搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于声子晶体位错理论的二维超声塑料焊接系统

林基艳 林书玉

引用本文:
Citation:

基于声子晶体位错理论的二维超声塑料焊接系统

林基艳, 林书玉

Two-dimensional ultrasonic plastic welding system based on phononic crystal dislocation theory

Lin Ji-Yan, Lin Shu-Yu
PDF
HTML
导出引用
  • 为了有效改善二维工具头辐射面振幅分布不均匀的问题, 对二维超声塑料焊接系统进行了优化设计研究: 首先, 利用横向位错在大尺寸长条形工具头上构造近周期声子晶体同质位错结, 调节带隙的宽度和位置, 使得二维超声塑料焊接系统的工作频率位于工具头的横向振动的带隙内, 进而有效地控制工具头X方向的横向振动; 其次, 利用近周期声子晶体斜槽结构进一步优化辐射面的振幅分布均匀度, 并分析了斜槽结构参数对超声塑料焊接系统纵向共振频率和振幅分布均匀度的影响规律. 模拟仿真结果表明, 近周期声子晶体同质位错结和斜槽结构能够实现对二维超声塑料焊接系统的优化, 为横向振动抑制理论的进一步研究提供了基础.
    When the lateral dimension of the tool head is close to or greater than a quarter of the longitudinal wave length, the tool head will produce severe lateral vibration. The coupling of the lateral vibration and the longitudinal vibration makes the amplitude distribution of the tool head’s radiation surface uneven, which seriously affects the welding quality. To solve the problem of uneven amplitude distribution of the two-dimensional tool head’s radiating surface, in the paper we conduct an optimized design study on a two-dimensional ultrasonic plastic welding system. First, using the theory of phononic crystal dislocations, we construct a nearly periodic phononic crystal homogenous dislocation junction on a large-sized long strip tool head, and use the homogenous dislocation junction to change the regular lattice arrangement of the phononic crystal structure to adjust the position of the band gap and increase the width of the band gap, so that the operating frequency of the two-dimensional ultrasonic plastic welding system can be located in the band gap of the lateral vibration of the tool head, and the effective control of the lateral coupling vibration of the tool head can be achieved, thus optimizing the amplitude uniformity of the radiating surface of the tool head and increasing the amplitude gain. Although the homogenous dislocation junction structure improves the amplitude uniformity of the radiating surface of the tool head, the lateral dislocation effect of the homogenous dislocation junction causes the sound waves in the band gap frequency range to propagate along the dislocation channel, while the dislocation line channel is located in the middle of the tool head, which results in a larger displacement of the middle part of the tool head’s radiating surface, and a smaller displacement on both sides. Therefore, the further optimizing of the two-dimensional tool head is required. In this study, the nearly periodic phononic crystal inclined groove structure is used to better optimize the amplitude distribution uniformity of the radiating surface, and the influence of the inclined groove structure parameters on the longitudinal resonance frequency and amplitude distribution uniformity of the ultrasonic plastic welding system are analyzed, that is, the inclined groove can better improve the uniformity of the amplitude distribution than the straight groove, but the angle of inclination of neither the inner nor outer inclined grooves should be too large: the optimal range is 3°-6°. In addition, the difference in inclination angle between the inner inclined groove and the outer inclined groove should not be too large, and the angle difference from 0° to 2° is best. The simulation results show that the nearly periodic phononic crystal homogenous dislocation junction and inclined groove structure can optimize the two-dimensional ultrasonic plastic welding system, which provides a basis for further research on the theory of lateral vibration suppression.
      通信作者: 林书玉, sylin@snnu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11674206, 11874253, 11964040)资助的课题
      Corresponding author: Lin Shu-Yu, sylin@snnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11674206, 11874253, 11964040)
    [1]

    Rani M R, Rudramoorthy R 2012 Ultrasonics 53 763772Google Scholar

    [2]

    Wells, Peter J 1991 Asse. Auto. 11 1014Google Scholar

    [3]

    Shu-Chu R 1982 Chin.Jour. Acous. 1 138151Google Scholar

    [4]

    Shu-Chu R 1983 Acta Acus. 1 152161Google Scholar

    [5]

    Shu K M, Wang Y J, Chi C W 2014 Appl. Mecha. & Mater. 28 329332Google Scholar

    [6]

    Hung J C, Tsai Y P, Hung C H 2012 Appl. Mecha. & Mater. 14 98Google Scholar

    [7]

    Cardoni A, Lucas M 2002 Ultrasonics 40 365369Google Scholar

    [8]

    Adachi K, Ueha S 1990 Jour. Acous. Soci. Ame. 87 208214Google Scholar

    [9]

    Mori E, Itoh K, Imamura A 1995 Jour. acou. Soci. Japan 51 455462Google Scholar

    [10]

    Lucas M, Smith A C 1997 Jour. Vibr. Acous. 119 410413Google Scholar

    [11]

    Lee Y J, Shahid M B, Park D S 2019 MATEC Web Conf 257 02009Google Scholar

    [12]

    Nguyen T H, Quang Q T, Tran C L, Nguyen H L 2017 5th Asia Conference on Mechanical and Materials Engineering Tokyo, Japan, June 9–11, 2017 p012023

    [13]

    Kumar R D, Rani M R, Elangovan S 2014 Appl. Mecha. & Mater. 592 859863Google Scholar

    [14]

    Rani M R, Prakasan K, Rudramoorthy R 2014 Int. J. Desi. Engi. 5 344357Google Scholar

    [15]

    林书玉, 张福成 1992 声学技术 4 2428Google Scholar

    Lin S Y, Zhang F C 1992 Acou. Tech. 4 2428Google Scholar

    [16]

    梁召峰, 周光平, 莫喜平, 李正中 2009 工程设计学报 16 200204Google Scholar

    Liang Z F, Zhou G P, Mo X P, Li Z Z 2009 Engi. Desi. Jour. Acc. 16 200204Google Scholar

    [17]

    赵甜甜, 林书玉, 段祎林 2018 物理学报 67 224207Google Scholar

    Zhao T T, Lin S Y, Duan Y L 2018 Acta Phys. Sin. 67 224207Google Scholar

    [18]

    Lin J Y, Lin S Y 2020 Crystals 10 116Google Scholar

    [19]

    郭凤丹 2015 博士学位论文 (北京: 北京交通大学)

    Guo D F 2015 Ph. D. Dissertation (Beijing: Beijing Jiaotong University) (in Chinese)

    [20]

    Wang G, Wen X S, Wen J H, Liu Y Z 2006 Jour. Appl. Mech. Tran. ASME 73 167170Google Scholar

    [21]

    Chen A, Wang Y, Yu G, et al. 2008 Acta Mech. Soli.Sini. 21 4051Google Scholar

    [22]

    Steurer W, Sutter-Widmer D 2007 Jour. Phy. D Appl. Phys. 40 R229Google Scholar

    [23]

    赵芳, 苑立波 2006 物理学报 55 517Google Scholar

    Zhao F, Yuan L B 2006 Acta Phys. Sin. 55 517Google Scholar

    [24]

    赵言诚, 赵芳, 苑立波 2006 哈尔滨工程大学学报 4 145148Google Scholar

    Zhao Y C, Zhao F, Yuan L B 2006 Jour. Harbin Engi.Uni. 4 145148Google Scholar

    [25]

    Khelif A, Choujaa A, Djafari-Rouhani B, et al. 2003 Phys. Rev. B 68 214301Google Scholar

    [26]

    Vasseur J, Deymier P, Djafari-Rouhani B, et al. 2008 Phys. Rev. B 77 85415Google Scholar

    [27]

    Soliman Y M, Su M F, Leseman Z C, et al. 2010 Appl. Phys. Lett. 97 081907Google Scholar

    [28]

    Liu Y, Su J Y, Xu Y L, et al. 2009 Ultrasonics 49 276280Google Scholar

  • 图 1  二维超声塑料焊接振动系统结构示意图

    Fig. 1.  Structural diagram of two-dimensional ultrasonic plastic welding vibration system.

    图 2  二维超声塑料焊接振动系统的振型图

    Fig. 2.  Modal diagram of two-dimensional ultrasonic plastic welding vibration system.

    图 3  工具头辐射面X方向纵向相对位移分布

    Fig. 3.  X-direction longitudinal relative displacement distribution of radiating surface of tool head.

    图 4  基于近周期声子晶体多槽结构的二维工具头 (a)结构; (b)尺寸; (c)原胞模型

    Fig. 4.  Two-dimensional tool head based on near-period phononic crystal multiple-grooves: (a) Structure; (b) dimensions; (c) cell model diagram.

    图 5  原胞结构在X方向的加速度响应曲线

    Fig. 5.  Acceleration response curve of the cell structure in the X direction.

    图 6  基于近周期声子晶体同质位错结的二维工具头的超胞模型

    Fig. 6.  Supercell model of a two-dimensional tool head based on near-period phononic crystal homogenous dislocation junction.

    图 7  近周期声子晶体同质位错结的超胞示意图

    Fig. 7.  Schematic diagram of near-period phononic crystal supercell based on homogenous dislocation junction.

    图 8  基于近周期声子晶体同质位错结的超胞结构在X方向的加速度响应曲线

    Fig. 8.  X-direction acceleration response curve of supercell structure based on near-period phononic crystal homogenous dislocation junction.

    图 9  两种结构在X方向的加速度响应曲线对比图

    Fig. 9.  Comparison of acceleration response curves of the two structures in the X direction.

    图 10  基于近周期声子晶体同质位错结的二维超声塑料焊接振动系统的结构图和振型图

    Fig. 10.  Structure diagram and modal diagram of two-dimensional ultrasonic plastic welding vibration system based on near-period phononic crystal homogenous dislocation junction.

    图 11  基于近周期声子晶体同质位错结系统的工具头辐射面位移分布图及与不开槽系统的位移分布对比图

    Fig. 11.  Displacement distribution diagram of tool head radiating surface of system based on near-period phononic crystal homogenous dislocation junction and its comparison with radiation surface displacement distribution with non-grooved system and system.

    图 12  基于近周期声子晶体斜槽结构的工具头的结构尺寸图

    Fig. 12.  Dimensional diagram of tool head based on near-period phononic crystal inclined groove structure.

    图 13  基于近周期声子晶体斜槽结构的二维超声塑料焊接振动系统的结构图和振型图

    Fig. 13.  Structural diagram and modal diagram of two-dimensional ultrasonic plastic welding vibration system based on a near-period phononic crystal inclined groove structure.

    图 14  基于近周期声子晶体斜槽结构的工具头辐射面位移分布及其同近周期声子晶体同质位错工具头辐射面位移分布对比图

    Fig. 14.  Displacement distribution diagram of tool head radiating surface of system based on near-period phononic crystal inclined groove structure and its comparison with the displacement distribution of radiating surface of tool head with homogenous dislocation in near-period phononic crystal

    图 15  斜槽高度对系统谐振频率的影响

    Fig. 15.  Influence of the height of the inclined grooves on the resonance frequency of the system.

    图 16  斜槽高度对振幅变化范围的影响

    Fig. 16.  Influence of the height of the inclined grooves on the range of amplitude variation

    图 17  斜槽宽度对系统谐振频率的影响

    Fig. 17.  Influence of the width of the inclined grooves on the resonance frequency of the system.

    图 18  斜槽宽度对振幅变化范围的影响

    Fig. 18.  Influence of the width of the inclined grooves on the range of amplitude variation.

    图 19  斜槽角度对系统谐振频率的影响

    Fig. 19.  Influence of the angle of the inclined grooves on the resonance frequency of the system

    图 20  斜槽角度对振幅变化范围的影响

    Fig. 20.  Influence of the angle of the inclined grooves on the range of amplitude variation

    图 21  dr和内外侧斜槽角度差值的关系

    Fig. 21.  Relationship between dr and the angle difference of outer and inner inclined grooves.

  • [1]

    Rani M R, Rudramoorthy R 2012 Ultrasonics 53 763772Google Scholar

    [2]

    Wells, Peter J 1991 Asse. Auto. 11 1014Google Scholar

    [3]

    Shu-Chu R 1982 Chin.Jour. Acous. 1 138151Google Scholar

    [4]

    Shu-Chu R 1983 Acta Acus. 1 152161Google Scholar

    [5]

    Shu K M, Wang Y J, Chi C W 2014 Appl. Mecha. & Mater. 28 329332Google Scholar

    [6]

    Hung J C, Tsai Y P, Hung C H 2012 Appl. Mecha. & Mater. 14 98Google Scholar

    [7]

    Cardoni A, Lucas M 2002 Ultrasonics 40 365369Google Scholar

    [8]

    Adachi K, Ueha S 1990 Jour. Acous. Soci. Ame. 87 208214Google Scholar

    [9]

    Mori E, Itoh K, Imamura A 1995 Jour. acou. Soci. Japan 51 455462Google Scholar

    [10]

    Lucas M, Smith A C 1997 Jour. Vibr. Acous. 119 410413Google Scholar

    [11]

    Lee Y J, Shahid M B, Park D S 2019 MATEC Web Conf 257 02009Google Scholar

    [12]

    Nguyen T H, Quang Q T, Tran C L, Nguyen H L 2017 5th Asia Conference on Mechanical and Materials Engineering Tokyo, Japan, June 9–11, 2017 p012023

    [13]

    Kumar R D, Rani M R, Elangovan S 2014 Appl. Mecha. & Mater. 592 859863Google Scholar

    [14]

    Rani M R, Prakasan K, Rudramoorthy R 2014 Int. J. Desi. Engi. 5 344357Google Scholar

    [15]

    林书玉, 张福成 1992 声学技术 4 2428Google Scholar

    Lin S Y, Zhang F C 1992 Acou. Tech. 4 2428Google Scholar

    [16]

    梁召峰, 周光平, 莫喜平, 李正中 2009 工程设计学报 16 200204Google Scholar

    Liang Z F, Zhou G P, Mo X P, Li Z Z 2009 Engi. Desi. Jour. Acc. 16 200204Google Scholar

    [17]

    赵甜甜, 林书玉, 段祎林 2018 物理学报 67 224207Google Scholar

    Zhao T T, Lin S Y, Duan Y L 2018 Acta Phys. Sin. 67 224207Google Scholar

    [18]

    Lin J Y, Lin S Y 2020 Crystals 10 116Google Scholar

    [19]

    郭凤丹 2015 博士学位论文 (北京: 北京交通大学)

    Guo D F 2015 Ph. D. Dissertation (Beijing: Beijing Jiaotong University) (in Chinese)

    [20]

    Wang G, Wen X S, Wen J H, Liu Y Z 2006 Jour. Appl. Mech. Tran. ASME 73 167170Google Scholar

    [21]

    Chen A, Wang Y, Yu G, et al. 2008 Acta Mech. Soli.Sini. 21 4051Google Scholar

    [22]

    Steurer W, Sutter-Widmer D 2007 Jour. Phy. D Appl. Phys. 40 R229Google Scholar

    [23]

    赵芳, 苑立波 2006 物理学报 55 517Google Scholar

    Zhao F, Yuan L B 2006 Acta Phys. Sin. 55 517Google Scholar

    [24]

    赵言诚, 赵芳, 苑立波 2006 哈尔滨工程大学学报 4 145148Google Scholar

    Zhao Y C, Zhao F, Yuan L B 2006 Jour. Harbin Engi.Uni. 4 145148Google Scholar

    [25]

    Khelif A, Choujaa A, Djafari-Rouhani B, et al. 2003 Phys. Rev. B 68 214301Google Scholar

    [26]

    Vasseur J, Deymier P, Djafari-Rouhani B, et al. 2008 Phys. Rev. B 77 85415Google Scholar

    [27]

    Soliman Y M, Su M F, Leseman Z C, et al. 2010 Appl. Phys. Lett. 97 081907Google Scholar

    [28]

    Liu Y, Su J Y, Xu Y L, et al. 2009 Ultrasonics 49 276280Google Scholar

  • [1] 林基艳, 林书玉. 管柱型近周期声子晶体点缺陷结构的大尺寸压电超声换能器. 物理学报, 2023, 72(9): 094301. doi: 10.7498/aps.72.20230195
    [2] 李荫铭, 孔鹏, 毕仁贵, 何兆剑, 邓科. 双表面周期性弹性声子晶体板中的谷拓扑态. 物理学报, 2022, 71(24): 244302. doi: 10.7498/aps.71.20221292
    [3] 耿治国, 彭玉桂, 沈亚西, 赵德刚, 祝雪丰. 手性声子晶体中拓扑声传输. 物理学报, 2019, 68(22): 227802. doi: 10.7498/aps.68.20191007
    [4] 郭巍巍, 任焕, 齐成军, 王小蒙, 李小武. 一个单滑移取向铜单晶体疲劳位错结构的热稳定性研究. 物理学报, 2012, 61(15): 156201. doi: 10.7498/aps.61.156201
    [5] 曹永军, 杨 旭. 广义Fibonacci准周期结构声子晶体透射性质的研究. 物理学报, 2008, 57(6): 3620-3624. doi: 10.7498/aps.57.3620
    [6] 周耐根, 周 浪, 杜丹旭. 面心立方晶体外延膜沉积生长中失配位错的结构与形成过程. 物理学报, 2006, 55(1): 372-377. doi: 10.7498/aps.55.372
    [7] 曹永军, 董纯红, 周培勤. 一维准周期结构声子晶体透射性质的研究. 物理学报, 2006, 55(12): 6470-6475. doi: 10.7498/aps.55.6470
    [8] 赵 芳, 苑立波. 二维声子晶体同质位错结缺陷态特性. 物理学报, 2006, 55(2): 517-520. doi: 10.7498/aps.55.517
    [9] 高飞. 晶体缺陷规范场中的刃位错. 物理学报, 1990, 39(10): 1591-1598. doi: 10.7498/aps.39.1591
    [10] 孙宗琦, 韩明辉. 晶体位错的离散弹性模型——位错中心结构和P-N力. 物理学报, 1989, 38(2): 183-192. doi: 10.7498/aps.38.183
    [11] 陈金长, 黄依森, 魏培才. KDP晶体中位错的研究. 物理学报, 1985, 34(3): 377-380. doi: 10.7498/aps.34.377
    [12] 葛传珍, 王有涛, 王建文, 冯端. LiNbO3和LiTaO3单晶体中亚晶界位错结构的研究. 物理学报, 1983, 32(11): 1361-1368. doi: 10.7498/aps.32.1361
    [13] 郭常霖. α—SiC晶体中的位错. 物理学报, 1982, 31(11): 1511-1525. doi: 10.7498/aps.31.1511
    [14] 葛庭燧, 张进修. 铝-0.5%铜合金中反常振幅效应内耗峰的进一步实验和位错弯结气团模型. 物理学报, 1966, 22(1): 71-82. doi: 10.7498/aps.22.71
    [15] 张修睦, 林保军, 郭可信. 铝镁合金中位错网络与位错子反应的电显微镜透射观察. 物理学报, 1965, 21(2): 476-480. doi: 10.7498/aps.21.476
    [16] 洪晶, 叶以正. 集中力作用下硅中位错结构. 物理学报, 1965, 21(8): 1475-1486. doi: 10.7498/aps.21.1475
    [17] 冯端, 李齐, 闵乃本. 钼单晶体中亚晶界位错结构的研究. 物理学报, 1965, 21(2): 431-449. doi: 10.7498/aps.21.431
    [18] 冯端, 闵乃本, 李齐. 钼晶体中的位错线蚀象的研究. 物理学报, 1964, 20(4): 337-351. doi: 10.7498/aps.20.337
    [19] 闵乃本, 吉光民, 冯端. 钨单晶体中位错的侵蚀斑. 物理学报, 1964, 20(11): 1182-1186. doi: 10.7498/aps.20.1182
    [20] 孙瑞蕃, М.П.沙斯柯里斯卡娅. 晶体中滑移的位错机构研究. 物理学报, 1960, 16(4): 229-240. doi: 10.7498/aps.16.229
计量
  • 文章访问数:  6646
  • PDF下载量:  98
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-05-28
  • 修回日期:  2020-06-09
  • 上网日期:  2020-06-12
  • 刊出日期:  2020-09-20

/

返回文章
返回