioacoustics 23 161Google Scholar

    [30]

    Wei C, Au W W L, Ketten D R, Zhang Y 2018 J. Acoust. Soc. Am. 143 2611Google Scholar

    [31]

    Wei C, Au W W L, Ketten D R, Song Z C, Zhang Y 2017 J. Acoust. Soc. Am. 141 4179Google Scholar

    [32]

    Moore P W, Mankiewicz L A, Houser D S 2008 T J. Acoust. Soc. Am. 124 3324Google Scholar

    [33]

    Wisniewska D M, Ratcliffe J M, Beedholm K, Christensen C B, Johnson M, Koblitz J C, Wahlberg M, Madsen P T 2015 eLife 4 e05651Google Scholar

    [34]

    Zhang Y, Song Z C, Wang X Y, Cao W W, Au W W L 2017 Phys. Rev. Applied 8 064002Google Scholar

    [35]

    Song Z C, Zhang Y, Thornton S W, Dong J C, Li S H 2017 J. Acoust. Soc. Am. 142 2443Google Scholar

    [36]

    Song Z C, Xu X, Dong J C, Xing R L, Zhang M, Liu X C, Zhang Y, Li S H, Berggren P 2015 J. Acoust. Soc. Am. 138 3129Google Scholar

    [37]

    Cranford T W, Krysl P 2015 PLoS ONE 10 e0122298Google Scholar

    [38]

    Song Z C, Zhang Y, Berggren P, Wei C 2017 J. Acoust. Soc. Am. 141 681Google Scholar

    [39]

    荆显英, 肖友芙, 景荣才 1983 海洋学报 1 11Google Scholar

    Jing X Y, Xiao Y F, Jing R C 1983 Acta. Oceanol. Sin. 1 11Google Scholar

    [40]

    王丁, 刘仁俊, 陈佩薰, 王至藩, 卢文祥, 杨叔子 1989 水生生物学报 3 210

    Wang D, Liu R J, Chen P X, Wang Z F, Lu W X 1989 Acta. Hydrobiol. Sin. 3 210

    [41]

    王克雄 2005 博士学位论文 (武汉: 中国科学院水生生物研究所)

    Wang K X 2005 Ph. D. Dissertation (Wuhan: Institute of Hydrobiology, Chinese Academy of Sciences) (in Chinese)

    [42]

    王丁, 王克雄, 刘仁俊, 陈佩薰 1989 湘潭大学学报(自然科学) 2 116

    Wang D, Wang K X, Liu R J, Chen P X 1989 Nat. Sci. J. Xiangtan. Univ. 2 116

    [43]

    肖友芙, 王丁, 王克雄 1993 海洋学报 1 125

    Xiao Y F, Wang D, Wang K X 1993 Acta. Oceanol. Sin. 1 125

    [44]

    王丁, 王克雄, 刘仁俊, 谌刚, 卢文祥 1988 华中理工大学学报 3 55Google Scholar

    Wang D, Wang K X, Liu R J, Chen G, Lu W X 1988 J. Huazhong. Univ. Sci. Tech. 3 55Google Scholar

    [45]

    Akamatsu T, Wang D, Wang K, Naito Y 2000 J. Acoust. Soc. Am. 108 1353Google Scholar

    [46]

    Akamatsu T, Wang D, Wang K, Wei Z 2001 J. Acoust. Soc. Am. 109 1723Google Scholar

    [47]

    Li S, Wang D, Wang K, Akamatsu T 2006 J. Acoust. Soc. Am. 120 1803Google Scholar

    [48]

    Soldevilla M S, Henderson E E, Campbell G S, Wiggins S M, Hildebrand J A, Roch M A 2008 J. Acoust. Soc. Am. 124 609Google Scholar

    [49]

    Janik V M, King S L 2013 Mar. Mamm. Sci. 29 109Google Scholar

    [50]

    Lilly J C, Miller A M 1961 Sci. 133 1689Google Scholar

    [51]

    Lilly J C 1966 Whales, Dolphins and Porpoises (1st Ed.) (Berkeley: University of California Press) pp503−509

    [52]

    Yang W Y, Luo W Y, Zhang Y 2017 Electron. Lett. 53 367Google Scholar

    [53]

    杨武夷, 孙馨喆, 宋忠长, 张宇, 杨燕明 2017 声学学报 42 445Google Scholar

    Yang W Y, Sun X Z, Song Z C, Zhang Y, Yang Y M 2017 Acta. Acust. 42 445Google Scholar

    [54]

    Luo W Y, Yang W Y, Zhang Y 2019 J. Acoust. Soc. Am. 145 EL7Google Scholar

    [55]

    Driscoll A D 1995 M. S. Thesis (Santa Cruz: University of California Santa Cruz)

    [56]

    Bazúa-Duran C 1997 M. S. Thesis (Mexico: Universidad Nacional Autonoma De Mexico)

    [57]

    Bazúa-Duran C, Au W W L 2002 J. Acoust. Soc. Am. 112 3064Google Scholar

    [58]

    魏翀 2016 博士学位论文 (厦门: 厦门大学)

    Wei C 2016 Ph. D. Dissertation (Xiamen: Xiamen University) (in Chinese)

    [59]

    魏翀, 许肖梅, 张宇, 牛富强 2014 声学学报 39 452Google Scholar

    Wei C, Xu X M, Zhang Y, Niu F Q 2014 Acta. Acust. 39 452Google Scholar

    [60]

    King S L, Sayigh L S, Wells R S, Feller W, Janik V M 2013 P. Roy. Soc. B 280 20130053Google Scholar

    [61]

    Wang Z T, Fang L, Shi W J, Wang K X, Wang D 2013 J. Acoust. Soc. Am. 133 2479Google Scholar

    [62]

    Belikov R A, Belkovich V M 2007 Acoust. Phys. 53 528Google Scholar

    [63]

    Au W W L, Floyd R W, Haun J E 1978 J. Acoust. Soc. Am. 64 411Google Scholar

    [64]

    Au W W L, Moore P W, Pawloski D 1986 J. Acoust. Soc. Am. 80 688Google Scholar

    [65]

    Au W W L, Branstetter B, Moore P W, Finneran J J 2012 J. Acoust. Soc. Am. 131 569Google Scholar

    [66]

    Wahlberg M, Jensen F H, Soto N A, Beedholm K, Bejder L, Oliveira C, Rasmussen M, Simon M, Villadsgaard A, Madsen P T 2011 J. Acoust. Soc. Am. 130 2263Google Scholar

    [67]

    Au W W L, Penner R H, Turl C W 1987 J. Acoust. Soc. Am. 82 807Google Scholar

    [68]

    Zimmer W M, Tyack P L, Johnson M P, Madsen P T 2005 J. Acoust. Soc. Am. 117 1473Google Scholar

    [69]

    Madsen P T, Johnson M, de Soto N A, Zimmer W M X, Tyack P 2005 J. Exp. Biol. 208 181Google Scholar

    [70]

    Kyhn L A, Jensen F H, Beedholm K, Tougaard J, Hansen M, Madsen P T 2010 J. Exp. Biol. 213 1940Google Scholar

    [71]

    Dible S A, Flint J A, Lepper P A 2009 Bioinspir. Biomim. 4 015005Google Scholar

    [72]

    Dobbins P F 2007 Bioinspir. Biomim. 2 19Google Scholar

    [73]

    Graf S, Megill W M, Blondel P, Clift S E 2008 J. Acoust. Soc. Am. 123 3360Google Scholar

    [74]

    Song Z, Zhang Y, Wei C, Wang X Y 2016 Phys. Rev. E 93 012411Google Scholar

    [75]

    Wei C, Au W W L, Song Z C, Zhang Y 2016 J. Acoust. Soc. Am. 139 875Google Scholar

    [76]

    Wei C, Song Z C, Au W W L, Zhang Y, Wang D 2018 J. Comput. Acoust. 26 1850009Google Scholar

    [77]

    Wei C, Zhang Y, Au W W L 2014 J. Acoust. Soc. Am. 136 423Google Scholar

    [78]

    Norris K S, Harvey G W 1974 J. Acoust. Soc. Am. 56 659Google Scholar

    [79]

    Zhang Y, Gao X W, Zhang S, Cao WW, Tang L G, Wang D, Li Y 2014 Appl. Phys. Lett. 105 123502Google Scholar

    [80]

    Dong E Q, Zhang Y, Song Z C, Zhang T Y, Cai C, Fang N X 2019 Natl. Sci. Rev. 6 921Google Scholar

  • [1] 韩旭, 薛斌, 曹毅, 王炜. 自组装生物分子软物质材料及其物理特性. 物理学报, 2024, 73(17): 178103. doi: 10.7498/aps.73.20240947
    [2] 彭晓昱, 周欢. 太赫兹波生物效应. 物理学报, 2022, (): . doi: 10.7498/aps.71.20211996
    [3] 尹鸿润, 叶明, 吴阳, 刘凯, 潘化平, 姚佳烽. 基于生物阻抗谱成像的生物组织检测方法. 物理学报, 2022, 71(4): 048706. doi: 10.7498/aps.71.20211600
    [4] 彭晓昱, 周欢. 太赫兹波生物效应. 物理学报, 2021, 70(24): 240701. doi: 10.7498/aps.70.20211996
    [5] 尹鸿润, 叶明, 吴阳, 刘凯, 潘化平, 姚佳烽. 基于生物阻抗谱成像的生物组织检测方法. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211600
    [6] 太赫兹生物物理专题编者按. 物理学报, 2021, 70(24): 240101. doi: 10.7498/aps.70.240101
    [7] 宋忠长, 张金虎, 冯文, 杨武夷, 张宇. 齿鲸生物声呐目标探测研究综述. 物理学报, 2021, 70(15): 154302. doi: 10.7498/aps.70.20210284
    [8] 张法业, 姜明顺, 隋青美, 吕珊珊, 贾磊. 基于光纤光栅的冲击激励声发射响应机理与定位方法研究. 物理学报, 2017, 66(7): 074210. doi: 10.7498/aps.66.074210
    [9] 骆扬, 王亚楠. 物理型硬件木马失效机理及检测方法. 物理学报, 2016, 65(11): 110602. doi: 10.7498/aps.65.110602
    [10] 司铁岩, 袁军华, 吴艺林, 唐建新. 细菌运动中的物理生物学. 物理学报, 2016, 65(17): 178703. doi: 10.7498/aps.65.178703
    [11] 鲁金蕾, 王晓晨, 容晓晖, 刘雳宇. 三维微纳米制造技术在癌症生物物理研究中的应用. 物理学报, 2015, 64(5): 058705. doi: 10.7498/aps.64.058705
    [12] 徐莹莹, 阚玉和, 武洁, 陶委, 苏忠民. 并苯纳米环[6]CA及其衍生物的电子结构和光物理性质的密度泛函理论研究. 物理学报, 2013, 62(8): 083101. doi: 10.7498/aps.62.083101
    [13] 宋彤, 李菡. 基于小波回声状态网络的混沌时间序列预测. 物理学报, 2012, 61(8): 080506. doi: 10.7498/aps.61.080506
    [14] 陈志敏, 朱海潮, 毛荣富. 循环平稳声场的声源定位研究. 物理学报, 2011, 60(10): 104304. doi: 10.7498/aps.60.104304
    [15] 李德才, 韩敏. 基于鲁棒回声状态网络的混沌时间序列预测研究. 物理学报, 2011, 60(10): 108903. doi: 10.7498/aps.60.108903
    [16] 李晓静. 厄尔尼诺大气物理机理的周期解. 物理学报, 2008, 57(9): 5366-5368. doi: 10.7498/aps.57.5366
    [17] 吴重庆, 赵 爽. 电偶极子源定位问题的研究. 物理学报, 2007, 56(9): 5180-5184. doi: 10.7498/aps.56.5180
    [18] 莫嘉琪, 林万涛. 厄尔尼诺大气物理机理的变分迭代解法. 物理学报, 2005, 54(3): 1081-1083. doi: 10.7498/aps.54.1081
    [19] 陆 挺, 周宏余, 丁晓纪, 汪新福, 朱光华. 低能离子注入植物种子的深度分布及生物效应机理研究. 物理学报, 2005, 54(10): 4822-4826. doi: 10.7498/aps.54.4822
    [20] 晁月盛, 肖素红. 连续超短电脉冲促进非晶晶化的物理机理. 物理学报, 1998, 47(12): 2012-2017. doi: 10.7498/aps.47.2012
计量
  • 文章访问数:  9855
  • PDF下载量:  213
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-17
  • 修回日期:  2020-05-04
  • 上网日期:  2020-05-14
  • 刊出日期:  2020-08-05

/

返回文章
返回