-
仪器的本底是空间天文观测项目实施过程中关注的一个重要内容, 对于聚焦型空间X射线望远镜, 仪器的粒子本底水平直接关系到观测灵敏度及本底重建的系统误差. 因此, 在仪器设计及工程实现迭代过程中, 需要确定仪器粒子本底水平, 保证其在可接受范围内. 本文发展了一种基于面密度插值快速估计聚焦型空间X射线望远镜粒子本底的方法, 该方法同时具有较高的本底估计精度和快的计算速度, 适合于在望远镜方案设计的早期对各种设计方案的本底屏蔽效果进行快速估计并据此提出优化设计的建议, 可以大大提高早期方案设计的有效性, 对于聚焦型空间高能天文仪器的研制及其他类似领域具有一定的参考意义.Instrument background is an important content in implementing the space-based astronomical mission. For the focusing X-ray telescope, the observation ability is affected by the particle background, which is directly related to the sensitivity of the instrument and the systematic error of background reproducibility. In the iterative process of instrument design and engineering implementation, it is necessary to make sure that the particle background level is within the acceptable level. In this paper, we propose a method of fast estimating the particle background of the space-based focusing X-ray telescope, which is based on interpolation of planar density distribution. With acceptable accuracy and efficiency, this method is suitable for rapidly estimating the background shielding effects of various design schemes, especially in the early stage of telescope scheme design. This can greatly improve the availability of early scheme design. This method has a certain reference significance for developing the focusing space high-energy astronomical instruments and other similar instruments. The commonly used method of estimating the particle background of space X-ray instruments is the Monte Carlo method, which relies on constructing an overall mass model of instrument and simulating the response of the detectors to the space radiation environment, but the calculation efficiency of this method is lower. In order to meet the needs of instrument design optimization of mission during initial stage, we simulate the responses of simplified aluminum spherical shells with different sizes and planar desities to the space radiation environment, and count energy depositing events in a concerned energy range. Then we obtain the relationship between the particle background caused by various spatial radiation components and the thickness of the simplified aluminum spherical shell after being normalized. The particle track tracking method is used to calculate the area density distribution of the equivalent aluminum around the sensitive detectors of the telescope. Finally, the average particle background level of each component is obtained by interpolating calculation according to the relationship between equivalent thickness and the particle background. The method is verified through the simulation of the payload SFA onboard eXTP satellite by comparing the results of the simulation calculation of the whole star mass model with the results from the area density distribution interpolation method, and good consistency is obtained. The method based on the interpolation of the planar density distribution can well depict the relationship between the whole structure and the particle background level, which can be applied to the particle background estimation and shielding optimization for X-ray focusing instruments in different orbital space radiation environments.
-
Keywords:
- focal plane detector /
- background estimation /
- shielding optimization
[1] Molendi, Silvano 2017 Exp. Astron. 44 263Google Scholar
[2] Fioretti V, Bulgarelli A, Malaguti G, Bianchin V, Trifoglio M, Gianotti F 2012 Conference on High Energy, Optical, and Infrared Detectors for Astronomy V Amsterdam, USA, July 1, 2012 p833
[3] Fioretti V, Bulgarelli A, Malaguti G, Bianchin V, Trifoglio M, Gianotti F 2003 Space Sci. Rev. 105 285Google Scholar
[4] Zoglauer A, Weidenspointner G, Wunderer C B, Boggs S E 2008 2008 NSS/MIC Dresden, Germany, January 1, 2008 p2134
[5] Valentina F 2018 The 13th Geant4 Space Users' Workshop Texas, USA, November 28–30, 2018 Report Contribution ID: 12
[6] 赵冬华 2015 博士学位论文 (北京: 中国科学院大学)
Zhao D H 2015 Ph. D. Dissertation (Beijing: University of Chinese Academy of Sciences)
[7] 李刚, 谢斐, 张娟, 宋黎明 2015 天文学进展 33 233Google Scholar
Li G, Xie F, Zhang J, Song L M 2015 Progress In Astronomy 33 233Google Scholar
[8] Soffitta P, Campana R, Costa E, Fabiani S, et al. 2012 Conference on Space Telescopes and Instrumentation Amsterdam, USA, July 1, 2012 p84431F
[9] Hirokazu Odaka, Makoto Asai, et al. 2018 Nucl. Instrum. Methods Phys. Res. 891 92Google Scholar
[10] Jin J, Chen Y, Zhang S N, Zhang S, Li X Q, Li G 2010 Chin. Phys. C 34 66Google Scholar
[11] 裴鹿成 1980 蒙特卡罗方法及其在粒子输运问题中的应用 (北京: 科学出版社) pp162, 163
Pei L C 1980 Monte Carlo Method and its Application in Particle Transport Problems pp162, 163 (Beijing: Science Press) (in Chinese)
[12] 聂星辰, 李佳, 赵平辉, 祝庆军, 徐坤 2016 核电子学与探测技术 36 729Google Scholar
Nie X C, Li J, Zhao P H, Zhu Q J, Xu K 2016 Nuclear Electronics & Detection Technology 36 729Google Scholar
[13] 兰婷, 陈东, 陈善强, 师立勤, 刘四清 2015 空间科学学报 35 203Google Scholar
Lan T, Chen D, Chen S Q, Shi L Q, Liu S Q 2015 Chin. J. Space Sci. 35 203Google Scholar
[14] Zhang S N, Andrea S, Marco F, et al. 2019 Sci. China Phys., Mech. Astron. 62 7Google Scholar
[15] 李刚, 李新乔, 张澍, 卢方军 2012 第十一届全国蒙特卡罗方法及其应用学术交流会贵阳, 中国, 6月5日, 2012, 第406页
Li G, Li X Q, Zhang S, Lu F J 2012 The 11th National Academic Exchange Conference on Monte Carlo Method and its Application GuiYang, China, June 5, 2012 p406
[16] Fioretti V, Malaguti G, Bulgarelli A, Palumbo G G C, Ferri A, Attina P 2009 AIP Conf. Proc. 1126 79Google Scholar
[17] Robinson D W 2003 X-Ray and Gamma-Ray Telescopes and Instruments for Astronomy pt. 2 Waikoloa, USA, January 1, 2002 p1374
[18] Malaguti G, Pareschi G, Ferrando P, Caroli E, Di Cocco G, Foschini L, Basso S, Del Sordo S, Fiore F, Bonat A 2005 Optics for EUV, X-ray, and Gamma-ray Astronomy II San Diego, United States, August 03, 2005 p159
[19] Hall D J, Holland A 2010 NIMPA 612 320Google Scholar
[20] Agostinelli S, et al. 2003 Nucl. Instrum. Methods A 506 250Google Scholar
[21] Qi L Q, Li G, Xu Y P, Zhang J, Yang Y J, Sheng L Z, Basso S, Campana R, Chen Y, Rosa A De, Pareschi G, Qiang P F, Santangelo A, Sironi G, Song L M, Spiga D, Tagliaferri G, Wang J, Wilms J, Zhang Y, Lu F J 2020 Nuclear Instrum. Meth. Phys. Res. A 963 163702Google Scholar
[22] Campana R, Feroci M, Monte E, Mineo T, Lund N, Fraser G C, Riccardo 2013 Exp. Astron. 36 451Google Scholar
[23] Geant4 physics reference manual, Geant4 Collaboration http://geant4.web.cern.ch/geant4/UserDocumentation/UsersGuides/PhysicsReferenceManual/fo/PhysicsReferenceManual.pdf [2020-02-10]
[24] Ivanchenko V, Dondero P, Fioretti V, et al. 2017 Exp. Astron. 44 1Google Scholar
[25] Xie F, Zhang J, Song L M, Xiong S L, Guan J 2015 Astrophys. Space Sci. 360 47Google Scholar
[26] Li G, Wu M, Zhang S, Jin Y K 2009 Chin. Astron. Astrophy. 33 333Google Scholar
[27] 蔡明辉, 韩建伟 2012 宇航学报 33 830Google Scholar
Cai M H, Han J W 2012 Journal of Astronautics 33 830Google Scholar
[28] 李新乔 2007 博士学位论文 (北京: 中国科学院大学)
Li X Q 2007 Ph. D. Dissertation (Beijing: University of Chinese Academy of Sciences)
[29] Esra B, Ralph K, Paul N, Michael F, Eric D M, Catherine G, Mark W B, David N B, Steven A, Tanja E, Valentina F, Fabio G, Vittorio G, David H, Norbert M, Silvano M, Arne R, Dan W, Joern W 2020 ApJ 891 13
-
-
[1] Molendi, Silvano 2017 Exp. Astron. 44 263Google Scholar
[2] Fioretti V, Bulgarelli A, Malaguti G, Bianchin V, Trifoglio M, Gianotti F 2012 Conference on High Energy, Optical, and Infrared Detectors for Astronomy V Amsterdam, USA, July 1, 2012 p833
[3] Fioretti V, Bulgarelli A, Malaguti G, Bianchin V, Trifoglio M, Gianotti F 2003 Space Sci. Rev. 105 285Google Scholar
[4] Zoglauer A, Weidenspointner G, Wunderer C B, Boggs S E 2008 2008 NSS/MIC Dresden, Germany, January 1, 2008 p2134
[5] Valentina F 2018 The 13th Geant4 Space Users' Workshop Texas, USA, November 28–30, 2018 Report Contribution ID: 12
[6] 赵冬华 2015 博士学位论文 (北京: 中国科学院大学)
Zhao D H 2015 Ph. D. Dissertation (Beijing: University of Chinese Academy of Sciences)
[7] 李刚, 谢斐, 张娟, 宋黎明 2015 天文学进展 33 233Google Scholar
Li G, Xie F, Zhang J, Song L M 2015 Progress In Astronomy 33 233Google Scholar
[8] Soffitta P, Campana R, Costa E, Fabiani S, et al. 2012 Conference on Space Telescopes and Instrumentation Amsterdam, USA, July 1, 2012 p84431F
[9] Hirokazu Odaka, Makoto Asai, et al. 2018 Nucl. Instrum. Methods Phys. Res. 891 92Google Scholar
[10] Jin J, Chen Y, Zhang S N, Zhang S, Li X Q, Li G 2010 Chin. Phys. C 34 66Google Scholar
[11] 裴鹿成 1980 蒙特卡罗方法及其在粒子输运问题中的应用 (北京: 科学出版社) pp162, 163
Pei L C 1980 Monte Carlo Method and its Application in Particle Transport Problems pp162, 163 (Beijing: Science Press) (in Chinese)
[12] 聂星辰, 李佳, 赵平辉, 祝庆军, 徐坤 2016 核电子学与探测技术 36 729Google Scholar
Nie X C, Li J, Zhao P H, Zhu Q J, Xu K 2016 Nuclear Electronics & Detection Technology 36 729Google Scholar
[13] 兰婷, 陈东, 陈善强, 师立勤, 刘四清 2015 空间科学学报 35 203Google Scholar
Lan T, Chen D, Chen S Q, Shi L Q, Liu S Q 2015 Chin. J. Space Sci. 35 203Google Scholar
[14] Zhang S N, Andrea S, Marco F, et al. 2019 Sci. China Phys., Mech. Astron. 62 7Google Scholar
[15] 李刚, 李新乔, 张澍, 卢方军 2012 第十一届全国蒙特卡罗方法及其应用学术交流会贵阳, 中国, 6月5日, 2012, 第406页
Li G, Li X Q, Zhang S, Lu F J 2012 The 11th National Academic Exchange Conference on Monte Carlo Method and its Application GuiYang, China, June 5, 2012 p406
[16] Fioretti V, Malaguti G, Bulgarelli A, Palumbo G G C, Ferri A, Attina P 2009 AIP Conf. Proc. 1126 79Google Scholar
[17] Robinson D W 2003 X-Ray and Gamma-Ray Telescopes and Instruments for Astronomy pt. 2 Waikoloa, USA, January 1, 2002 p1374
[18] Malaguti G, Pareschi G, Ferrando P, Caroli E, Di Cocco G, Foschini L, Basso S, Del Sordo S, Fiore F, Bonat A 2005 Optics for EUV, X-ray, and Gamma-ray Astronomy II San Diego, United States, August 03, 2005 p159
[19] Hall D J, Holland A 2010 NIMPA 612 320Google Scholar
[20] Agostinelli S, et al. 2003 Nucl. Instrum. Methods A 506 250Google Scholar
[21] Qi L Q, Li G, Xu Y P, Zhang J, Yang Y J, Sheng L Z, Basso S, Campana R, Chen Y, Rosa A De, Pareschi G, Qiang P F, Santangelo A, Sironi G, Song L M, Spiga D, Tagliaferri G, Wang J, Wilms J, Zhang Y, Lu F J 2020 Nuclear Instrum. Meth. Phys. Res. A 963 163702Google Scholar
[22] Campana R, Feroci M, Monte E, Mineo T, Lund N, Fraser G C, Riccardo 2013 Exp. Astron. 36 451Google Scholar
[23] Geant4 physics reference manual, Geant4 Collaboration http://geant4.web.cern.ch/geant4/UserDocumentation/UsersGuides/PhysicsReferenceManual/fo/PhysicsReferenceManual.pdf [2020-02-10]
[24] Ivanchenko V, Dondero P, Fioretti V, et al. 2017 Exp. Astron. 44 1Google Scholar
[25] Xie F, Zhang J, Song L M, Xiong S L, Guan J 2015 Astrophys. Space Sci. 360 47Google Scholar
[26] Li G, Wu M, Zhang S, Jin Y K 2009 Chin. Astron. Astrophy. 33 333Google Scholar
[27] 蔡明辉, 韩建伟 2012 宇航学报 33 830Google Scholar
Cai M H, Han J W 2012 Journal of Astronautics 33 830Google Scholar
[28] 李新乔 2007 博士学位论文 (北京: 中国科学院大学)
Li X Q 2007 Ph. D. Dissertation (Beijing: University of Chinese Academy of Sciences)
[29] Esra B, Ralph K, Paul N, Michael F, Eric D M, Catherine G, Mark W B, David N B, Steven A, Tanja E, Valentina F, Fabio G, Vittorio G, David H, Norbert M, Silvano M, Arne R, Dan W, Joern W 2020 ApJ 891 13
计量
- 文章访问数: 6439
- PDF下载量: 66
- 被引次数: 0