搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于宏观方程数值本构关系的气体动理论加速收敛方法

皮兴才 朱炼华 李志辉 彭傲平 张勇豪

引用本文:
Citation:

基于宏观方程数值本构关系的气体动理论加速收敛方法

皮兴才, 朱炼华, 李志辉, 彭傲平, 张勇豪

Method of accelerating convergence for gas kinetic algorithm based on digital constitutive relation of macroscopic equations

Pi Xing-Cai, Zhu Lian-Hua, Li Zhi-Hui, Peng Ao-Ping, Zhang Yong-Hao
PDF
HTML
导出引用
  • 在跨流域复杂流动问题的模拟中, 基于求解速度分布函数演化方程的气体动理论方法的效率问题一直受到工程应用领域关注. 研究提升气体动理论方法在定常流动模拟中的计算效率具有重要意义. 为了提升定常流动计算收敛速度, 本文提出了一种耦合宏观方程数值本构关系的气体动理论加速收敛方法. 通过求解Boltzmann模型方程, 将应力、热流高阶项的数值解与宏观方程耦合, 实现了宏观方程的封闭; 另一方面, 宏观方程的计算结果被用来更新Boltzmann模型方程的当地平衡态速度分布函数中的宏观物理量, 以此构造求解Boltzmann模型方程的全隐式数值格式. 通过跨流域方腔流动、超声速圆柱绕流及双圆柱干扰绕流案例的数值模拟, 对方法进行了广泛考核. 计算结果与常规气体动理论统一算法、直接模拟蒙特卡罗法符合良好, 证明该方法很好地描述了稀薄流动中的非线性本构关系, 以及激波、强壁面剪切、流动分离等强非平衡特征. 进一步, 对于低努森数Kn的流动, 方法能显著加速收敛过程, 提升计算效率; 随着努森数Kn增加, 气体对流输运效应减弱, 方法的加速收敛效果降低. 与此同时, 如何减少内迭代耗时, 进一步提升效率有待更多研究.
    In the simulation of complex multi-scale flows covering various flow regimes, the computational efficiency of gas kinetic method by which the evolution equation of velocity distribution function is solved directly is the key to engineering applications. In order to accelerate simulation for steady flows, a gas kinetic algorithm accelerated by utilizing the macroscopic conservative equations with a digital constitutive relation is developed. In this algorithm, the contribution of the high-order terms of stress and heat flux in macroscopic conservative equations is determined by the gas kinetic solution. Meanwhile, the solution of the macroscopic conservative equations provides the macroscopic quantities for the equilibrium distribution function in the Boltzmann model equation, where a fully implicit scheme to solve the Boltzmann model equation is developed. Extensive validations are performed for the cavity flow, the supersonic flow around the cylinder, and the interactive rarefied flow around two side-by-side cylinders. The results from the above method are in good agreement with the results from the conventional gas kinetic unified algorithm and the direct simulation Monte Carlo method. It can be concluded that the nonlinear constitutive relation of rarefied flow can be well captured by the present method. And the ability of this method to simulate complex flows such as shock wave, strong wall shear and flow separation is demonstrated. Furthermore, the present method has shown to be much faster than the conventional gas kinetic unified algorithm, especially for the low-Kn flows. As the value of Kn increases, the acceleration rate decreases, because the effect of flow convection becomes weak. Meanwhile, more effort is needed to reduce inner loop iterations to improve its efficiency.
      通信作者: 李志辉, zhli0097@x263.net
    • 基金项目: 国家自然科学基金青年科学基金(批准号: 11902339)资助的课题
      Corresponding author: Li Zhi-Hui, zhli0097@x263.net
    • Funds: Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 11902339)
    [1]

    Cercignani C 1988 The Boltzmann Equation and its Applications (New York: Springer) pp40−103

    [2]

    Kremer G M 2010 An Introduction to the Boltzmann Equation and Transport Processes in Gases (Berlin: Springer) pp37−80

    [3]

    Shakhov E M 1968 Fluid Dyn. 3 95

    [4]

    Brull S, Schneider J 2009 Cont. Mech. Thermodyn. 20 489Google Scholar

    [5]

    Broadwell J 1964 J. Fluid Mech. 19 401Google Scholar

    [6]

    Huang A B, Huang P F, Giddens D P, Srinivasan R 1973 Phys. Fluids 16 814Google Scholar

    [7]

    李志辉 2001 博士学位论文 (绵阳: 中国空气动力研究与发展中心)

    Li Z H 2001 Ph. D. Dissertation (Mianyang: China Aerodynamics Research and Development Center) (in Chinese)

    [8]

    Li Z H, Zhang H X 2004 J. Comput. Phys. 223 708

    [9]

    Li Z H, Zhang H X 2008 Int. J. Comput. Fluid Dyn. 22 623Google Scholar

    [10]

    Li Z H, Zhang H X 2009 J. Comput. Phys. 228 1116Google Scholar

    [11]

    Xu K, Huang J C 2010 J. Comput. Phys. 229 7747Google Scholar

    [12]

    Jin S, Wang L 2013 SIAM J. Sci. Comput. 35 799Google Scholar

    [13]

    Jin S 1999 SIAM J. Sci. Comput. 21 441Google Scholar

    [14]

    Gu X J, Emerson D R 2011 Microfluid. Nanofluid. 10 389Google Scholar

    [15]

    许爱国, 张广财, 李英骏, 李华 2014 物理学进展 34 136Google Scholar

    Xu A G, Zhang G C, Li Y J, Li H 2014 Prog. Phys. 34 136Google Scholar

    [16]

    许爱国, 张广财, 应阳君 2015 物理学报 64 184701Google Scholar

    Xu A G, Zhang G C, Ying Y J 2015 Acta Phys. Sin. 64 184701Google Scholar

    [17]

    Li Z H, Peng A P, Zhang H X, Yang J Y 2015 Prog. Aerosp. Sci. 74 81Google Scholar

    [18]

    Li Z H, Peng A P, Ma Q, Dang L N, Tang X W, Sun X Z 2019 Adv. Aerodyn. 1 1Google Scholar

    [19]

    彭傲平 2017 博士学位论文 (绵阳: 中国空气动力研究与发展中心)

    Peng A P 2017 Ph. D. Dissertation (Mianyang: China Aerodynamics Research and Development Center) (in Chinese)

    [20]

    李志辉, 梁杰, 李中华, 李海燕, 吴俊林, 戴金雯, 唐志共 2018 空气动力学学报 36 826Google Scholar

    Li Z H, Liang J, Li Z H, Li H Y, Wu J L, Dai J W, Tang Z G 2018 Acta Aerodynam. Sin. 36 826Google Scholar

    [21]

    吴俊林 2018博士学位论文 (绵阳: 中国空气动力研究与发展中心)

    Wu J L 2018 Ph. D. Dissertation (Mianyang: China Aerodynamics Research and Development Center) (in Chinese)

    [22]

    Mieussens L 2000 J. Comput. Phys. 162 429Google Scholar

    [23]

    Chen S Z, Xu K, Lee C B, Cai Q D 2012 J. Comput. Phys. 231 6643Google Scholar

    [24]

    江定武 2016 博士学位论文 (绵阳: 中国空气动力研究与发展中心)

    Jiang D W 2016 Ph. D. Dissertation (Mianyang: China Aerodynamics Research and Development Center) (in Chinese)

    [25]

    Li Z H, Bi L, Tang Z G 2009 Appl. Math. Mech.-Engl. 30 889Google Scholar

    [26]

    Peng A P, Li Z H, Wu J L, Jiang X Y 2016 J. Comput. Phys. 327 919Google Scholar

    [27]

    Hu W Q, Li Z H 2018 Comput. Math. Appl. 75 4179Google Scholar

    [28]

    Rovenskaya O, Croce G 2014 Vacuum 109 266Google Scholar

    [29]

    Valougeorgis D, Naris S 2003 SIAM J. Sci. Comput. 25 534Google Scholar

    [30]

    Zhu Y J, Zhong C W, Xu K 2017 Phys. Fluids 29 096102Google Scholar

    [31]

    Zhu Y J, Zhong C W, Xu K 2016 J. Comput. Phys. 315 16Google Scholar

    [32]

    Jin S, Slemrod M 2001 J. Stat. Phys. 103 1009Google Scholar

    [33]

    Struchtrup H, Torrilbon M 2003 Phys. Fluids 15 2668Google Scholar

    [34]

    Xiao H, Tang K 2017 Sci. Rep. 7 13108Google Scholar

    [35]

    Myong R S 2001 J. Comput. Phys. 168 47Google Scholar

    [36]

    陈伟芳, 赵文文 2017 稀薄气体动力学矩方法及数值模拟 (北京: 科学出版社) 第1—16页

    Chen W F, Zhao W W 2017 Moment Method and Numerical Simulation on Rarefied Gas Dynamics (Beijing: Science Press) pp1–16 (in Chinese)

    [37]

    Su W, Zhu L H, Wang P, Zhang Y H, Wu L 2020 J. Comput. Phys. 407 109245Google Scholar

    [38]

    Adams M L, Larsen E W 2002 Prog. Nucl. Energy 40 3Google Scholar

    [39]

    Zhu L H, Pi X C, Su W, Li Z H, Zhang Y H, Wu L 2020 arXiv: 2004.10530 v [physics. comp-ph]

    [40]

    Guo Z L, Xu K, Wang R J 2013 Phys. Rev. E 88 033305Google Scholar

    [41]

    Guo Z L, Wang R J, Xu K 2015 Phys. Rev. E 91 033313Google Scholar

    [42]

    Li X L http://pan.baidu.com/s/1 slfC5 Yl [2020-6-6]

    [43]

    Kudryavtsev A N, Shershnev A A 2013 J. Sci. Comput. 57 42Google Scholar

    [44]

    沈青 2003 稀薄气体动力学 (北京: 国防工业出版社) 第105−110页

    Shen Q 2003 Rarefied Gas Dynamics (Beijing: National Defense Industry Press) pp105−110 (in Chinese)

    [45]

    Yang L M, Chen Z, Shu C, Yang W M, Wu J, Zhang L Q 2018 Phys. Rev. E 98 063313Google Scholar

    [46]

    Bird G A 2005 Proceedings of the 24th International Symposium on Rarefied Gas Dynamics Bari, Italy, July 10−16, 2004 p541

    [47]

    Zhu L H, Guo Z L, Xu K 2016 Comput. Fluids 127 211Google Scholar

  • 图 1  方腔流温度分布计算结果 (a) Kn = 1 ; (b) Kn = 0.075; (c) Kn = 0.01 (GKUA: 彩色背景及黑色实线; Coupled: 红色虚线)

    Fig. 1.  Temperature distribution in cavity flow: (a) Kn = 1; (b) Kn = 0.075; (c) Kn = 0.01 (GKUA: coloured background and black solid lines; Coupled: red dashed lines).

    图 2  方腔中心线上的速度场 (a) Kn = 1; (b) Kn = 0.075; (c) Kn = 0.01

    Fig. 2.  Velocity profiles at the central lines of the cavity: (a) Kn = 1; (b) Kn = 0.075; (c) Kn = 0.01.

    图 3  耦合加速收敛方法与常规GKUA的计算收敛历史

    Fig. 3.  The convergence history between coupled acceleration method and the conventional GKUA.

    图 4  Kn = 0.01圆柱绕流流场对比 (a) 压力; (b) 温度; (c) 马赫数 (GKUA: 彩色背景及白实线; Coupled: 红色虚线)

    Fig. 4.  (a) Pressure, (b) temperature, (c) Mach number distribution around cylinder for Kn = 0.01 (GKUA: coloured background and white solid lines; Coupled: red dash lines).

    图 5  Kn = 0.1圆柱绕流流场对比 (a) 压力; (b) 温度; (c) 马赫数(GKUA: 彩色背景及白实线; Coupled: 红色虚线)

    Fig. 5.  (a) Pressure, (b) temperature, (c) Mach number distribution around cylinder for Kn = 0.1 (GKUA: coloured background and white solid lines; Coupled: red dash lines).

    图 6  圆柱壁面的 (a) 压力, (b) 热流, (c) 剪切应力

    Fig. 6.  (a) Pressure, (b) heat flux, and (c) shear stress profile along the wall surface of cylinder.

    图 7  耦合加速收敛方法与常规GKUA的超声速圆柱绕流计算收敛情况对比

    Fig. 7.  Comparison of the convergence history of supersonic flow around the cylinder between the coupled acceleration method and the conventional GKUA.

    图 8  并列双圆柱多块网格布局

    Fig. 8.  The multi-blocks mesh layout for two side-by-side cylinders.

    图 9  并列双圆柱绕流流场对比 (a) 压力; (b) 温度; (c) 马赫数(GKUA: 彩色背景及白实线; Coupled: 红色虚线)

    Fig. 9.  (a) Pressure, (b) temperature, (c) Mach number field for two side-by-side cylinders (GKUA: coloured background and white solid lines; Coupled: red dash lines).

    图 10  上圆柱壁面的 (a) 压力, (b) 热流, (c) 剪切应力

    Fig. 10.  (a) Pressure, (b) heat flux, and (c) shear stress profile along the surface of upper cylinder.

    图 11  耦合加速收敛方法与常规GKUA的并列双圆柱超声速绕流计算收敛情况对比

    Fig. 11.  Comparison of the convergence history of supersonic flow around two side-by-side cylinders between the coupled acceleration method and the conventional GKUA.

    表 1  耦合加速收敛方法与常规GKUA的收敛情况对比

    Table 1.  Convergence comparison between the conventional GKUA and the coupled acceleration method.

    Kn迭代步数(收敛标准: 10–7)加速比
    GKUACoupled
    0.010800017047.00
    0.07523003007.60
    1.000120011001.09
    下载: 导出CSV
  • [1]

    Cercignani C 1988 The Boltzmann Equation and its Applications (New York: Springer) pp40−103

    [2]

    Kremer G M 2010 An Introduction to the Boltzmann Equation and Transport Processes in Gases (Berlin: Springer) pp37−80

    [3]

    Shakhov E M 1968 Fluid Dyn. 3 95

    [4]

    Brull S, Schneider J 2009 Cont. Mech. Thermodyn. 20 489Google Scholar

    [5]

    Broadwell J 1964 J. Fluid Mech. 19 401Google Scholar

    [6]

    Huang A B, Huang P F, Giddens D P, Srinivasan R 1973 Phys. Fluids 16 814Google Scholar

    [7]

    李志辉 2001 博士学位论文 (绵阳: 中国空气动力研究与发展中心)

    Li Z H 2001 Ph. D. Dissertation (Mianyang: China Aerodynamics Research and Development Center) (in Chinese)

    [8]

    Li Z H, Zhang H X 2004 J. Comput. Phys. 223 708

    [9]

    Li Z H, Zhang H X 2008 Int. J. Comput. Fluid Dyn. 22 623Google Scholar

    [10]

    Li Z H, Zhang H X 2009 J. Comput. Phys. 228 1116Google Scholar

    [11]

    Xu K, Huang J C 2010 J. Comput. Phys. 229 7747Google Scholar

    [12]

    Jin S, Wang L 2013 SIAM J. Sci. Comput. 35 799Google Scholar

    [13]

    Jin S 1999 SIAM J. Sci. Comput. 21 441Google Scholar

    [14]

    Gu X J, Emerson D R 2011 Microfluid. Nanofluid. 10 389Google Scholar

    [15]

    许爱国, 张广财, 李英骏, 李华 2014 物理学进展 34 136Google Scholar

    Xu A G, Zhang G C, Li Y J, Li H 2014 Prog. Phys. 34 136Google Scholar

    [16]

    许爱国, 张广财, 应阳君 2015 物理学报 64 184701Google Scholar

    Xu A G, Zhang G C, Ying Y J 2015 Acta Phys. Sin. 64 184701Google Scholar

    [17]

    Li Z H, Peng A P, Zhang H X, Yang J Y 2015 Prog. Aerosp. Sci. 74 81Google Scholar

    [18]

    Li Z H, Peng A P, Ma Q, Dang L N, Tang X W, Sun X Z 2019 Adv. Aerodyn. 1 1Google Scholar

    [19]

    彭傲平 2017 博士学位论文 (绵阳: 中国空气动力研究与发展中心)

    Peng A P 2017 Ph. D. Dissertation (Mianyang: China Aerodynamics Research and Development Center) (in Chinese)

    [20]

    李志辉, 梁杰, 李中华, 李海燕, 吴俊林, 戴金雯, 唐志共 2018 空气动力学学报 36 826Google Scholar

    Li Z H, Liang J, Li Z H, Li H Y, Wu J L, Dai J W, Tang Z G 2018 Acta Aerodynam. Sin. 36 826Google Scholar

    [21]

    吴俊林 2018博士学位论文 (绵阳: 中国空气动力研究与发展中心)

    Wu J L 2018 Ph. D. Dissertation (Mianyang: China Aerodynamics Research and Development Center) (in Chinese)

    [22]

    Mieussens L 2000 J. Comput. Phys. 162 429Google Scholar

    [23]

    Chen S Z, Xu K, Lee C B, Cai Q D 2012 J. Comput. Phys. 231 6643Google Scholar

    [24]

    江定武 2016 博士学位论文 (绵阳: 中国空气动力研究与发展中心)

    Jiang D W 2016 Ph. D. Dissertation (Mianyang: China Aerodynamics Research and Development Center) (in Chinese)

    [25]

    Li Z H, Bi L, Tang Z G 2009 Appl. Math. Mech.-Engl. 30 889Google Scholar

    [26]

    Peng A P, Li Z H, Wu J L, Jiang X Y 2016 J. Comput. Phys. 327 919Google Scholar

    [27]

    Hu W Q, Li Z H 2018 Comput. Math. Appl. 75 4179Google Scholar

    [28]

    Rovenskaya O, Croce G 2014 Vacuum 109 266Google Scholar

    [29]

    Valougeorgis D, Naris S 2003 SIAM J. Sci. Comput. 25 534Google Scholar

    [30]

    Zhu Y J, Zhong C W, Xu K 2017 Phys. Fluids 29 096102Google Scholar

    [31]

    Zhu Y J, Zhong C W, Xu K 2016 J. Comput. Phys. 315 16Google Scholar

    [32]

    Jin S, Slemrod M 2001 J. Stat. Phys. 103 1009Google Scholar

    [33]

    Struchtrup H, Torrilbon M 2003 Phys. Fluids 15 2668Google Scholar

    [34]

    Xiao H, Tang K 2017 Sci. Rep. 7 13108Google Scholar

    [35]

    Myong R S 2001 J. Comput. Phys. 168 47Google Scholar

    [36]

    陈伟芳, 赵文文 2017 稀薄气体动力学矩方法及数值模拟 (北京: 科学出版社) 第1—16页

    Chen W F, Zhao W W 2017 Moment Method and Numerical Simulation on Rarefied Gas Dynamics (Beijing: Science Press) pp1–16 (in Chinese)

    [37]

    Su W, Zhu L H, Wang P, Zhang Y H, Wu L 2020 J. Comput. Phys. 407 109245Google Scholar

    [38]

    Adams M L, Larsen E W 2002 Prog. Nucl. Energy 40 3Google Scholar

    [39]

    Zhu L H, Pi X C, Su W, Li Z H, Zhang Y H, Wu L 2020 arXiv: 2004.10530 v [physics. comp-ph]

    [40]

    Guo Z L, Xu K, Wang R J 2013 Phys. Rev. E 88 033305Google Scholar

    [41]

    Guo Z L, Wang R J, Xu K 2015 Phys. Rev. E 91 033313Google Scholar

    [42]

    Li X L http://pan.baidu.com/s/1 slfC5 Yl [2020-6-6]

    [43]

    Kudryavtsev A N, Shershnev A A 2013 J. Sci. Comput. 57 42Google Scholar

    [44]

    沈青 2003 稀薄气体动力学 (北京: 国防工业出版社) 第105−110页

    Shen Q 2003 Rarefied Gas Dynamics (Beijing: National Defense Industry Press) pp105−110 (in Chinese)

    [45]

    Yang L M, Chen Z, Shu C, Yang W M, Wu J, Zhang L Q 2018 Phys. Rev. E 98 063313Google Scholar

    [46]

    Bird G A 2005 Proceedings of the 24th International Symposium on Rarefied Gas Dynamics Bari, Italy, July 10−16, 2004 p541

    [47]

    Zhu L H, Guo Z L, Xu K 2016 Comput. Fluids 127 211Google Scholar

  • [1] 曹振, 郝大鹏, 唐刚, 寻之朋, 夏辉. 团簇状缺陷对纤维束断裂过程的影响. 物理学报, 2021, 70(20): 204602. doi: 10.7498/aps.70.20210310
    [2] 王强, 郭立新. 时域混合算法在一维海面与舰船目标复合电磁散射中的应用. 物理学报, 2017, 66(18): 180301. doi: 10.7498/aps.66.180301
    [3] 吴晓笛, 刘华坪, 陈浮. 基于浸入边界-多松弛时间格子玻尔兹曼通量求解法的流固耦合算法研究. 物理学报, 2017, 66(22): 224702. doi: 10.7498/aps.66.224702
    [4] 彭傲平, 李志辉, 吴俊林, 蒋新宇. 含振动能激发Boltzmann模型方程气体动理论统一算法验证与分析. 物理学报, 2017, 66(20): 204703. doi: 10.7498/aps.66.204703
    [5] 行鸿彦, 张强, 徐伟. 混沌海杂波背景下的微弱信号检测混合算法. 物理学报, 2015, 64(4): 040506. doi: 10.7498/aps.64.040506
    [6] 徐新河, 刘鹰, 甘月红, 刘文苗. 磁电耦合超材料本构矩阵获取方法的研究. 物理学报, 2015, 64(4): 044101. doi: 10.7498/aps.64.044101
    [7] 曹蓓, 罗秀娟, 司庆丹, 曾志红. 相干场成像四光束相位闭合算法研究. 物理学报, 2015, 64(5): 054204. doi: 10.7498/aps.64.054204
    [8] 李志辉, 彭傲平, 方方, 李四新, 张顺玉. 跨流域高超声速绕流环境Boltzmann模型方程统一算法研究. 物理学报, 2015, 64(22): 224703. doi: 10.7498/aps.64.224703
    [9] 陈延佩, Pierre Evesque, 厚美瑛. 振动驱动颗粒气体体系的局域态本构关系的实验验证. 物理学报, 2013, 62(16): 164503. doi: 10.7498/aps.62.164503
    [10] 潘昊, 胡晓棉, 吴子辉, 戴诚达, 吴强. 铈低压冲击相变数值模拟研究. 物理学报, 2012, 61(20): 206401. doi: 10.7498/aps.61.206401
    [11] 陶为俊, 浣石. 沿时间逐步求解应力的拉格朗日分析方法研究. 物理学报, 2012, 61(20): 200703. doi: 10.7498/aps.61.200703
    [12] 秦三团, 郭立新, 代少玉, 龚书喜. 二维随机粗糙面上导体目标复合瞬态散射的混合算法. 物理学报, 2011, 60(7): 074217. doi: 10.7498/aps.60.074217
    [13] 甘甜, 冯少彤, 聂守平, 朱竹青. 基于分块DCT变换编码的小波域多幅图像融合算法. 物理学报, 2011, 60(11): 114205. doi: 10.7498/aps.60.114205
    [14] 刘文龙, 庞双杰, 张继峰. Hnon混沌系统广义预测函数控制快速收敛算法. 物理学报, 2011, 60(11): 110505. doi: 10.7498/aps.60.110505
    [15] 梁玉, 郭立新, 王蕊. 粗糙面重构问题的混合算法研究. 物理学报, 2011, 60(3): 034102. doi: 10.7498/aps.60.034102
    [16] 龚建强, 梁昌洪. 基于TE10矩形波导的异向介质有效本构参数提取算法. 物理学报, 2011, 60(5): 059204. doi: 10.7498/aps.60.059204
    [17] 方伟, 孙俊, 谢振平, 须文波. 量子粒子群优化算法的收敛性分析及控制参数研究. 物理学报, 2010, 59(6): 3686-3694. doi: 10.7498/aps.59.3686
    [18] 兰旭东. 混合算法中的耦合判据. 物理学报, 2009, 58(12): 8415-8418. doi: 10.7498/aps.58.8415
    [19] 王 蕊, 郭立新, 秦三团, 吴振森. 粗糙海面及其上方导体目标复合电磁散射的混合算法研究. 物理学报, 2008, 57(6): 3473-3480. doi: 10.7498/aps.57.3473
    [20] 叶红霞, 金亚秋. 三维随机粗糙面上导体目标散射的解析-数值混合算法. 物理学报, 2008, 57(2): 839-846. doi: 10.7498/aps.57.839
计量
  • 文章访问数:  6625
  • PDF下载量:  81
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-04-24
  • 修回日期:  2020-06-10
  • 上网日期:  2020-10-10
  • 刊出日期:  2020-10-20

/

返回文章
返回