搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于摩擦纳米发电机的可穿戴能源器件

丁亚飞 陈翔宇

引用本文:
Citation:

基于摩擦纳米发电机的可穿戴能源器件

丁亚飞, 陈翔宇

Triboelectric nanogenerator based wearable energy harvesting devices

Ding Ya-Fei, Chen Xiang-Yu
PDF
HTML
导出引用
  • 随着电子器件向着小型化、功能化的方向迈进, 可穿戴电子器件受到越来越多的关注, 但是可穿戴电子器件的能源供给问题目前仍亟待解决. 基于摩擦起电与静电感应耦合效应的摩擦纳米发电机具有成本低、选材广、柔性等特点, 可以收集人体的低频、不规律能量并高效地转化为电能, 在可穿戴带能源器件领域有着巨大的发展潜力. 本文将首先介绍摩擦纳米发电机的四种基本工作模式以及摩擦起电机理的最新研究, 然后从贴敷于人体皮肤的直接式能源收集与附着于衣物、鞋子等人体附属物的间接式能源收集两个部分详细综述基于摩擦纳米发电机的可穿戴能源器件的研究进展. 最后, 对用于驱动电子器件的能量管理模块进行系统介绍, 分析讨论目前可穿戴能源器件发展中的问题和瓶颈, 探讨未来的发展方向.
    With the miniaturization and functionalization of electronic devices, wearable electronics has drawn generally attention, but the energy supply for wearable electronics becomes one of the most burning questions. The triboelectric nanogenerator based on the coupling effects of electrostatic induction and triboelectrification, which has low cost and wide material selection attributes, proves to be a powerful technology for converting low-frequency mechanical energy into electricity. In this review, the four fundamental modes of triboelectric nanogenerator and the physical mechanism of contact-electrification are presented first. Then, we introduce the research progress of wearable from the direct and indirect aspects. Directly wearable triboelectric nanogenerator can be integrated into a skin while indirectly wearable device is only allowed to assemble into user’s clothing or its appendages. In addition, the power management circuits for driving electronic devices and energy storage are summarized. Finally, we discuss the current bottlenecks and present our perspectives on future directions in this field.
      通信作者: 陈翔宇, chenxiangyu@binn.cas.cn
    • 基金项目: 国家级-国家科技支撑计划(2016YFA0202704)
      Corresponding author: Chen Xiang-Yu, chenxiangyu@binn.cas.cn
    [1]

    Khalid S, Raouf I, Khan A, Kim N, Kim H S 2019 Int. J. Precis. Eng. Manuf. 6 821Google Scholar

    [2]

    Wang Z L 2019 Nano Energy 58 669Google Scholar

    [3]

    Wang Z L 2013 ACS Nano 7 9533Google Scholar

    [4]

    Zhu G, Peng B, Chen J, Jing Q, Lin Wang Z 2015 Nano Energy 14 126Google Scholar

    [5]

    Wu Z, Cheng T, Wang Z L 2020 Sensors 20 2925Google Scholar

    [6]

    Shi Q, He T, Lee C 2019 Nano Energy 57 851Google Scholar

    [7]

    Wang Z L 2008 Sci. Am. 298 82Google Scholar

    [8]

    李卫胜, 周健, 王瀚宸, 汪树贤, 于志浩, 黎松林, 施毅, 王欣然 2017 物理学报 66 218503

    Li W S, Zhou J, Wang H C, Wang S X, Yu Z H, Li S L, Shi Y, Wang X R 2017 Acta Phys. Sin. 66 218503

    [9]

    Wu X, Chen Y, Xing Z, Lam C W K, Pang S S, Zhang W, Ju Z 2019 Adv. Energy Mater. 9 1900343Google Scholar

    [10]

    Li S, Wu Q, Zhang D, Liu Z, He Y, Wang Z L, Sun C 2019 Nano Energy 56 555Google Scholar

    [11]

    Wang Z L 2017 Mater Today 20 34Google Scholar

    [12]

    Pu X, Hu W, Wang Z L 2018 Small 14 1702817Google Scholar

    [13]

    Luo J, Wang Z L 2019 Energy Storage Mater. 23 617Google Scholar

    [14]

    Huang T, Zhang J, Yu B, Yu H, Long H, Wang H, Zhang Q, Zhu M 2019 Nano Energy 58 375Google Scholar

    [15]

    Chen S, Jiang J, Xu F, Gong S 2019 Nano Energy 61 69Google Scholar

    [16]

    Liu Z, Li H, Shi B, Fan Y, Wang Z L, Li Z 2019 Adv. Funct. Mater. 29 1808820Google Scholar

    [17]

    Wang Z L, Chen J, Lin L 2015 Energy Environ. Sci. 8 2250Google Scholar

    [18]

    Nie J H, Chen X Y, Wang Z L 2019 Adv. Funct. Mater. 29 1806351Google Scholar

    [19]

    Fan F R, Tian Z Q, Wang Z L 2012 Nano Energy 1 328Google Scholar

    [20]

    Wang Z L 2020 Adv. Energy Mater. 10 2000137Google Scholar

    [21]

    Wang Z L, Wang A C 2019 Mater. Today 30 34Google Scholar

    [22]

    Lin S, Chen X, Wang Z L 2020 Nano Energy 76 105070Google Scholar

    [23]

    Nie J H, Wang Z M, Ren Z W, Li S Y, Chen X Y, Wang Z L 2019 Nat. Commun. 10 226410Google Scholar

    [24]

    Yang D, Kong X, Ni Y, Ren Z, Li S, Nie J, Chen X, Zhang L 2019 Nano Energy 66 104139Google Scholar

    [25]

    Ding Y, Shi Y, Nie J, Ren Z, Li S, Wang F, Tian J, Chen X, Wang Z L 2020 Chem. Eng. J. 388 124369Google Scholar

    [26]

    Lin Y, Nie J, Bai Y, Li S, Xu L, Wang F, Ding Y, Tian J, Li Y, Chen X, Shen H 2020 Nano Energy 73 104759Google Scholar

    [27]

    Wang F, Ren Z, Nie J, Tian J, Ding Y, Chen X 2019 Adv. Mater. Technol. 5 1900789Google Scholar

    [28]

    Hinchet R, Yoon H J, Ryu H, Kim M K, Choi E K, Kim D S, Kim S W 2019 Science 365 491Google Scholar

    [29]

    Lei R, Shi Y, Ding Y, Nie J, Li S, Wang F, Zhai H, Chen X, Wang Z L 2020 Energy Environ. Sci. (in press) DOI: 10.1039/d0ee01236j

    [30]

    Qian Y, Nie J, Ma X, Ren Z, Tian J, Chen J, Shen H, Chen X, Li Y 2019 Nano Energy 60 493Google Scholar

    [31]

    Ma X, Li S Y, Dong S J, Nie J H, Iwamoto M, Lin S Q, Zheng L, Chen X Y 2019 Nano Energy 66 104090Google Scholar

    [32]

    吴晔盛, 刘启, 曹杰, 李凯, 程广贵, 张忠强, 丁建宁, 蒋诗宇 2019 物理学报 68 190201Google Scholar

    Wu Y S, Liu Q, Cao J, Li K, Cheng G G, Zhang Z Q, Ding J N, Jiang S Y 2019 Acta Phys. Sin. 68 190201Google Scholar

    [33]

    Dong K, Peng X, Wang Z L 2019 Adv. Mater. e1902549

    [34]

    Wu H, Huang Y, Xu F, Duan Y, Yin Z 2016 Adv. Mater. 28 9881Google Scholar

    [35]

    Song P, Yang G, Lang T, Yong K T 2019 J. Phys. D: Appl. Phys. 52 023002Google Scholar

    [36]

    Chen X, Jiang T, Yao Y, Xu L, Zhao Z, Wang Z L 2016 Adv. Funct. Mater. 26 4906Google Scholar

    [37]

    Ren Z, Nie J, Xu L, Jiang T, Chen B, Chen X, Wang Z L 2018 Adv. Funct. Mater. 28 1802989Google Scholar

    [38]

    Xiong J, Luo H, Gao D, Zhou X, Cui P, Thangavel G, Parida K, Lee P S 2019 Nano Energy 61 584Google Scholar

    [39]

    Chen J, Huang Y, Zhang N N, Zou H Y, Liu R Y, Tao C Y, Fan X, Wang Z L 2016 Nat. Energy 1 16138Google Scholar

    [40]

    Niu S, Wang X, Yi F, Zhou Y S, Wang Z L 2015 Nat. Commun. 6 8975Google Scholar

    [41]

    Zi Y, Wang J, Wang S, Li S, Wen Z, Guo H, Wang Z L 2016 Nat. Commun. 7 10987Google Scholar

    [42]

    Pu X, Liu M, Li L, Zhang C, Pang Y, Jiang C, Shao L, Hu W, Wang Z L 2016 Adv. Sci. 3 1500255Google Scholar

    [43]

    Chen C, Chen L, Wu Z, Guo H, Yu W, Du Z, Wang Z L 2020 Mater. Today 32 84Google Scholar

    [44]

    Lai Y C, Deng J, Niu S, Peng W, Wu C, Liu R, Wen Z, Wang Z L 2016 Adv. Mater. 28 10024Google Scholar

    [45]

    Yi F, Wang J, Wang X, Niu S, Li S, Liao Q, Xu Y, You Z, Zhang Y, Wang Z L 2016 ACS Nano 10 6519Google Scholar

    [46]

    Pu X, Li L, Liu M, Jiang C, Du C, Zhao Z, Hu W, Wang Z L 2016 Adv. Mater. 28 98Google Scholar

    [47]

    Lin Z, Chen J, Li X, Zhou Z, Meng K, Wei W, Yang J, Wang Z L 2017 ACS Nano 11 8830Google Scholar

    [48]

    Yi F, Wang X, Niu S, Li S, Yin Y, Dai K, Zhang G, Lin L, Wen Z, Guo H, Wang J, Yeh M H, Zi Y, Liao Q, You Z, Zhang Y, Wang Z L 2016 Sci. Adv. 2 e1501624Google Scholar

    [49]

    Wang Z L 2014 Faraday Discuss. 176 447Google Scholar

    [50]

    Nie J, Ren Z, Xu L, Lin S, Zhan F, Chen X, Wang Z L 2019 Adv. Mater. e1905696

    [51]

    Wang S, Lin L, Xie Y, Jing Q, Niu S, Wang Z L 2013 Nano Lett. 13 2226Google Scholar

    [52]

    Zhu G, Chen J, Zhang T, Jing Q, Wang Z L 2014 Nat. Commun. 5 3426Google Scholar

    [53]

    Zhu G, Zhou Y S, Bai P, Meng X S, Jing Q, Chen J, Wang Z L 2014 Adv. Mater. 26 3788Google Scholar

    [54]

    Xie Y, Wang S, Niu S, Lin L, Jing Q, Yang J, Wu Z, Wang Z L 2014 Adv. Mater. 26 6599Google Scholar

    [55]

    Zhang H, Yang Y, Zhong X, Su Y, Zhou Y, Hu C, Wang Z L 2014 ACS Nano 8 680Google Scholar

    [56]

    Zhang W, Wang P, Sun K, Wang C, Diao D 2019 Nano Energy 56 277Google Scholar

    [57]

    Wang S, Xie Y, Niu S, Lin L, Wang Z L 2014 Adv. Mater. 26 2818Google Scholar

    [58]

    Xu C, Wang A C, Zou H, Zhang B, Zhang C, Zi Y, Pan L, Wang P, Feng P, Lin Z, Wang Z L 2018 Adv. Mater. 30 e1803968Google Scholar

    [59]

    Xu C, Zhang B, Wang A C, Cai W, Zi Y, Feng P, Wang Z L 2018 Adv. Funct. Mater. 0 1903142Google Scholar

    [60]

    Li S, Fan Y, Chen H, Nie J, Liang Y, Tao X, Zhang J, Chen X, Fu E, Wang Z L 2020 Energy Environ. Sci. 13 896Google Scholar

    [61]

    Li S, Nie J, Shi Y, Tao X, Wang F, Tian J, Lin S, Chen X, Wang Z L 2020 Adv. Mater. e2001307

    [62]

    Jiang T, Chen X, Han C B, Tang W, Wang Z L 2015 Adv. Funct. Mater. 25 2928Google Scholar

    [63]

    Niu S, Wang S, Lin L, Liu Y, Zhou Y S, Hu Y, Wang Z L 2013 Energy Environ. Sci. 6 3576Google Scholar

    [64]

    Lin S, Xu L, Chi Wang A, Wang Z L 2020 Nat. Commun. 11 399Google Scholar

    [65]

    Chen C, Guo H, Chen L, Wang Y C, Pu X, Yu W, Wang F, Du Z, Wang Z L 2020 ACS Nano 14 4585Google Scholar

    [66]

    Dong K, Deng J, Zi Y, Wang Y C, Xu C, Zou H, Ding W, Dai Y, Gu B, Sun B, Wang Z L 2017 Adv. Mater. 29 1702648Google Scholar

    [67]

    Chen S W, Cao X, Wang N, Ma L, Zhu H R, Willander M, Jie Y, Wang Z L 2017 Adv. Energy Mater. 7 1601255Google Scholar

    [68]

    Cui N, Liu J, Gu L, Bai S, Chen X, Qin Y 2015 ACS Appl. Mater. Interfaces 7 18225Google Scholar

    [69]

    Du W, Nie J, Ren Z, Jiang T, Xu L, Dong S, Zheng L, Chen X, Li H 2018 Nano Energy 51 260Google Scholar

    [70]

    Chen X, Wu Y, Shao J, Jiang T, Yu A, Xu L, Wang Z L 2017 Small 13 1702929Google Scholar

    [71]

    Guo H, Yeh M H, Lai Y C, Zi Y, Wu C, Wen Z, Hu C, Wang Z L 2016 ACS Nano 10 10580Google Scholar

    [72]

    Zou Y, Tan P, Shi B, Ouyang H, Jiang D, Liu Z, Li H, Yu M, Wang C, Qu X, Zhao L, Fan Y, Wang Z L, Li Z 2019 Nat. Commun. 10 2695Google Scholar

    [73]

    Ren Z, Nie J, Shao J, Lai Q, Wang L, Chen J, Chen X, Wang Z L 2018 Adv. Funct. Mater. 28 1805277Google Scholar

    [74]

    Mule A R, Dudem B, Graham S A, Yu J S 2019 Adv. Funct. Mater. 29 1807779Google Scholar

    [75]

    Wang J, Li S, Yi F, Zi Y, Lin J, Wang X, Xu Y, Wang Z L 2016 Nat. Commun. 7 12744Google Scholar

    [76]

    Dong K, Wang Y C, Deng J, Dai Y, Zhang S L, Zou H, Gu B, Sun B, Wang Z L 2017 ACS Nano 11 9490Google Scholar

    [77]

    Xiong J, Cui P, Chen X, Wang J, Parida K, Lin M F, Lee P S 2018 Nat. Commun. 9 4280Google Scholar

    [78]

    Lai Y C, Deng J, Zhang S L, Niu S, Guo H, Wang Z L 2017 Adv. Funct. Mater. 27 1801114Google Scholar

    [79]

    Park J, Kim D, Choi A Y, Kim Y T 2018 APL Materials 6 101106Google Scholar

    [80]

    Yang P K, Lin L, Yi F, Li X, Pradel K C, Zi Y, Wu C I, He J H, Zhang Y, Wang Z L 2015 Adv. Mater. 27 3817Google Scholar

    [81]

    Qin Z, Yin Y, Zhang W, Li C, Pan K 2019 ACS Appl. Mater. Interfaces 11 12452Google Scholar

    [82]

    Wu F, Li C, Yin Y, Cao R, Li H, Zhang X, Zhao S, Wang J, Wang B, Xing Y, Du X 2019 Adv. Mater. Technol. 4 1800216Google Scholar

    [83]

    Peng X, Dong K, Ye C, Jiang Y, Zhai S, Cheng R, Liu D, Gao X, Wang J, Wang Z L 2020 Sci. Adv. 6 eaba9624Google Scholar

    [84]

    Pu X, Liu M M, Chen X Y, Sun J M, Du C H, Zhang Y, Zhai J Y, Hu W G, Wang Z L 2017 Sci. Adv. 3 UNSPe1700015Google Scholar

    [85]

    Shi J, Chen X, Li G, Sun N, Jiang H, Bao D, Xie L, Peng M, Liu Y, Wen Z, Sun X 2019 Nanoscale 11 7513Google Scholar

    [86]

    Lin Z, Wu Y, He Q, Sun C, Fan E, Zhou Z, Liu M, Wei W, Yang J 2019 Nanoscale 11 6802Google Scholar

    [87]

    Liu W, Wang Z, Wang G, Zeng Q, He W, Liu L, Wang X, Xi Y, Guo H, Hu C, Wang Z L 2020 Nat. Commun. 11 1883Google Scholar

  • 图 1  基于TENG的可穿戴能源收集系统示意图[40-48]

    Fig. 1.  Schematic diagram of wearable energy system based on triboelectric nanogenerator[40-48].

    图 2  TENG的四种基本工作模式和物理机理 (a) TENG的四种基本工作模式[49]; (b)固体与固体接触起电中的电子云势垒模型[20]; (c)固体与液体接触起电的电子云势垒模型[50]

    Fig. 2.  The four fundamental modes of the TENG and the mechanisms of contact electrification: (a) The four fundamental modes of the TENG[49]; the overlapped electron-cloud model proposed for explaining contact electrification (b) between solid and solid state[20], (c) between solid and liquid state[50].

    图 3  聚合物材料的分子结构对摩擦起电效果的影响机制 (a) 聚合物材料离子辐照和接触起电过程的示意图[60]; (b) 主链相同侧链不同的聚合物电子云模型示意图[61]

    Fig. 3.  Influence of molecular structure of polymer materials on triboelectrification: (a) Schematic diagram of ion irradiation and contact electrification of polymer materials[60]; (b) the main chain is same, the electron cloud range of different groups in the side chain[61].

    图 4  织物基间接式可穿戴能源器件研究进展 (a) 三维双面互锁的织物基TENG[43]; (b) 用于生物运动能量收集的直流纤维基TENG[65]; (c) 三维正交编织的TENG[66]

    Fig. 4.  Textile-based indirectly wearable TENG: (a) 3D double-faced interlock fabric TENG for bio-motion energy harvesting[43]; (b) direct current fabric TENG for biomotion energy harvesting[65]; (c) 3D orthogonal woven TENG[66].

    图 5  薄膜基的间接式可穿戴能源器件研究进展 (a) 超薄的单电极模式TENG[67]; (b) 可穿戴的TENG[68]; (c) 表面的透气TENG[69]; (d) 超薄的TENG[70]

    Fig. 5.  Thin film-based indirectly wearable TENG: (a) An ultrathin flexible single-electrode TENG[67]; (b) wearable triboelectric generator[68]; (c) gas-permeable on-skin TENG[69]; (d) TENG with ultrathin thickness[70].

    图 6  弹性体结构的间接式可穿戴能源器件研究进展 (a) 可拉伸的防水TENG[45]; (b) 自充电能量包[71]; (c) 可水下使用的TENG[72]; (d) 全弹性结构的TENG[73]

    Fig. 6.  Elastomer-based indirectly wearable TENG: (a) Stretchable and waterproof TENG [45]; (b) self-charging power package[71]; (c) a bionic stretchable nanogenerator[72]; (d) fully elastic TENG[73].

    图 7  其他材料组成的间接式可穿戴能源器件研究进展 (a) 可穿戴的袋式TENG[74]; (b) 纺织于衣物或安装在鞋底的TENG [75]; (c) TENG供电的自驱动系统[47]

    Fig. 7.  Wearable TENG with special structure: (a) Wearable pouch-type TENG[74]; (b) TENG weaved into a coat and assembled under shoes[75]; (c) TENG enabled body sensor network[47].

    图 8  织物基直接式可穿戴能源器件研究进展 (a)一种高度可拉伸、可水洗的全纱TENG[76]; (b)具有黑磷包覆结构的TENG[77]; (c)单根纤维组成的TENG[78]; (d)单股纤维纺织的柔性摩擦电纳米发电机[79]

    Fig. 8.  Textile-based directly wearable TENG: (a) A highly stretchable and washable all-yarn based self-charging knitting power textile[76]; (b) skin-touch-actuated textile-based triboelectric nanogenerator[77]; (c) single-thread-based TENG[78]; (d) flexible single-strand fiber-based woven structured triboelectric nanogenerator[79].

    图 9  基于薄膜的直接式可穿戴能源器件研究进展 (a) 柔性可拉伸的TENG[80]; (b) 基于纳米纤维膜的TENG[81]; (c) 柔韧、轻巧的TENG[82]; (d)具有抗菌特性的TENG[83]

    Fig. 9.  Thin film-based directly wearable TENG: (a) Flexible and stretchable TENG[80]; (b) crumpled nanofibrous membranes based TENG[81]; (c) a flexible, lightweight TENG[82]; (d) a breathable and antibacterial TENG[83].

    图 10  基于弹性体的直接式可穿戴能源器件研究进展 (a) 可拉伸的透明TENG[84]; (b) 电鳗皮肤仿生的TENG[44]; (c) 基于导电高分子电极的TENG[85]

    Fig. 10.  Elastomer-based directly wearable TENG: (a) Ultrastretchable, transparent TENG[84]; (b) electric eel-skin-inspired TENG[44]; (c) a liquid PEDOT:PSS electrode-based stretchable TENG[85].

    图 11  其他材料组成的直接式可穿戴能源器件研究进展 (a) 导电液体作为电极的摩擦纳米发电机[48]; (b) 密封腔结构的摩擦纳米发电机[86]

    Fig. 11.  Directly wearable TENG with special structure: (a) A highly shape-adaptive TENG based on conductive liquid[48]; (b) an airtight-cavity-structural triboelectric nanogenerator[86].

    图 12  电路管理系统研究进展 (a) 自驱动系统结构示意图; (b) 高效存储TENG产生的能量[41]; (c) 一个通用的自充电系统[40]; (d)通用的能量管理策略[12]; (e)基于分形设计的开关电容换能器[87]

    Fig. 12.  Advances in power management circuits: (a) Self-charging power systems; (b) effective energy storage from a triboelectric nanogenerator[41]; (c) a universal self-charging system[40]; (d) universal power management strategy[12]; (e) switched-capacitor-convertors for output power management[87].

    表 1  可穿戴能源器件输出特性对比

    Table 1.  The output performance of wearable electronics.

    分类主要材料尺寸/cm2开路电压VOC/C短路电流ISC/μA转移电荷量Q/nc峰值功率密度P/mW·m–2


    织物聚酯纤维、不锈钢[66]18.0451.8018.0263.36
    尼龙66[65]47.6450040.004470.0
    薄膜炭油、弹性体膜[70]9.01153.00
    聚丙烯、氧化铟锡、氟化乙烯丙烯共聚物[67]65.015060.00100.01320.00
    弹性体硅橡胶、炭黑、聚吡咯[45]26.61203.60239.4
    硅橡胶 银纳米线[71]28.0250160.0


    织物黑磷、纤维素油酰酯[77]49.088040.004000.05500.00
    硅橡胶 不锈钢 聚酯纤维[76]16.01503.0052.085.00
    聚乳酸、聚乙烯醇、银纳米线[83]16.0953.0030.0130.00
    聚偏氟乙烯-六氟丙烯、氧化石墨烯、弹性体[81]9.0801.6730.0500.00
    弹性体聚二甲基硅氧烷、离子水凝胶、VHB [84]12.01451.5047.035.00
    聚乙撑二氧噻吩掺杂聚
    (苯乙烯磺酸盐)/硅橡胶[85]
    18.026524.9085.014.00
    下载: 导出CSV
  • [1]

    Khalid S, Raouf I, Khan A, Kim N, Kim H S 2019 Int. J. Precis. Eng. Manuf. 6 821Google Scholar

    [2]

    Wang Z L 2019 Nano Energy 58 669Google Scholar

    [3]

    Wang Z L 2013 ACS Nano 7 9533Google Scholar

    [4]

    Zhu G, Peng B, Chen J, Jing Q, Lin Wang Z 2015 Nano Energy 14 126Google Scholar

    [5]

    Wu Z, Cheng T, Wang Z L 2020 Sensors 20 2925Google Scholar

    [6]

    Shi Q, He T, Lee C 2019 Nano Energy 57 851Google Scholar

    [7]

    Wang Z L 2008 Sci. Am. 298 82Google Scholar

    [8]

    李卫胜, 周健, 王瀚宸, 汪树贤, 于志浩, 黎松林, 施毅, 王欣然 2017 物理学报 66 218503

    Li W S, Zhou J, Wang H C, Wang S X, Yu Z H, Li S L, Shi Y, Wang X R 2017 Acta Phys. Sin. 66 218503

    [9]

    Wu X, Chen Y, Xing Z, Lam C W K, Pang S S, Zhang W, Ju Z 2019 Adv. Energy Mater. 9 1900343Google Scholar

    [10]

    Li S, Wu Q, Zhang D, Liu Z, He Y, Wang Z L, Sun C 2019 Nano Energy 56 555Google Scholar

    [11]

    Wang Z L 2017 Mater Today 20 34Google Scholar

    [12]

    Pu X, Hu W, Wang Z L 2018 Small 14 1702817Google Scholar

    [13]

    Luo J, Wang Z L 2019 Energy Storage Mater. 23 617Google Scholar

    [14]

    Huang T, Zhang J, Yu B, Yu H, Long H, Wang H, Zhang Q, Zhu M 2019 Nano Energy 58 375Google Scholar

    [15]

    Chen S, Jiang J, Xu F, Gong S 2019 Nano Energy 61 69Google Scholar

    [16]

    Liu Z, Li H, Shi B, Fan Y, Wang Z L, Li Z 2019 Adv. Funct. Mater. 29 1808820Google Scholar

    [17]

    Wang Z L, Chen J, Lin L 2015 Energy Environ. Sci. 8 2250Google Scholar

    [18]

    Nie J H, Chen X Y, Wang Z L 2019 Adv. Funct. Mater. 29 1806351Google Scholar

    [19]

    Fan F R, Tian Z Q, Wang Z L 2012 Nano Energy 1 328Google Scholar

    [20]

    Wang Z L 2020 Adv. Energy Mater. 10 2000137Google Scholar

    [21]

    Wang Z L, Wang A C 2019 Mater. Today 30 34Google Scholar

    [22]

    Lin S, Chen X, Wang Z L 2020 Nano Energy 76 105070Google Scholar

    [23]

    Nie J H, Wang Z M, Ren Z W, Li S Y, Chen X Y, Wang Z L 2019 Nat. Commun. 10 226410Google Scholar

    [24]

    Yang D, Kong X, Ni Y, Ren Z, Li S, Nie J, Chen X, Zhang L 2019 Nano Energy 66 104139Google Scholar

    [25]

    Ding Y, Shi Y, Nie J, Ren Z, Li S, Wang F, Tian J, Chen X, Wang Z L 2020 Chem. Eng. J. 388 124369Google Scholar

    [26]

    Lin Y, Nie J, Bai Y, Li S, Xu L, Wang F, Ding Y, Tian J, Li Y, Chen X, Shen H 2020 Nano Energy 73 104759Google Scholar

    [27]

    Wang F, Ren Z, Nie J, Tian J, Ding Y, Chen X 2019 Adv. Mater. Technol. 5 1900789Google Scholar

    [28]

    Hinchet R, Yoon H J, Ryu H, Kim M K, Choi E K, Kim D S, Kim S W 2019 Science 365 491Google Scholar

    [29]

    Lei R, Shi Y, Ding Y, Nie J, Li S, Wang F, Zhai H, Chen X, Wang Z L 2020 Energy Environ. Sci. (in press) DOI: 10.1039/d0ee01236j

    [30]

    Qian Y, Nie J, Ma X, Ren Z, Tian J, Chen J, Shen H, Chen X, Li Y 2019 Nano Energy 60 493Google Scholar

    [31]

    Ma X, Li S Y, Dong S J, Nie J H, Iwamoto M, Lin S Q, Zheng L, Chen X Y 2019 Nano Energy 66 104090Google Scholar

    [32]

    吴晔盛, 刘启, 曹杰, 李凯, 程广贵, 张忠强, 丁建宁, 蒋诗宇 2019 物理学报 68 190201Google Scholar

    Wu Y S, Liu Q, Cao J, Li K, Cheng G G, Zhang Z Q, Ding J N, Jiang S Y 2019 Acta Phys. Sin. 68 190201Google Scholar

    [33]

    Dong K, Peng X, Wang Z L 2019 Adv. Mater. e1902549

    [34]

    Wu H, Huang Y, Xu F, Duan Y, Yin Z 2016 Adv. Mater. 28 9881Google Scholar

    [35]

    Song P, Yang G, Lang T, Yong K T 2019 J. Phys. D: Appl. Phys. 52 023002Google Scholar

    [36]

    Chen X, Jiang T, Yao Y, Xu L, Zhao Z, Wang Z L 2016 Adv. Funct. Mater. 26 4906Google Scholar

    [37]

    Ren Z, Nie J, Xu L, Jiang T, Chen B, Chen X, Wang Z L 2018 Adv. Funct. Mater. 28 1802989Google Scholar

    [38]

    Xiong J, Luo H, Gao D, Zhou X, Cui P, Thangavel G, Parida K, Lee P S 2019 Nano Energy 61 584Google Scholar

    [39]

    Chen J, Huang Y, Zhang N N, Zou H Y, Liu R Y, Tao C Y, Fan X, Wang Z L 2016 Nat. Energy 1 16138Google Scholar

    [40]

    Niu S, Wang X, Yi F, Zhou Y S, Wang Z L 2015 Nat. Commun. 6 8975Google Scholar

    [41]

    Zi Y, Wang J, Wang S, Li S, Wen Z, Guo H, Wang Z L 2016 Nat. Commun. 7 10987Google Scholar

    [42]

    Pu X, Liu M, Li L, Zhang C, Pang Y, Jiang C, Shao L, Hu W, Wang Z L 2016 Adv. Sci. 3 1500255Google Scholar

    [43]

    Chen C, Chen L, Wu Z, Guo H, Yu W, Du Z, Wang Z L 2020 Mater. Today 32 84Google Scholar

    [44]

    Lai Y C, Deng J, Niu S, Peng W, Wu C, Liu R, Wen Z, Wang Z L 2016 Adv. Mater. 28 10024Google Scholar

    [45]

    Yi F, Wang J, Wang X, Niu S, Li S, Liao Q, Xu Y, You Z, Zhang Y, Wang Z L 2016 ACS Nano 10 6519Google Scholar

    [46]

    Pu X, Li L, Liu M, Jiang C, Du C, Zhao Z, Hu W, Wang Z L 2016 Adv. Mater. 28 98Google Scholar

    [47]

    Lin Z, Chen J, Li X, Zhou Z, Meng K, Wei W, Yang J, Wang Z L 2017 ACS Nano 11 8830Google Scholar

    [48]

    Yi F, Wang X, Niu S, Li S, Yin Y, Dai K, Zhang G, Lin L, Wen Z, Guo H, Wang J, Yeh M H, Zi Y, Liao Q, You Z, Zhang Y, Wang Z L 2016 Sci. Adv. 2 e1501624Google Scholar

    [49]

    Wang Z L 2014 Faraday Discuss. 176 447Google Scholar

    [50]

    Nie J, Ren Z, Xu L, Lin S, Zhan F, Chen X, Wang Z L 2019 Adv. Mater. e1905696

    [51]

    Wang S, Lin L, Xie Y, Jing Q, Niu S, Wang Z L 2013 Nano Lett. 13 2226Google Scholar

    [52]

    Zhu G, Chen J, Zhang T, Jing Q, Wang Z L 2014 Nat. Commun. 5 3426Google Scholar

    [53]

    Zhu G, Zhou Y S, Bai P, Meng X S, Jing Q, Chen J, Wang Z L 2014 Adv. Mater. 26 3788Google Scholar

    [54]

    Xie Y, Wang S, Niu S, Lin L, Jing Q, Yang J, Wu Z, Wang Z L 2014 Adv. Mater. 26 6599Google Scholar

    [55]

    Zhang H, Yang Y, Zhong X, Su Y, Zhou Y, Hu C, Wang Z L 2014 ACS Nano 8 680Google Scholar

    [56]

    Zhang W, Wang P, Sun K, Wang C, Diao D 2019 Nano Energy 56 277Google Scholar

    [57]

    Wang S, Xie Y, Niu S, Lin L, Wang Z L 2014 Adv. Mater. 26 2818Google Scholar

    [58]

    Xu C, Wang A C, Zou H, Zhang B, Zhang C, Zi Y, Pan L, Wang P, Feng P, Lin Z, Wang Z L 2018 Adv. Mater. 30 e1803968Google Scholar

    [59]

    Xu C, Zhang B, Wang A C, Cai W, Zi Y, Feng P, Wang Z L 2018 Adv. Funct. Mater. 0 1903142Google Scholar

    [60]

    Li S, Fan Y, Chen H, Nie J, Liang Y, Tao X, Zhang J, Chen X, Fu E, Wang Z L 2020 Energy Environ. Sci. 13 896Google Scholar

    [61]

    Li S, Nie J, Shi Y, Tao X, Wang F, Tian J, Lin S, Chen X, Wang Z L 2020 Adv. Mater. e2001307

    [62]

    Jiang T, Chen X, Han C B, Tang W, Wang Z L 2015 Adv. Funct. Mater. 25 2928Google Scholar

    [63]

    Niu S, Wang S, Lin L, Liu Y, Zhou Y S, Hu Y, Wang Z L 2013 Energy Environ. Sci. 6 3576Google Scholar

    [64]

    Lin S, Xu L, Chi Wang A, Wang Z L 2020 Nat. Commun. 11 399Google Scholar

    [65]

    Chen C, Guo H, Chen L, Wang Y C, Pu X, Yu W, Wang F, Du Z, Wang Z L 2020 ACS Nano 14 4585Google Scholar

    [66]

    Dong K, Deng J, Zi Y, Wang Y C, Xu C, Zou H, Ding W, Dai Y, Gu B, Sun B, Wang Z L 2017 Adv. Mater. 29 1702648Google Scholar

    [67]

    Chen S W, Cao X, Wang N, Ma L, Zhu H R, Willander M, Jie Y, Wang Z L 2017 Adv. Energy Mater. 7 1601255Google Scholar

    [68]

    Cui N, Liu J, Gu L, Bai S, Chen X, Qin Y 2015 ACS Appl. Mater. Interfaces 7 18225Google Scholar

    [69]

    Du W, Nie J, Ren Z, Jiang T, Xu L, Dong S, Zheng L, Chen X, Li H 2018 Nano Energy 51 260Google Scholar

    [70]

    Chen X, Wu Y, Shao J, Jiang T, Yu A, Xu L, Wang Z L 2017 Small 13 1702929Google Scholar

    [71]

    Guo H, Yeh M H, Lai Y C, Zi Y, Wu C, Wen Z, Hu C, Wang Z L 2016 ACS Nano 10 10580Google Scholar

    [72]

    Zou Y, Tan P, Shi B, Ouyang H, Jiang D, Liu Z, Li H, Yu M, Wang C, Qu X, Zhao L, Fan Y, Wang Z L, Li Z 2019 Nat. Commun. 10 2695Google Scholar

    [73]

    Ren Z, Nie J, Shao J, Lai Q, Wang L, Chen J, Chen X, Wang Z L 2018 Adv. Funct. Mater. 28 1805277Google Scholar

    [74]

    Mule A R, Dudem B, Graham S A, Yu J S 2019 Adv. Funct. Mater. 29 1807779Google Scholar

    [75]

    Wang J, Li S, Yi F, Zi Y, Lin J, Wang X, Xu Y, Wang Z L 2016 Nat. Commun. 7 12744Google Scholar

    [76]

    Dong K, Wang Y C, Deng J, Dai Y, Zhang S L, Zou H, Gu B, Sun B, Wang Z L 2017 ACS Nano 11 9490Google Scholar

    [77]

    Xiong J, Cui P, Chen X, Wang J, Parida K, Lin M F, Lee P S 2018 Nat. Commun. 9 4280Google Scholar

    [78]

    Lai Y C, Deng J, Zhang S L, Niu S, Guo H, Wang Z L 2017 Adv. Funct. Mater. 27 1801114Google Scholar

    [79]

    Park J, Kim D, Choi A Y, Kim Y T 2018 APL Materials 6 101106Google Scholar

    [80]

    Yang P K, Lin L, Yi F, Li X, Pradel K C, Zi Y, Wu C I, He J H, Zhang Y, Wang Z L 2015 Adv. Mater. 27 3817Google Scholar

    [81]

    Qin Z, Yin Y, Zhang W, Li C, Pan K 2019 ACS Appl. Mater. Interfaces 11 12452Google Scholar

    [82]

    Wu F, Li C, Yin Y, Cao R, Li H, Zhang X, Zhao S, Wang J, Wang B, Xing Y, Du X 2019 Adv. Mater. Technol. 4 1800216Google Scholar

    [83]

    Peng X, Dong K, Ye C, Jiang Y, Zhai S, Cheng R, Liu D, Gao X, Wang J, Wang Z L 2020 Sci. Adv. 6 eaba9624Google Scholar

    [84]

    Pu X, Liu M M, Chen X Y, Sun J M, Du C H, Zhang Y, Zhai J Y, Hu W G, Wang Z L 2017 Sci. Adv. 3 UNSPe1700015Google Scholar

    [85]

    Shi J, Chen X, Li G, Sun N, Jiang H, Bao D, Xie L, Peng M, Liu Y, Wen Z, Sun X 2019 Nanoscale 11 7513Google Scholar

    [86]

    Lin Z, Wu Y, He Q, Sun C, Fan E, Zhou Z, Liu M, Wei W, Yang J 2019 Nanoscale 11 6802Google Scholar

    [87]

    Liu W, Wang Z, Wang G, Zeng Q, He W, Liu L, Wang X, Xi Y, Guo H, Hu C, Wang Z L 2020 Nat. Commun. 11 1883Google Scholar

  • [1] 邓浩程, 李祎, 田双双, 张晓星, 肖淞. 面向高性能摩擦纳米发电机的电介质材料. 物理学报, 2024, 73(7): 070702. doi: 10.7498/aps.73.20240150
    [2] 张嘉伟, 姚鸿博, 张远征, 蒋伟博, 吴永辉, 张亚菊, 敖天勇, 郑海务. 通过机器学习实现基于摩擦纳米发电机的自驱动智能传感及其应用. 物理学报, 2022, 71(7): 078702. doi: 10.7498/aps.71.20211632
    [3] 梁帅博, 袁涛, 邱扬, 张震, 妙亚宁, 韩竞峰, 刘秀童, 姚春丽. 钛酸钡介电调控提升纸基摩擦纳米发电机输出性能. 物理学报, 2022, 71(7): 077701. doi: 10.7498/aps.71.20212022
    [4] 王闯, 鲍容容, 潘曹峰. 基于纳米发电机的触觉传感在柔性可穿戴电子设备中的研究与应用. 物理学报, 2021, 70(10): 100705. doi: 10.7498/aps.70.20202157
    [5] 李胜优, 刘镓榕, 文豪, 刘向阳, 郭文熹. 蚕丝基可穿戴传感器的研究进展. 物理学报, 2020, 69(17): 178703. doi: 10.7498/aps.69.20200818
    [6] 申茂良, 张岩. 基于压电纳米发电机的柔性传感与能量存储器件. 物理学报, 2020, 69(17): 170701. doi: 10.7498/aps.69.20200784
    [7] 姚宽明, 姚靖仪, 海照, 李登峰, 解兆谦, 于欣格. 用于触觉感知的自供能可拉伸压电橡胶皮肤电子器件. 物理学报, 2020, 69(17): 178701. doi: 10.7498/aps.69.20200664
    [8] 曹杰, 顾伟光, 曲召奇, 仲艳, 程广贵, 张忠强. 基于变化静电场的非接触式摩擦纳米发电机设计与研究. 物理学报, 2020, 69(23): 230201. doi: 10.7498/aps.69.20201052
    [9] 吴晔盛, 刘启, 曹杰, 李凯, 程广贵, 张忠强, 丁建宁, 蒋诗宇. 收集振动能的摩擦纳米发电机设计与输出性能. 物理学报, 2019, 68(19): 190201. doi: 10.7498/aps.68.20190806
    [10] 王海峰, 李旺, 顾国彪, 沈俊, 滕启治. 风力发电机自循环蒸发内冷系统稳定性的研究. 物理学报, 2016, 65(3): 030501. doi: 10.7498/aps.65.030501
    [11] 程广贵, 张伟, 方俊, 蒋诗宇, 丁建宁, Noshir S. Pesika, 张忠强, 郭立强, 王莹. 基于织构表面的摩擦静电发电机制备及其输出性能研究. 物理学报, 2016, 65(6): 060201. doi: 10.7498/aps.65.060201
    [12] 滕启治, 谭欣, 武紫玉, 沈俊, 王海峰. 大型水轮发电机冷却方式综合评价方法的研究. 物理学报, 2015, 64(17): 178802. doi: 10.7498/aps.64.178802
    [13] 杨益飞, 骆敏舟, 邢绍邦, 韩晓新, 朱熀秋. 永磁同步发电机混沌运动分析及最优输出反馈H∞控制. 物理学报, 2015, 64(4): 040504. doi: 10.7498/aps.64.040504
    [14] 吴忠强, 杨阳, 徐纯华. 混沌状态下永磁同步发电机的故障诊断——LMI法研究. 物理学报, 2013, 62(15): 150507. doi: 10.7498/aps.62.150507
    [15] 余洋, 米增强, 刘兴杰. 双馈风力发电机混沌运动分析及滑模控制混沌同步. 物理学报, 2011, 60(7): 070509. doi: 10.7498/aps.60.070509
    [16] 吴淑花, 孙毅, 郝建红, 许海波. 耦合发电机系统的分岔和双参数特性. 物理学报, 2011, 60(1): 010507. doi: 10.7498/aps.60.010507
    [17] 王兴元, 武相军. 变形耦合发电机系统中的混沌控制. 物理学报, 2006, 55(10): 5083-5093. doi: 10.7498/aps.55.5083
    [18] 王兴元, 武相军. 耦合发电机系统的自适应控制与同步. 物理学报, 2006, 55(10): 5077-5082. doi: 10.7498/aps.55.5077
    [19] 金建中. 用固体绝缘材料代替高压气体来绝缘静电发电机的建议. 物理学报, 1956, 12(5): 487-489. doi: 10.7498/aps.12.487
    [20] 陈茂康. 一种脈流发电机之初记. 物理学报, 1933, 1(1): 87-90. doi: 10.7498/aps.1.87
计量
  • 文章访问数:  20903
  • PDF下载量:  704
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-07
  • 修回日期:  2020-07-09
  • 上网日期:  2020-09-02
  • 刊出日期:  2020-09-05

/

返回文章
返回