搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

强碰撞磁化尘埃等离子体中的漂移波

杨建荣 毛杰键 吴奇成 刘萍 黄立

引用本文:
Citation:

强碰撞磁化尘埃等离子体中的漂移波

杨建荣, 毛杰键, 吴奇成, 刘萍, 黄立

Drift wave in strong collisional dusty magnetoplasma

Yang Jian-Rong, Mao Jie-Jian, Wu Qi-Cheng, Liu Ping, Huang Li
PDF
HTML
导出引用
  • 研究磁化尘埃等离子体的波动机理, 对相关实验、工业加工、天体空间探测等具有重要的价值. 本文研究了非均匀磁化尘埃等离子体系统的线性和非线性波动特性. 对处于均匀外磁场中的非均匀尘埃等离子体系统, 存在密度和温度梯度的非均匀环境, 考虑尘埃和中性粒子的强碰撞作用, 得到了一个二维非线性磁流体动力学方程. 通过线性化得到了色散关系, 系统既有强碰撞引起的阻尼波, 又有粒子漂移产生的谐波; 典型的数值参量分析结果表明, 量子参量修改了系统的尺度; 实频与漂移频率成正比关系, 而虚频与尘埃和中子间的碰撞频率有着比较复杂的关系, 粒子的碰撞引起了系统的耗散效应. 通过函数变换法, 获得了漂移的冲击波和爆炸波的解析解. 详细讨论了静电势随着主要物理量的变化, 研究结果显示, 静电冲击波的幅度和爆炸波的宽度都随尘埃密度和外界磁场强度的增大而增大, 随着碰撞频率的增大而减小, 随漂移速度而变化. 当时空相位较小时, 静电势变化很快, 一旦足够大时, 静电势将趋于稳定值, 最终达到稳定的状态. 最后对系统的稳定性问题进行了分析, 发现尘埃电荷量、量子参量、漂移速度都出现在扰动解中. 本文所得结果表明, 强碰撞效应、量子效应、粒子漂移和外界磁场等主要物理量都对尘埃漂移波的产生、演化和稳定性产生了重要的作用.
    The study about the wave mechanism of magnetized dusty plasmas has important value to related experiment, industrial processing and exploring celestial space. The linear and nonlinear fluctuation characteristics of the nonuniform magnetized dust plasma system are researched in this paper. For the homogeneous external magnetic field and the nonuniform environment with density and temperature gradients, a two-dimensional nonlinear dynamic magnetoplasma equation is derived considering the strong impact between dust and neutral particles. The linear dispersion relation is obtained by the linearized method. There are both the damping wave causing by strong collision and the harmonic wave by particle drift. Employing the typical numerical parameters for analysis, the results display that the quantum parameter modifies the system lengths; the real wave frequency is proportion to the drift frequency; the imaginary wave frequency has complex relationship with the collision frequency between dust and neutrals, and the collision of particles causes the dissipation effects to the system. Besides, the analytical solutions of drift shock wave and explosive wave are solved by function change method. The variation about the electrostatic potential with the main physical parameters is discussed in detail. It is shown that the strength of the electrostatic shock wave and the width of the explosive wave increase with increasing the dust density and magnetic field intensity, decrease with increasing the collision frequency, change with the drift velocity. When the space-time phase is small, the electrostatic potential changes quickly; once big enough, the potential tends to be stable value and reaches stable state eventually. Finally, the stability of the system is discussed. It is found that the dusty charge, quantum parameter, drift velocity all appear in the disturbed solution. All these results in the paper show that the strong collision effect, quantum effect, particle drift and magnetic field all play important role to the generation, evolution and stability of drift waves.
      通信作者: 杨建荣, sryangjr@163.com ; 毛杰键, maojj2006@163.com
      Corresponding author: Yang Jian-Rong, sryangjr@163.com ; Mao Jie-Jian, maojj2006@163.com
    [1]

    Morfill G E, Ivlev A V 2009 Rev. Mod. Phys. 81 1353Google Scholar

    [2]

    马锦秀 2006 物理 35 244

    Ma J X 2006 Physics 35 244

    [3]

    Merlino R L, Goree J 2004 Phys. Today 57 32

    [4]

    Shukla P K, Mamun A A 2002 Introduction to Dusty Physics Plasmas (Bristol: Institute of Physics) pp29−35

    [5]

    Verheest F 2000 Waves in Dusty Space Plasmas (Dordrecht: Kluwer Academic Publishers, The Netherlands) pp11−56

    [6]

    Shukla P K 2002 Dust Plasma Interaction in Space (New York: Nova Science) pp156−159

    [7]

    Liang Z F, Tang X Y 2013 Commun. Nonlinear Sci. Numer. Simul. 18 3014Google Scholar

    [8]

    Barkan A, Merlino R L, Angelo N D 1995 Phys. Plasmas 2 3563Google Scholar

    [9]

    Merlino R L 2014 J. Plasma Phys. 80 773Google Scholar

    [10]

    Rao N N, Shukla P K, Yu M Y 1990 Planet. Space Sci. 18 543

    [11]

    Shukla P K, Rahman H U 1996 Phys. Plasmas 3 430Google Scholar

    [12]

    Haas F 2005 Phys. Plasmas 12 062117Google Scholar

    [13]

    Haque Q, Mahmood S 2008 Phys. Plasmas 15 034501Google Scholar

    [14]

    Masood W 2009 Phys. Lett. A 373 1455Google Scholar

    [15]

    Masood W, Karim S, Shah H A, Siddiq M 2009 Phys. Plasmas 16 042108Google Scholar

    [16]

    Yang J R, Lv K, Xu L, Mao J J, Liu X Z, Liu P 2017 Chin. Phys. B 26 065200

    [17]

    Yang J R, Wu B, Mao J J, Liu P, Wang J Y 2014 Commun. Theor. Phys 62 871

    [18]

    Moslem W M, Shukla P K, Ali S, Schlickeiser R 2007 Phys. Plasmas 14 042107Google Scholar

    [19]

    Sadiq M, Ali S, Sabry R 2009 Phys. Plasmas 16 013706Google Scholar

    [20]

    Sharma P, Patidar A, Jain S, Vyas B 2018 Phys. Plasmas 25 083714Google Scholar

    [21]

    Jorge R, Ricci P, Loureiro N F 2018 Phys. Rev. Lett. 121 165001Google Scholar

    [22]

    Kumar A, Das A, Kaw P 2019 Phys. Plasmas 26 8

    [23]

    Mehdipoor M 2020 The Eur. Phys. J. Plus 135 299Google Scholar

    [24]

    Masood W, Karim S, Shah H A 2010 Phys. Scr. 82 045503Google Scholar

    [25]

    Kato S 1968 Astrophys. Space Sci. 2 37Google Scholar

    [26]

    Dev A N, Deka M K, Sarma J, Adhikary N C 2015 J. Korean Phys. Soc. 67 339Google Scholar

    [27]

    Khan S A, Mushtaq A, Masood W 2008 Phys. Plasmas 15 013701Google Scholar

    [28]

    Smith B A, Soderblom L, Beebe R, et al. 1981 Science 212 163Google Scholar

    [29]

    Smith B A, Soderblom L, Batson R, et al. 1982 Science 215 504Google Scholar

    [30]

    Humes D H 1980 J. Geophys. Res. 85 5841Google Scholar

    [31]

    Yang J R, Xu T, Mao J J, Liu P, Liu X Z 2017 Chin. Phys. B 26 015202Google Scholar

  • 图 1  (14) 式实色散频率随着波数k和漂移速度v的变化, $\theta = {{\text{π}}}/{3}$, 对应的其他参量见(11)式

    Fig. 1.  Variation of the real dispersion frequency with the wave number k and drift velocity v determined by Eq. (14) for $\theta = {{\text{π}}}/{3}$. Other parameters are given in Eq. (11).

    图 2  (14)式实色散频率随着波数k和倾斜角$ \theta $的变化, 对应的参量见(11)式

    Fig. 2.  Variation of the real dispersion frequency with the wave number k and obliqueness angle $ \theta $ determined by Eq. (14), and the parameters given in Eq. (11).

    图 3  (14)式实色散频率随着波数k和尘埃密度$n_{\rm d}$的变化, $\theta = {{\text{π}}}/{3}$, 对应的其他参量见(11)式

    Fig. 3.  Variation of the real dispersion frequency with the wave number k and the dust density $n_{\rm d}$ determined by Eq. (14) for $\theta = {{\text{π}}}/{3}$. Other parameters are given in Eq. (11).

    图 4  (14)式实色散频率随着波数k和磁场强度$ B_0 $的变化, $\theta = {{\text{π}}}/{3}$, 对应的其他参量见(11)式

    Fig. 4.  Variation of the real dispersion frequency with the wave number k and magnetic field $ B_0 $ determined by Eq. (14) for $\theta = {{\text{π}}}/{3}$. Other parameters are given in Eq. (11).

    图 5  (15)式虚色散频率随着波数k和碰撞频率$ \nu_{\rm {dn}} $的变化, $\theta = {{\text{π}}}/{3}$, 对应的其他参量见(11)式

    Fig. 5.  Variation of the imaginary dispersion frequency with the wave number k and the collision frequency $ \nu_{\rm {dn}} $ determined by Eq. (15) for $\theta = {{\text{π}}}/{3}$. Other parameters are given in Eq. (11).

    图 6  (18)式冲击波$ \varPhi_1 $随着尘埃密度$ n_{\rm d} $的变化. 对应的参量为$ k_{2} = 10 $, $ k_{3} = 1 $, 其他参量见(11)式

    Fig. 6.  Variation of the shock wave $ \varPhi_1 $ with the dust density $ n_{\rm d} $ by Eq.(18) for $ k_{2} = 10 $, $ k_{3} = 1 $. Other parameters are given in Eq. (11).

    图 7  (18)式冲击波$ \varPhi_1 $随着碰撞频率$ \nu_{\rm {dn}} $的变化. 对应的参量为$ k_{2} = 10 $, $ k_{3} = 2 $, 其他参量见(11)式

    Fig. 7.  Variation of the shock wave $ \varPhi_1 $ with the collision frequency $ \nu_{\rm {dn}} $ by Eq.(18) for $ k_{2} = 10 $, $ k_{3} = 2 $. Other parameters are given in Eq. (11).

    图 8  (18)式冲击波$ \varPhi_1 $随着漂移速度v的变化. 对应的参量为$ k_{2} = 5 $, $ k_{3} = 2 $, 其他参量见(11)式

    Fig. 8.  Variation of the shock wave $ \varPhi_1 $ with the drift velocity v by Eq.(18) for $ k_{2} = 5 $, $ k_{3} = 2 $. Other parameters are given in Eq. (11).

    图 9  (18)式冲击波$ \varPhi_1 $随着磁场强度$ B_0 $的变化. 对应的参量为$ k_{2} = 10 $, $ k_{3} = 1 $, 其他参量见(11)式

    Fig. 9.  Variation of the shock wave $ \varPhi_1 $ with the magnetic field $ B_0 $ by Eq.(18) for $ k_{2} = 10 $, $ k_{3} = 1 $. Other parameters are given in Eq. (11).

    图 10  (19)式爆炸波$ \varPhi_2 $随着尘埃密度$ n_{\rm d} $的变化. 对应的参量为$ k_{2} = 2 $, $ k_{3} = 1 $, $ n_{\rm d} = 1.2\times10^{18}{\ \rm{cm}^{-3}} $ (实线), $ n_{\rm d} = 1.4\times10^{18}{\ \rm{cm}^{-3}} $(虚线), 其他参量见(11)式

    Fig. 10.  Profile of the explosive wave $ \varPhi_2 $ by Eq. (19) with $ k_{2} = 2 $, $ k_{3} = 1 $, $ n_{\rm d} = 1.2\times10^{18}{\ \rm{cm}^{-3}} $ (solid line), and $ n_{\rm d} = 1.4\times10^{18}{\ \rm{cm}^{-3}} $ (dash line). Other parameters are given in Eq. (11).

    图 11  (19)式爆炸波$ \varPhi_2 $随着碰撞频率$ \nu_{\rm {dn}} $的变化. 对应的参量为$ k_{2} = 2 $, $ k_{3} = 1 $, $ \nu_{\rm {dn}} = 10^{6}\ \rm{Hz} $(实线), $ \nu_{\rm {dn}} = 3\times 10^{6}\ \rm{Hz} $(虚线), 其他参量见(11)式

    Fig. 11.  Profile of the explosive wave $ \varPhi_2 $ given by Eq. (19) with $ k_{2} = 2 $, $ k_{3} = 1 $, $ \nu_{\rm {dn}} = 10^{6}\ \rm{Hz} $ (solid line), and $ \nu_{\rm {dn}} = 3\times10^{6}\ \rm{Hz} $ (dash line). Other parameters are given in Eq. (11).

    图 12  (19)式爆炸波$ \varPhi_2 $随着漂移速度v的变化. 对应的参量为$ k_{2} = 2 $, $ k_{3} = 1 $, $ v = 10^{3}\ \rm{cm/s} $ (实线), $ v = 10^{4}\ \rm{cm/s} $(虚线), 其他参量见(11)式

    Fig. 12.  Profile of the explosive wave $ \varPhi_2 $ given by Eq. (19) with $ k_{2} = 2 $, $ k_{3} = 1 $, $ v = 10^{3}\ \rm{cm/s} $ (solid line), and $ v = 10^{4}\ \rm{cm/s} $ (dash line). Other parameters are given in Eq. (11).

    图 13  (19)式爆炸波$ \varPhi_2 $随着磁场强度$ B_0 $的变化. 对应的参量为$ k_{2} = 2 $, $ k_{3} = 1 $, $ B_0 = 10^{8}\ \rm{G} $(实线), 和$ B_0 = 3\times 10^{8}\ \rm{G} $(虚线), 其他参量见(11)式

    Fig. 13.  Profile of the explosive wave $ \varPhi_2 $ given by Eq. (19) with $ k_{2} = 2 $, $ k_{3} = 1 $, $ B_0 = 10^{8}\ \rm{G} $ (solid line), and $ B_0 = 3\times10^{8}\ \rm{G} $ (dash line). Other parameters are given in Eq. (11).

  • [1]

    Morfill G E, Ivlev A V 2009 Rev. Mod. Phys. 81 1353Google Scholar

    [2]

    马锦秀 2006 物理 35 244

    Ma J X 2006 Physics 35 244

    [3]

    Merlino R L, Goree J 2004 Phys. Today 57 32

    [4]

    Shukla P K, Mamun A A 2002 Introduction to Dusty Physics Plasmas (Bristol: Institute of Physics) pp29−35

    [5]

    Verheest F 2000 Waves in Dusty Space Plasmas (Dordrecht: Kluwer Academic Publishers, The Netherlands) pp11−56

    [6]

    Shukla P K 2002 Dust Plasma Interaction in Space (New York: Nova Science) pp156−159

    [7]

    Liang Z F, Tang X Y 2013 Commun. Nonlinear Sci. Numer. Simul. 18 3014Google Scholar

    [8]

    Barkan A, Merlino R L, Angelo N D 1995 Phys. Plasmas 2 3563Google Scholar

    [9]

    Merlino R L 2014 J. Plasma Phys. 80 773Google Scholar

    [10]

    Rao N N, Shukla P K, Yu M Y 1990 Planet. Space Sci. 18 543

    [11]

    Shukla P K, Rahman H U 1996 Phys. Plasmas 3 430Google Scholar

    [12]

    Haas F 2005 Phys. Plasmas 12 062117Google Scholar

    [13]

    Haque Q, Mahmood S 2008 Phys. Plasmas 15 034501Google Scholar

    [14]

    Masood W 2009 Phys. Lett. A 373 1455Google Scholar

    [15]

    Masood W, Karim S, Shah H A, Siddiq M 2009 Phys. Plasmas 16 042108Google Scholar

    [16]

    Yang J R, Lv K, Xu L, Mao J J, Liu X Z, Liu P 2017 Chin. Phys. B 26 065200

    [17]

    Yang J R, Wu B, Mao J J, Liu P, Wang J Y 2014 Commun. Theor. Phys 62 871

    [18]

    Moslem W M, Shukla P K, Ali S, Schlickeiser R 2007 Phys. Plasmas 14 042107Google Scholar

    [19]

    Sadiq M, Ali S, Sabry R 2009 Phys. Plasmas 16 013706Google Scholar

    [20]

    Sharma P, Patidar A, Jain S, Vyas B 2018 Phys. Plasmas 25 083714Google Scholar

    [21]

    Jorge R, Ricci P, Loureiro N F 2018 Phys. Rev. Lett. 121 165001Google Scholar

    [22]

    Kumar A, Das A, Kaw P 2019 Phys. Plasmas 26 8

    [23]

    Mehdipoor M 2020 The Eur. Phys. J. Plus 135 299Google Scholar

    [24]

    Masood W, Karim S, Shah H A 2010 Phys. Scr. 82 045503Google Scholar

    [25]

    Kato S 1968 Astrophys. Space Sci. 2 37Google Scholar

    [26]

    Dev A N, Deka M K, Sarma J, Adhikary N C 2015 J. Korean Phys. Soc. 67 339Google Scholar

    [27]

    Khan S A, Mushtaq A, Masood W 2008 Phys. Plasmas 15 013701Google Scholar

    [28]

    Smith B A, Soderblom L, Beebe R, et al. 1981 Science 212 163Google Scholar

    [29]

    Smith B A, Soderblom L, Batson R, et al. 1982 Science 215 504Google Scholar

    [30]

    Humes D H 1980 J. Geophys. Res. 85 5841Google Scholar

    [31]

    Yang J R, Xu T, Mao J J, Liu P, Liu X Z 2017 Chin. Phys. B 26 015202Google Scholar

  • [1] 魏广宇, 陈凝飞, 仇志勇. 高能量粒子测地声模与Dimits区漂移波相互作用. 物理学报, 2022, 71(1): 015201. doi: 10.7498/aps.71.20211430
    [2] 苏瑞霞, 黄霞, 郑志刚. 耦合Frenkel-Kontorova双链的格波解及其色散关系. 物理学报, 2022, 71(15): 154401. doi: 10.7498/aps.71.20212362
    [3] 魏广宇, 陈凝飞, 仇志勇. 高能量粒子测地声模与Dimits区漂移波相互作用. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211430
    [4] 李文秋, 赵斌, 王刚, 相东. 螺旋波等离子体中螺旋波与Trivelpiece-Gould波模式耦合及线性能量沉积特性参量分析. 物理学报, 2020, 69(11): 115201. doi: 10.7498/aps.69.20200062
    [5] 李文秋, 赵斌, 王刚. 电子温度对螺旋波等离子体中电磁模式能量沉积特性的影响. 物理学报, 2020, 69(21): 215201. doi: 10.7498/aps.69.20201018
    [6] 孙俊超, 张宗国, 董焕河, 杨红卫. 尘埃等离子体中的分数阶模型及其Lump解. 物理学报, 2019, 68(21): 210201. doi: 10.7498/aps.68.20191045
    [7] 杨雪, 丁大军, 胡湛, 赵国明. 中性和阳离子丁酮团簇的结构及稳定性的理论研究. 物理学报, 2018, 67(3): 033601. doi: 10.7498/aps.67.20171862
    [8] 徐彬, 李辉, 王占阁, 许正文, 吴健. 高密度尘埃等离子体的非相干散射理论研究. 物理学报, 2017, 66(4): 049401. doi: 10.7498/aps.66.049401
    [9] 陈海军, 张耀文. 空间调制作用下Bessel型光晶格中物质波孤立子的稳定性. 物理学报, 2014, 63(22): 220303. doi: 10.7498/aps.63.220303
    [10] 陈海军, 李向富. 二维线性与非线性光晶格中物质波孤立子的稳定性. 物理学报, 2013, 62(7): 070302. doi: 10.7498/aps.62.070302
    [11] 张娟, 周志刚, 石玉仁, 杨红娟, 段文山. 修正KP方程及其孤波解的稳定性. 物理学报, 2012, 61(13): 130401. doi: 10.7498/aps.61.130401
    [12] 刘三秋, 国洪梅. 极端相对论快电子分布等离子体中横振荡色散关系. 物理学报, 2011, 60(5): 055203. doi: 10.7498/aps.60.055203
    [13] 刘炳灿, 逯志欣, 于丽. 金属和Kerr非线性介质界面上表面等离子体激元的色散关系. 物理学报, 2010, 59(2): 1180-1184. doi: 10.7498/aps.59.1180
    [14] 仲生仁. 尘埃等离子体中非线性波的叠加效应及稳定性问题. 物理学报, 2010, 59(4): 2178-2181. doi: 10.7498/aps.59.2178
    [15] 季沛勇, 鲁楠, 祝俊. 量子等离子体中波的色散关系以及朗道阻尼. 物理学报, 2009, 58(11): 7473-7478. doi: 10.7498/aps.58.7473
    [16] 赵国伟, 徐跃民, 陈 诚. 等离子体天线色散关系和辐射场数值计算. 物理学报, 2007, 56(9): 5298-5303. doi: 10.7498/aps.56.5298
    [17] 杨建宋, 李宝兴. 砷化镓离子团簇的稳定性研究. 物理学报, 2006, 55(12): 6562-6569. doi: 10.7498/aps.55.6562
    [18] 石雁祥, 葛德彪, 吴 健. 尘埃粒子充放电过程对尘埃等离子体电导率的影响. 物理学报, 2006, 55(10): 5318-5324. doi: 10.7498/aps.55.5318
    [19] 周国成, 曹晋滨, 王德驹, 蔡春林. 无碰撞等离子体电流片中的低频波. 物理学报, 2004, 53(8): 2644-2653. doi: 10.7498/aps.53.2644
    [20] 洪学仁, 段文山, 孙建安, 石玉仁, 吕克璞. 非均匀尘埃等离子体中孤子的传播. 物理学报, 2003, 52(11): 2671-2677. doi: 10.7498/aps.52.2671
计量
  • 文章访问数:  6048
  • PDF下载量:  64
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-03-30
  • 修回日期:  2020-05-08
  • 上网日期:  2020-05-26
  • 刊出日期:  2020-09-05

/

返回文章
返回