搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

高通量制备的SmxPr1–xFeO3晶体中反铁磁自旋模式和晶体场跃迁的太赫兹光谱

方雨青 金钻明 陈海洋 阮舜逸 李炬赓 曹世勋 彭滟 马国宏 朱亦鸣

引用本文:
Citation:

高通量制备的SmxPr1–xFeO3晶体中反铁磁自旋模式和晶体场跃迁的太赫兹光谱

方雨青, 金钻明, 陈海洋, 阮舜逸, 李炬赓, 曹世勋, 彭滟, 马国宏, 朱亦鸣

Terahertz spectroscopic characterization of spin mode and crystal-field transition in high-throughput grown $ {\bf Sm}_{ x}{\bf Pr}_{ 1– x}{\bf FeO_3} $ crystals

Fang Yu-Qing, Jin Zuan-Ming, Chen Hai-Yang, Ruan Shun-Yi, Li Ju-Geng, Cao Shi-Xun, Peng Yan, Ma Guo-Hong, Zhu Yi-Ming
PDF
HTML
导出引用
  • 太赫兹辐射已经成为研究稀土铁氧化物(RFeO3)的远红外响应和电子自旋特性的有效手段. 本文研究了高通量制备的稀土共掺杂SmxPr1–xFeO3单晶在零磁场下的反铁磁自旋模式(qAFM)和稀土离子的晶体场跃迁. 利用透射型太赫兹时域光谱, 实验测得Sm0.2Pr0.8FeO3和Sm0.4Pr0.6FeO3单晶的qAFM共振频率位于PrFeO3单晶和SmFeO3单晶的qAFM共振频率(分别为0.57和0.42 THz)的连线上. SmxPr1–xFeO3的qAFM模式频率随Sm3+离子掺杂浓度的增大而增大. 实验结果表明, Sm0.4Pr0.6FeO3在160 K左右发生温度诱导的自旋重取向相变. 当晶体温度低于80 K, 晶体场效应导致Sm0.2Pr0.8FeO3的吸收谱在0.5 THz附近出现宽带吸收峰. 目前的研究结果表明, 太赫兹光谱数据有助于检测高通量制备稀土铁氧体的晶体质量和稀土元素含量, 并将提高稀土掺杂对材料物性调控的分析能力.
    Terahertz (THz) transient has become an effective method to study the optical and electronic spin characteristics of the rare earth orthoferrites RFeO3. High-throughput grown crystal sample is sliced at different locations, then the continuously tunable rare earth elements co-doped single crystal SmxPr1–xFeO3 is studied with antiferromagnetic spin mode (qAFM) and crystal field transitions of rare earth ions under zero magnetic fields. Using THz time-domain spectroscopy, the qAFM resonance frequencies of Sm0.2Pr0.8FeO3 and Sm0.4Pr0.6FeO3 single crystals are located on the connection line of the qAFM frequencies of PrFeO3 (0.57 THz) and SmFeO3 (0.42 THz), therefore the frequency of qAFM increases linearly with doping concentration of Sm3+ ion increasing. The Sm0.4Pr0.6FeO3 crystal undergoes a temperature-induced spin reorientation phase transition at about 160 K. When the crystal temperature is lower than 80 K, a wide band absorption peak of about 0.5 THz appears in the absorption spectrum of Sm0.2Pr0.8FeO3 due to the crystal field effect. Our results show that THz spectral data not only allow us to monitor the quality of rare earth orthoferrite crystals prepared by high throughput and analyze the rare earth elements of the sample, but also improve the ability to analyze the physical properties of the co-doped RFeO3.
      通信作者: 金钻明, physics_jzm@usst.edu.cn ; 马国宏, ghma@staff.shu.edu.cn ; 朱亦鸣, ymzhu@usst.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61975110, 11674213, 61735010, 11604202)、111项目(批准号: D18014)、上海市科委国际联合实验室项目(批准号: 17590750300)、上海市科委重点项目(批准号: YDZX20193100004960)、上海市青年科技启明星计划(批准号: 18QA1401700)、上海市教育委员会和上海市教育发展基金会“晨光计划”(批准号: 16CG45)和上海高校青年东方学者计划(批准号: QD2015020)资助的课题
      Corresponding author: Jin Zuan-Ming, physics_jzm@usst.edu.cn ; Ma Guo-Hong, ghma@staff.shu.edu.cn ; Zhu Yi-Ming, ymzhu@usst.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61975110, 11674213, 61735010, 11604202), the 111 Project (Grant No. D18014), the International Joint Lab Program of the Science and Technology Commission Shanghai Municipality, China (Grant No. 17590750300), the Key Project of the Science and Technology Commission Shanghai Municipality, China (Grant No. YDZX20193100004960), the Shanghai Rising-Star Program of the Science and Technology Commission of Shanghai Municipality, China (Grant No. 18QA1401700), the Chenguang Project of Shanghai Educational Development Foundation, China (Grant No. 16CG45), and the Young Eastern Scholar Project of Shanghai Municipal Education Commission, China (Grant No. QD2015020)
    [1]

    Baltz V, Manchon A, Tsoi M, Moriyama T, Ono T, Tserkovnyak Y 2018 Rev. Mod. Phys. 90 015005Google Scholar

    [2]

    Jungwirth T, Marti X, Wadley P, Wunderlich J 2016 Nat. Nanotech. 11 231Google Scholar

    [3]

    Mikhaylovskiy R V, Hendry E, Secchi A, et al. 2015 Nat. Commun. 6 8190Google Scholar

    [4]

    Kurihara T, Watanabe H, Nakajima M, Karube S, Oto K, Otani Y, Suemoto T 2018 Phys. Rev. Lett. 120 107202Google Scholar

    [5]

    Baierl S, Hohenleutner M, Kampfrath T, Zvezdin A K, Kimel A V, Huber R, Mikhaylovskiy R V 2016 Nat. Photon. 10 715Google Scholar

    [6]

    Nova T F, Cartella A, Cantaluppi A, et al. 2017 Nat. Phys. 13 132Google Scholar

    [7]

    Pierce R D, Wolfe R, Van Uitert L G 1969 J. Appl. Phys. 40 1241Google Scholar

    [8]

    Jiang J, Song G, Wang D, Jin Z, Tian Z, Lin X, Han J, Ma G, Cao S, Cheng Z 2016 J. Phys.: Condens. Matter 28 116002Google Scholar

    [9]

    Yamaguchi K, Kurihara T, Minami Y, Nakajima M, Suemoto T 2013 Phys. Rev. Lett. 110 137204Google Scholar

    [10]

    Liu X, Jin Z, Zhang S, et al. 2018 J. Phys. D: Appl. Phys. 51 024001Google Scholar

    [11]

    Li X, Bamba M, Yuan N, et al. 2018 Science 361 794Google Scholar

    [12]

    Li R, Yuan N, Hu T, Feng Z, Ge J, Wang Y, Zheng H, Xing J, Gu H, Kang B, Zhang J, Ren W, Cao S 2018 AIP Adv. 8 115328Google Scholar

    [13]

    Tonouchi M 2007 Nat. Photonics 1 97Google Scholar

    [14]

    Ferguson B, Zhang X C 2002 Nat. Mater. 1 26Google Scholar

    [15]

    Walowski J, Münzenberg M 2016 J. Appl. Phys. 120 140901Google Scholar

    [16]

    Kampfrath T, Tanaka K, Nelson K A 2013 Nat. Photonics 7 680Google Scholar

    [17]

    Seifert T, Jaiswal S, Martens U, et al. 2016 Nat. Photonics 10 483Google Scholar

    [18]

    Huisman T J, Mikhaylovskiy R V, Costa J D, et al. 2016 Nat. Nanotechnol. 11 455Google Scholar

    [19]

    Vicario C, Ruchert C, Ardana-Lamas F, Derlet P M, Tudu B, Luning J, Hauri C P 2013 Nat. Photonics 7 720Google Scholar

    [20]

    Shalaby M, Vicario C, Hauri C P 2016 New J. Phys. 1 18

    [21]

    Bonetti S, Hoffmann M, Sher M, Chen Z, Yang S, Samant M G, Parkin S S P, Durr H A 2016 Phys. Rev. Lett. 8 117

    [22]

    Schlauderer S, Lange C, Baierl S, et al. 2019 Nature 569 7756

    [23]

    Kampfrath T, Sell A, Klatt G, et al. 2011 Nat. Photon. 5 31Google Scholar

    [24]

    金钻明, 阮舜逸, 李炬赓, 林贤, 任伟, 曹世勋, 马国宏, 姚建铨 2019 物理学报 68 167501Google Scholar

    Jin Z M, Ruan S Y, Li J G, Lin X, Ren W, Cao S X, Ma G H, Yao J Q 2019 Acta Phys. Sin. 68 167501Google Scholar

    [25]

    Yamaguchi K, Nakajima M, Suemoto T 2010 Phys. Rev. Lett. 105 237201Google Scholar

    [26]

    Zhou R, Jin Z, Li G, Ma G, Cheng Z, Wang X 2012 Appl. Phys. Lett. 100 061102Google Scholar

    [27]

    Jin Z, Mics Z, Ma G, Cheng Z, Bonn M, Turchinovich D 2013 Phys. Rev. B 87 094422Google Scholar

    [28]

    Zhang K, Xu K, Liu X, Zhang Z, Jin Z, Lin X, Li B, Cao S, Ma G 2016 Sci. Rep. 6 23648Google Scholar

    [29]

    Song G, Jiang J, Wang X, Jin Z, Lin X, Ma G, Cao S 2013 J. Appl. Phys. 114 243104Google Scholar

    [30]

    Song G, Jin Z, Lin X, Jiang J, Wang X, Wu H, Ma G, Cao S 2014 J. Appl. Phys. 115 163108Google Scholar

    [31]

    Kubacka T, Johnson J A, Hoffmann M, et al. 2014 Science 343 6177

    [32]

    Shao M, Cao S, Wang Y, Yuan S, Kang B, Zhang J, Wu A, Xu J 2011 J. Cryst. Growth 318 947Google Scholar

    [33]

    Wang X, Cao S, Wang Y, Yuan S, Kang B, Wu A, Zhang J 2013 J. Cryst. Growth 362 216Google Scholar

    [34]

    Cao Y, Yang Y, Xiang M, Feng Z, Kang B, Zhang J, Ren W, Cao S 2015 J. Cryst. Growth 420 90Google Scholar

    [35]

    Zhao W, Cao S, Huang R, Cao Y, Xu K, Kang B, Zhang J, Ren W 2015 Phys. Rev. B 91 104425Google Scholar

    [36]

    Liu X, Xie T, Guo J, et al. 2018 Appl. Phys. Lett. 113 022401Google Scholar

    [37]

    Fu X, Xi X, Bi K, Zhou J 2013 Appl. Phys. Lett. 103 211108Google Scholar

    [38]

    Jiang J, Jin Z, Song G, Lin X, Ma G, Cao S 2013 Appl. Phys. Lett. 103 062403Google Scholar

    [39]

    Zeng X, Wu L, Xi X, Li B, Zhou J, 2018 Ceram. Int. 44 19054Google Scholar

    [40]

    Kimel A V, Kirilyuk A, Tsvetkov A, Pisarev R V, Rasing T, 2004 Nature 429 850Google Scholar

    [41]

    Mikhaylovskiy R V, Huisman T J, Pisarev R V, Rasing T, Kimel A V 2017 Phys. Rev. Lett. 118 017205Google Scholar

  • 图 1  (a)高通量制备准连续成分单晶SmxPr1–xFeO3示意图; (b) SmFeO3, PrFeO3 和Sm0.2Pr0.8FeO3单晶的晶体结构图

    Fig. 1.  (a) Experimental schematic of quasi-continuous phase formation in the high-throughput grown SmxPr1–xFeO3 (x = 0, 0.4, 0.7, 0.9, 1.0); (b) the crystallography structure of the single crystal SmFeO3, PrFeO3, and Sm0.2Pr0.8FeO3.

    图 2  (a) THz-TDS实验装置示意图; (b) b切Sm0.2Pr0.8FeO3单晶(红色); (c) Sm0.4Pr0.6FeO3单晶(蓝色) 300 K时的太赫兹时域透射谱, 此时HTHz//c; 插图分别表示振荡部分(40—60 ps)的傅里叶变换光谱及其洛伦兹拟合(虚线)

    Fig. 2.  (a) Experimental setup diagram of THz-TDS. The THz time-domain waveforms transmitted through the b-cut (b) Sm0.2Pr0.8FeO3 and (c) Sm0.4Pr0.6FeO3 crystal at 300 K and the insets indicate the spectrum of oscillating parts obtained by Fourier transform of the waveform, which is fitted with a Lorentzian contour (dotted line).

    图 3  室温下SmxPr1–xFeO3单晶的qAFM自旋共振频率与Sm3+离子含量的关系, 其中插图表示qAFM模式的振动

    Fig. 3.  Summarized frequencies of the qAFM resonances at several Sm3+ ion contents at room temperature and the insets indicate the vibration of the qAFM.

    图 4  b切Sm0.4Pr0.6FeO3单晶qAFM模式的共振频率和振幅随温度的关系; 插图表示Fe3+离子亚晶格的磁结构: 低温相(Г2 )、中间相(Г4 )、高温相(Г24 )

    Fig. 4.  The frequencies and amplitudes of the qAFM resonances of b-cut Sm0.4 Pr0.6FeO3 crystal. Inset shows the magnetic structure of RFeO3 in the low-temperature(Г2 ), intermediate(Г4 ), and high temperature(Г24 )phases.

    图 5  (a) Sm0.2Pr0.8FeO3单晶温度依赖的太赫兹时域谱, 为了表达更为清楚, 不同温度的时域光谱在纵轴方向做了等间距的平移; 40, 80和300 K时Sm0.2Pr0.8FeO3单晶的(b)折射率和(c)吸收系数, 插图为Pr3+离子基态在晶体场中能级劈裂示意图

    Fig. 5.  (a) The temperature dependent THz waveforms transmitted through the Sm0.2Pr0.8FeO3 single crystal; (b) refractive indices and (c) absorption spectra of Sm0.2Pr0.8FeO3 at 40, 80, and 300 K. The inset in (c) shows the energy level splitting of Pr3+ ion in the ground state crystal field.

  • [1]

    Baltz V, Manchon A, Tsoi M, Moriyama T, Ono T, Tserkovnyak Y 2018 Rev. Mod. Phys. 90 015005Google Scholar

    [2]

    Jungwirth T, Marti X, Wadley P, Wunderlich J 2016 Nat. Nanotech. 11 231Google Scholar

    [3]

    Mikhaylovskiy R V, Hendry E, Secchi A, et al. 2015 Nat. Commun. 6 8190Google Scholar

    [4]

    Kurihara T, Watanabe H, Nakajima M, Karube S, Oto K, Otani Y, Suemoto T 2018 Phys. Rev. Lett. 120 107202Google Scholar

    [5]

    Baierl S, Hohenleutner M, Kampfrath T, Zvezdin A K, Kimel A V, Huber R, Mikhaylovskiy R V 2016 Nat. Photon. 10 715Google Scholar

    [6]

    Nova T F, Cartella A, Cantaluppi A, et al. 2017 Nat. Phys. 13 132Google Scholar

    [7]

    Pierce R D, Wolfe R, Van Uitert L G 1969 J. Appl. Phys. 40 1241Google Scholar

    [8]

    Jiang J, Song G, Wang D, Jin Z, Tian Z, Lin X, Han J, Ma G, Cao S, Cheng Z 2016 J. Phys.: Condens. Matter 28 116002Google Scholar

    [9]

    Yamaguchi K, Kurihara T, Minami Y, Nakajima M, Suemoto T 2013 Phys. Rev. Lett. 110 137204Google Scholar

    [10]

    Liu X, Jin Z, Zhang S, et al. 2018 J. Phys. D: Appl. Phys. 51 024001Google Scholar

    [11]

    Li X, Bamba M, Yuan N, et al. 2018 Science 361 794Google Scholar

    [12]

    Li R, Yuan N, Hu T, Feng Z, Ge J, Wang Y, Zheng H, Xing J, Gu H, Kang B, Zhang J, Ren W, Cao S 2018 AIP Adv. 8 115328Google Scholar

    [13]

    Tonouchi M 2007 Nat. Photonics 1 97Google Scholar

    [14]

    Ferguson B, Zhang X C 2002 Nat. Mater. 1 26Google Scholar

    [15]

    Walowski J, Münzenberg M 2016 J. Appl. Phys. 120 140901Google Scholar

    [16]

    Kampfrath T, Tanaka K, Nelson K A 2013 Nat. Photonics 7 680Google Scholar

    [17]

    Seifert T, Jaiswal S, Martens U, et al. 2016 Nat. Photonics 10 483Google Scholar

    [18]

    Huisman T J, Mikhaylovskiy R V, Costa J D, et al. 2016 Nat. Nanotechnol. 11 455Google Scholar

    [19]

    Vicario C, Ruchert C, Ardana-Lamas F, Derlet P M, Tudu B, Luning J, Hauri C P 2013 Nat. Photonics 7 720Google Scholar

    [20]

    Shalaby M, Vicario C, Hauri C P 2016 New J. Phys. 1 18

    [21]

    Bonetti S, Hoffmann M, Sher M, Chen Z, Yang S, Samant M G, Parkin S S P, Durr H A 2016 Phys. Rev. Lett. 8 117

    [22]

    Schlauderer S, Lange C, Baierl S, et al. 2019 Nature 569 7756

    [23]

    Kampfrath T, Sell A, Klatt G, et al. 2011 Nat. Photon. 5 31Google Scholar

    [24]

    金钻明, 阮舜逸, 李炬赓, 林贤, 任伟, 曹世勋, 马国宏, 姚建铨 2019 物理学报 68 167501Google Scholar

    Jin Z M, Ruan S Y, Li J G, Lin X, Ren W, Cao S X, Ma G H, Yao J Q 2019 Acta Phys. Sin. 68 167501Google Scholar

    [25]

    Yamaguchi K, Nakajima M, Suemoto T 2010 Phys. Rev. Lett. 105 237201Google Scholar

    [26]

    Zhou R, Jin Z, Li G, Ma G, Cheng Z, Wang X 2012 Appl. Phys. Lett. 100 061102Google Scholar

    [27]

    Jin Z, Mics Z, Ma G, Cheng Z, Bonn M, Turchinovich D 2013 Phys. Rev. B 87 094422Google Scholar

    [28]

    Zhang K, Xu K, Liu X, Zhang Z, Jin Z, Lin X, Li B, Cao S, Ma G 2016 Sci. Rep. 6 23648Google Scholar

    [29]

    Song G, Jiang J, Wang X, Jin Z, Lin X, Ma G, Cao S 2013 J. Appl. Phys. 114 243104Google Scholar

    [30]

    Song G, Jin Z, Lin X, Jiang J, Wang X, Wu H, Ma G, Cao S 2014 J. Appl. Phys. 115 163108Google Scholar

    [31]

    Kubacka T, Johnson J A, Hoffmann M, et al. 2014 Science 343 6177

    [32]

    Shao M, Cao S, Wang Y, Yuan S, Kang B, Zhang J, Wu A, Xu J 2011 J. Cryst. Growth 318 947Google Scholar

    [33]

    Wang X, Cao S, Wang Y, Yuan S, Kang B, Wu A, Zhang J 2013 J. Cryst. Growth 362 216Google Scholar

    [34]

    Cao Y, Yang Y, Xiang M, Feng Z, Kang B, Zhang J, Ren W, Cao S 2015 J. Cryst. Growth 420 90Google Scholar

    [35]

    Zhao W, Cao S, Huang R, Cao Y, Xu K, Kang B, Zhang J, Ren W 2015 Phys. Rev. B 91 104425Google Scholar

    [36]

    Liu X, Xie T, Guo J, et al. 2018 Appl. Phys. Lett. 113 022401Google Scholar

    [37]

    Fu X, Xi X, Bi K, Zhou J 2013 Appl. Phys. Lett. 103 211108Google Scholar

    [38]

    Jiang J, Jin Z, Song G, Lin X, Ma G, Cao S 2013 Appl. Phys. Lett. 103 062403Google Scholar

    [39]

    Zeng X, Wu L, Xi X, Li B, Zhou J, 2018 Ceram. Int. 44 19054Google Scholar

    [40]

    Kimel A V, Kirilyuk A, Tsvetkov A, Pisarev R V, Rasing T, 2004 Nature 429 850Google Scholar

    [41]

    Mikhaylovskiy R V, Huisman T J, Pisarev R V, Rasing T, Kimel A V 2017 Phys. Rev. Lett. 118 017205Google Scholar

  • [1] 陈兆亮, 卢达标, 叶旭斌, 赵浩婷, 张杰, 潘昭, 迟振华, 崔田, 沈瑶, 龙有文. 钙钛矿型CeTaN2O的高压制备及其磁性和电学性质. 物理学报, 2024, 73(8): 080702. doi: 10.7498/aps.73.20240025
    [2] 邓珊珊, 宋平, 刘潇贺, 姚森, 赵谦毅. 吉帕级单轴应力下Mn3Sn单晶的磁化率增强. 物理学报, 2024, 73(12): 127501. doi: 10.7498/aps.73.20240287
    [3] 李高芳, 殷文, 黄敬国, 崔昊杨, 叶焓静, 高艳卿, 黄志明, 褚君浩. 太赫兹时域光谱技术研究S掺杂GaSe晶体的电导率特性. 物理学报, 2023, 72(4): 047801. doi: 10.7498/aps.72.20221548
    [4] 卿煜林, 彭小莉, 文林, 胡爱元. 自旋为1/2的双层平方晶格阻挫模型的基态相变. 物理学报, 2022, 71(3): 037501. doi: 10.7498/aps.71.20211584
    [5] 卿煜林, 彭小莉, 胡爱元. 自旋为1的双层平方晶格阻挫模型的相变. 物理学报, 2022, 71(4): 047501. doi: 10.7498/aps.71.20211685
    [6] 卿煜林, 彭小莉, 文林, 胡爱元. 自旋为1/2的双层平方晶格阻挫模型的基态相变研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211584
    [7] 文林, 胡爱元. 双二次交换作用和各向异性对反铁磁体相变温度的影响. 物理学报, 2020, 69(10): 107501. doi: 10.7498/aps.69.20200077
    [8] 任壮, 成龙, 谢尔盖·固瑞特斯基, 那泽亚·柳博奇科, 李江涛, 尚加敏, 谢尔盖·巴里洛, 武安华, 亚历山大·卡拉什尼科娃, 马宗伟, 周春, 盛志高. Ho1–xYxFeO3单晶自旋重取向的掺杂效应与磁控效应的太赫兹光谱. 物理学报, 2020, 69(20): 207802. doi: 10.7498/aps.69.20201518
    [9] 金钻明, 阮舜逸, 李炬赓, 林贤, 任伟, 曹世勋, 马国宏, 姚建铨. 稀土正铁氧体中THz自旋波的相干调控与强耦合研究进展. 物理学报, 2019, 68(16): 167501. doi: 10.7498/aps.68.20190706
    [10] 刘奎立, 周思华, 陈松岭. 金属离子掺杂对CuO基纳米复合材料的交换偏置调控. 物理学报, 2015, 64(13): 137501. doi: 10.7498/aps.64.137501
    [11] 郭静, 孙力玲. 压力下碱金属铁硒基超导体中的现象与物理. 物理学报, 2015, 64(21): 217406. doi: 10.7498/aps.64.217406
    [12] 孟增睿, 张伟斌, 杜宇, 尚丽平, 邓琥. FOX-7转晶行为的太赫兹光谱及理论计算研究. 物理学报, 2015, 64(7): 073302. doi: 10.7498/aps.64.073302
    [13] 胡妮, 刘雍, 汤五丰, 裴玲, 方鹏飞, 熊锐, 石兢. La0.4Ca0.6MnO3中Mn-位Fe和Cr掺杂对磁性质的影响. 物理学报, 2014, 63(23): 237502. doi: 10.7498/aps.63.237502
    [14] 杨静琦, 李绍限, 赵红卫, 张建兵, 杨娜, 荆丹丹, 王晨阳, 韩家广. L-天冬酰胺及其一水合物的太赫兹光谱研究. 物理学报, 2014, 63(13): 133203. doi: 10.7498/aps.63.133203
    [15] 王美娜, 李英, 王天兴, 刘国栋. 正交多铁性材料DyMnO3的磁性质研究. 物理学报, 2013, 62(22): 227101. doi: 10.7498/aps.62.227101
    [16] 刘明, 曹世勋, 袁淑娟, 康保娟, 鲁波, 张金仓. Pr掺杂DyFeO3体系的自旋重取向相变、晶格畸变与Raman光谱研究. 物理学报, 2013, 62(14): 147601. doi: 10.7498/aps.62.147601
    [17] 刘先锋, 韩玖荣, 江学范. 阻挫三角反铁磁AgCrO2螺旋自旋序的第一性原理研究. 物理学报, 2010, 59(9): 6487-6493. doi: 10.7498/aps.59.6487
    [18] 马晓菁, 赵红卫, 代 斌, 刘桂锋. 次黄嘌呤及其核苷的THz光谱. 物理学报, 2008, 57(6): 3429-3434. doi: 10.7498/aps.57.3429
    [19] 李 宏, 王炜路, 公丕锋. 单量子阱的自旋电流. 物理学报, 2007, 56(4): 2405-2408. doi: 10.7498/aps.56.2405
    [20] 滕蛟, 蔡建旺, 熊小涛, 赖武彦, 朱逢吾. NiFe/FeMn双层膜交换偏置的形成及热稳定性研究. 物理学报, 2004, 53(1): 272-275. doi: 10.7498/aps.53.272
计量
  • 文章访问数:  6520
  • PDF下载量:  152
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-15
  • 修回日期:  2020-06-13
  • 上网日期:  2020-10-12
  • 刊出日期:  2020-10-20

/

返回文章
返回