搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

新型电磁波隐身研究进展

陈天航 郑斌 钱超 陈红胜

引用本文:
Citation:

新型电磁波隐身研究进展

陈天航, 郑斌, 钱超, 陈红胜

Progress of novel electromagnetic cloaking research

Chen Tian-Hang, Zheng Bin, Qian Chao, Chen Hong-Sheng
PDF
HTML
导出引用
  • 随着科技的发展, 隐身逐步从一种简单、朴素的视觉欺骗手段, 走向一种精准化、系统化的现代技术体系. 通过设计合理的电磁参数, 新型电磁波隐身技术能够灵活地调控电磁波的传播与散射, 从而降低被隐身物体的可探测性. 新型隐身器件的电磁参数可以通过人工设计微纳结构的方法来实现, 也可以结合自然界中已存在的介质来制备. 本文在详细介绍新型电磁波隐身研究进展的基础上, 探讨了这一领域所面临的难点和挑战, 并对未来的发展做了展望.
    With the development of science and technology, the invisibility has gradually moved from a simple and plain visual deception trick to a precise and systematic modern technology system. By designing appropriate electromagnetic parameters, the novel electromagnetic wave cloaking technology is able to control the propagation and scattering of electromagnetic wave, thereby reducing the detectability of the cloaked object. The electromagnetic parameters of these novel cloaking devices can be realized by using the artificially designed nanostructures, or by combining the medium that already exists in nature. In this review, according to a detailed introduction of the research progress of novel electromagnetic wave cloaking, we discuss the difficulties and challenges in this field, and give an outlook on the future development.
      通信作者: 郑斌, zhengbin@zju.edu.cn ; 陈红胜, hansomchen@zju.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 61625502, 11961141010, 61975176)资助的课题
      Corresponding author: Zheng Bin, zhengbin@zju.edu.cn ; Chen Hong-Sheng, hansomchen@zju.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61625502, 11961141010, 61975176)
    [1]

    Deng L J, Han M G 2007 Appl. Phys. Lett. 91 023119Google Scholar

    [2]

    Sun X Y, Liu X, Shen X, Wu Y, Wang Z Y, Kim J K 2017 Compos. Part a-Appl S. 92 190Google Scholar

    [3]

    Panwar R, Puthucheri S, Singh D, Agarwala V 2015 IEEE T. Magn. 51 1Google Scholar

    [4]

    Falcone F, Lopetegi T, Laso M A, Baena J D, Bonache J, Beruete M, Marques R, Martin F, Sorolla M 2004 Phys. Rev. Lett. 93 197401Google Scholar

    [5]

    Peng L, Ran L, Chen H, Zhang H, Kong J A, Grzegorczyk T M 2007 Phys. Rev. Lett. 98 157403Google Scholar

    [6]

    Foteinopoulou S, Economou E N, Soukoulis C M 2003 Phys. Rev. Lett. 90 107402Google Scholar

    [7]

    Chen H, Ran L, Huangfu J, Zhang X, Chen K, Grzegorczyk T M, Au Kong J 2004 Phys. Rev. E 70 057605Google Scholar

    [8]

    Grbic A, Eleftheriades G V 2002 J. Appl. Phys. 92 5930Google Scholar

    [9]

    Lu J, Grzegorczyk T M, Zhang Y, Pacheco Jr J, Wu B I, Kong J A, Chen M 2003 Opt. Express 11 723Google Scholar

    [10]

    Chen H S, Chen M 2011 Mater. Today. 14 34Google Scholar

    [11]

    Luo C, Ibanescu M, Johnson S G, Joannopoulos J D 2003 Science 299 368Google Scholar

    [12]

    Kong J A, Wu B I, Zhang Y 2002 Appl. Phys. Lett. 80 2084Google Scholar

    [13]

    Chen X, Li C F 2004 Phys. Rev. E. Stat. Nonlin. Soft. Matter. Phys. 69 066617Google Scholar

    [14]

    Shen N H, Chen J, Wu Q Y, Lan T, Fan Y X, Wang H T 2006 Opt. Express 14 10574Google Scholar

    [15]

    Allen K W, Dykes D J P, Reid D R, Lee R T 2020 Prog. Electromagn. Res. 167 19

    [16]

    Cheng Y, Li W, Mao X 2019 Prog. Electromagn. Res. 165 35Google Scholar

    [17]

    Lin B-Q, Guo J, Wang Y, Wang Z, Huang B, Liu X 2018 Prog. Electromagn. Res. 161 125Google Scholar

    [18]

    Ramahi O M, Almoneef T S, AlShareef M, Boybay M S 2012 Appl. Phys. Lett. 101 173903Google Scholar

    [19]

    El Badawe M, Ramahi O M 2018 Prog. Electromagn. Res. 161 35Google Scholar

    [20]

    Landy N I, Sajuyigbe S, Mock J J, Smith D R, Padilla W J 2008 Phys. Rev. Lett. 100 207402Google Scholar

    [21]

    Tao H, Landy N I, Bingham C M, Zhang X, Averitt R D, Padilla W J 2008 Opt. Express 16 7181Google Scholar

    [22]

    Zou Y H, Jiang L Y, Wen S C, Shu W X, Qing Y J, Tang Z X, Luo H L, Fan D Y 2008 Appl. Phys. Lett. 93 261115Google Scholar

    [23]

    Wang B N, Koschny T, Soukoulis C M 2009 Phys. Rev. B 80 033108Google Scholar

    [24]

    Shen X P, Yang Y, Zang Y Z, Gu J Q, Han J G, Zhang W L, Cui T J 2012 Appl. Phys. Lett. 101 154102Google Scholar

    [25]

    Huang L, Chen H 2011 Prog. Electromagn. Res. 113 103Google Scholar

    [26]

    Cui Y, Fung K H, Xu J, Ma H, Jin Y, He S, Fang N X 2012 Nano. Lett. 12 1443Google Scholar

    [27]

    Ding F, Cui Y, Ge X, Jin Y, He S 2012 Appl. Phys. Lett. 100 103506Google Scholar

    [28]

    Xu H X, Wang G M, Qi M Q, Liang J G, Gong J Q, Xu Z M 2012 Phys. Rev. B 86 205104Google Scholar

    [29]

    Soric J C, Fleury R, Monti A, Toscano A, Bilotti F, Alu A 2014 IEEE T. Antenn. Propag. 62 4220Google Scholar

    [30]

    Li W, Wei J, Wang W, Hu D, Li Y, Guan J 2016 Mater. Des. 110 27Google Scholar

    [31]

    Mou J, Shen Z 2017 Sci. Rep. 7 6922Google Scholar

    [32]

    Jiang Z H, Yun S, Toor F, Werner D H, Mayer T S 2011 ACS Nano 5 4641Google Scholar

    [33]

    Moghimi M J, Lin G Y, Jiang H R 2018 Adv. Eng. Mater. 20 1800038Google Scholar

    [34]

    Xu H X, Ma S, Ling X, Zhang X K, Tang S, Cai T, Sun S, He Q, Zhou L 2018 ACS Photonics 5 1691Google Scholar

    [35]

    Xu H X, Zhang L, Kim Y, Wang G M, Zhang X K, Sun Y, Ling X, Liu H, Chen Z, Qiu C W 2018 Adv. Opt. Mater. 6 1800010Google Scholar

    [36]

    Inami M, Kawakami N, Tachi S 2003 Optical Camouflage Using Retro-reflective Projection Technology (Tokyo: 2nd IEEE/ACM International Symposium on Mixed and Augmented Reality) pp348, 349

    [37]

    Pendry J B, Schurig D, Smith D R 2006 Science 312 1780Google Scholar

    [38]

    Chen H, Wu B I, Zhang B, Kong J A 2007 Phys. Rev. Lett. 99 063903Google Scholar

    [39]

    Ye D, Lu L, Joannopoulos J D, Soljacic M, Ran L 2016 Proc. Natl. Acad. Sci. 113 2568Google Scholar

    [40]

    Hayran Z, Kurt H, Herrero R, Botey M, Staliunas K, Staliunas K 2018 ACS Photonics 5 2068Google Scholar

    [41]

    Alu A, Engheta N 2005 Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72 016623Google Scholar

    [42]

    Edwards B, Alu A, Silveirinha M G, Engheta N 2009 Phys. Rev. Lett. 103 153901Google Scholar

    [43]

    Xu S, Cheng X, Xi S, Zhang R, Moser H O, Shen Z, Xu Y, Huang Z, Zhang X, Yu F, Zhang B, Chen H 2012 Phys. Rev. Lett. 109 223903Google Scholar

    [44]

    Rainwater D, Kerkhoff A, Melin K, Soric J C, Moreno G, Alu A 2012 New J. Phys. 14 013054Google Scholar

    [45]

    Soric J C, Chen P Y, Kerkhoff A, Rainwater D, Melin K, Alu A 2013 New J. Phys. 15 033037Google Scholar

    [46]

    Yang T, Chen H, Luo X, Ma H 2008 Opt. Express 16 18545Google Scholar

    [47]

    Yang F, Mei Z L, Jiang W X, Cui T J 2015 J. Optics 17 105610Google Scholar

    [48]

    Chen T H, Yang F, Mei Z L 2015 Phys. Status. Solidi. A 212 1746Google Scholar

    [49]

    Gömöry F, Solovyov M, Šouc J, Navau C, Prat-Camps J, Sanchez A 2012 Science 335 1466Google Scholar

    [50]

    Mach-Batlle R, Parra A, Laut S, Del-Valle N, Navau C, Sanchez A 2018 Phys. Rev. Appl. 9 034007Google Scholar

    [51]

    Zhu J, Jiang W, Liu Y, Yin G, Yuan J, He S, Ma Y 2015 Nat. Commun. 6 8931Google Scholar

    [52]

    Jiang W, Ma Y G, Zhu J F, Yin G, Liu Y C, Yuan J, He S L 2017 Npg Asia Mater. 9 e341Google Scholar

    [53]

    Leonhardt U 2006 Science 312 1777Google Scholar

    [54]

    Leonhardt U 2006 New J. Phys. 8 118Google Scholar

    [55]

    Leonhardt U 2007 Nat. Photonics 1 207Google Scholar

    [56]

    Leonhardt U, Philbin T G (Wolf E Ed.) 2009 Progress in Optics (Elsevier) pp69–152

    [57]

    Teixeira F L, Chew W C 2012 J. Electromagnet. Wave. 13 665Google Scholar

    [58]

    Ward A J, Pendry J B 1996 J. Mod. Optic 43 773Google Scholar

    [59]

    Teixeira F L, Chew W C 1999 J. Math. Phys. 40 169Google Scholar

    [60]

    Cummer S A, Popa B I, Schurig D, Smith D R, Pendry J 2006 Phys. Rev. E. Stat. Nonlin. Soft. Matter. Phys. 74 036621Google Scholar

    [61]

    Schurig D, Mock J J, Justice B J, Cummer S A, Pendry J B, Starr A F, Smith D R 2006 Science 314 977Google Scholar

    [62]

    Cai W S, Chettiar U K, Kildishev A V, Shalaev V M 2007 Nat. Photonics. 1 224Google Scholar

    [63]

    Smolyaninov I I, Hung Y J, Davis C C 2008 Opt. Lett. 33 1342Google Scholar

    [64]

    Xi S, Chen H, Wu B I, Kong J A 2009 IEEE Microw. Wirel. Co. 19 131Google Scholar

    [65]

    Landy N, Smith D R 2013 Nat. Mater. 12 25Google Scholar

    [66]

    Luo Y, Zhang J, Chen H, Ran L, Wu B I, Kong J A 2009 IEEE T. Antenn. Propag. 57 3926Google Scholar

    [67]

    Sun F, Zhang Y, Evans J, He S 2019 Prog. Electromagn. Res. 165 107Google Scholar

    [68]

    Chen H, Zheng B 2012 Sci. Rep. 2 255Google Scholar

    [69]

    Howell J C, Howell J B, Choi J S 2014 Appl. Opt. 53 1958Google Scholar

    [70]

    Choi J S, Howell J C 2014 Opt. Express 22 29465Google Scholar

    [71]

    Chen H, Zheng B, Shen L, Wang H, Zhang X, Zheludev N I, Zhang B 2013 Nat. Commun. 4 2652Google Scholar

    [72]

    Shen L, Zheng B, Liu Z Z, Wang Z J, Lin S S, Dehdashti S, Li E P, Chen H S 2015 Adv. Opt. Mater. 3 1738Google Scholar

    [73]

    Zheng B, Zhu R, Jing L, Yang Y, Shen L, Wang H, Wang Z, Zhang X, Liu X, Li E, Chen H 2018 Adv. Sci. 5 1800056Google Scholar

    [74]

    Li J, Pendry J B 2008 Phys. Rev. Lett. 101 203901Google Scholar

    [75]

    Liu R, Ji C, Mock J J, Chin J Y, Cui T J, Smith D R 2009 Science 323 366Google Scholar

    [76]

    Valentine J, Li J, Zentgraf T, Bartal G, Zhang X 2009 Nat. Mater. 8 568Google Scholar

    [77]

    Lee J H, Blair J, Tamma V A, Wu Q, Rhee S J, Summers C J, Park W 2009 Opt. Express 17 12922Google Scholar

    [78]

    Gabrielli L H, Cardenas J, Poitras C B, Lipson M 2009 Nat. Photonics 3 461Google Scholar

    [79]

    Zhou F, Bao Y, Cao W, Stuart C T, Gu J, Zhang W, Sun C 2011 Sci. Rep. 1 78Google Scholar

    [80]

    Fischer J, Ergin T, Wegener M 2011 Opt. Lett. 36 2059Google Scholar

    [81]

    Gharghi M, Gladden C, Zentgraf T, Liu Y, Yin X, Valentine J, Zhang X 2011 Nano. Lett. 11 2825Google Scholar

    [82]

    Zhang B, Chan T, Wu B I 2010 Phys. Rev. Lett. 104 233903Google Scholar

    [83]

    Yu N, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F, Gaburro Z 2011 Science 334 333Google Scholar

    [84]

    Zhang J, Mei Z L, Zhang W R, Yang F, Cui T J 2013 Appl. Phys. Lett. 103 151115Google Scholar

    [85]

    Estakhri N M, Alu A 2014 IEEE. Antenn. Wirel. Pr. 13 1775Google Scholar

    [86]

    Ni X, Wong Z J, Mrejen M, Wang Y, Zhang X 2015 Science 349 1310Google Scholar

    [87]

    Orazbayev B, Estakhri N M, Beruete M, Alu A 2015 Phys. Rev. B 91 195444Google Scholar

    [88]

    Orazbayev B, Estakhri N M, Alu A, Beruete M 2017 Adv. Opt. Mater. 5 1600606Google Scholar

    [89]

    Cheng J, Jafar-Zanjani S, Mosallaei H 2016 Sci. Rep. 6 38440Google Scholar

    [90]

    Tao H, Yang Z Y, Wang Z K, Zhao M 2016 J. Opt. Soc. Am. B 33 2251Google Scholar

    [91]

    Yang Y, Wang H, Yu F, Xu Z, Chen H 2016 Sci. Rep. 6 20219Google Scholar

    [92]

    Yang Y, Jing L, Zheng B, Hao R, Yin W, Li E, Soukoulis C M, Chen H 2016 Adv. Mater. 28 6866Google Scholar

    [93]

    Wei M, Yang Q, Zhang X, Li Y, Gu J, Han J, Zhang W 2017 Opt. Express 25 15635Google Scholar

    [94]

    Wang C, Yang Y, Liu Q, Liang D, Zheng B, Chen H, Xu Z, Wang H 2018 Opt. Express 26 14123Google Scholar

    [95]

    Yang J N, Huang C, Wu X Y, Sun B, Luo X G 2018 Adv. Opt. Mater. 6 1800073Google Scholar

    [96]

    Ma H, Qu S B, Xu Z, Wang J F 2009 Appl. Phys. Lett. 94 103501Google Scholar

    [97]

    Lai Y, Chen H, Zhang Z Q, Chan C T 2009 Phys. Rev. Lett. 102 093901Google Scholar

    [98]

    Lai Y, Ng J, Chen H, Han D, Xiao J, Zhang Z Q, Chan C T 2009 Phys. Rev. Lett. 102 253902Google Scholar

    [99]

    Wu X, Lin Z, Chen H, Chan C T 2009 Appl. Opt. 48 G101Google Scholar

    [100]

    Zheng B, Madni H A, Hao R, Zhang X, Liu X, Li E, Chen H 2016 Light. Sci. Appl. 5 e16177Google Scholar

    [101]

    Madni H A, Zheng B, Yang Y, Wang H, Zhang X, Yin W, Li E, Chen H 2016 Sci. Rep. 6 36846Google Scholar

    [102]

    Madni H A, Hussain K, Jiang W X, Liu S, Aziz A, Iqbal S, Mahboob A, Cui T J 2018 Sci. Rep. 8 9641Google Scholar

    [103]

    Nelson P A, Elliott S J 1991 (Academic Press) pp290–293

    [104]

    Miller D A B 2006 Opt. Express 14 12457Google Scholar

    [105]

    Zhang B, Chen H, Wu B I, Kong J A 2008 Phys. Rev. Lett. 100 063904Google Scholar

    [106]

    Vasquez F G, Milton G W, Onofrei D 2009 Phys. Rev. Lett. 103 073901Google Scholar

    [107]

    Vasquez F G, Milton G W, Onofrei D 2009 Opt. Express 17 14800Google Scholar

    [108]

    Zheng H H, Xiao J J, Lai Y, Chan C T 2010 Phys. Rev. B 81 195116Google Scholar

    [109]

    Selvanayagam M, Eleftheriades G V 2012 IEEE Antenn. Wirel. Pr. 11 1226Google Scholar

    [110]

    Selvanayagam M, Eleftheriades G V 2013 Phys. Rev. X 3 041011Google Scholar

    [111]

    Ma Q, Mei Z L, Zhu S K, Jin T Y, Cui T J 2013 Phys. Rev. Lett. 111 173901Google Scholar

    [112]

    Nguyen D M, Xu H Y, Zhang Y M, Zhang B L 2015 Appl. Phys. Lett. 107 121901Google Scholar

    [113]

    Yang F, Mei Z L, Jin T Y, Cui T J 2012 Phys. Rev. Lett. 109 053902Google Scholar

    [114]

    Liu M, Mei Z L, Ma X, Cui T J 2012 Appl. Phys. Lett. 101 051905Google Scholar

    [115]

    Mei Z L, Liu Y S, Yang F, Cui T J 2012 Opt. Express 20 25758Google Scholar

    [116]

    Yang F, Mei Z L, Yang X Y, Jin T Y, Cui T J 2013 Adv. Funct. Mater. 23 4306Google Scholar

    [117]

    Jiang W X, Luo C Y, Ge S, Qiu C W, Cui T J 2015 Adv. Mater. 27 4628Google Scholar

    [118]

    Han T, Liu Y, Liu L, Qin J, Li Y, Bao J, Ni D, Qiu C W 2018 Sci. Rep. 8 12208Google Scholar

    [119]

    Chen T, Zheng B, Yang Y, Shen L, Wang Z, Gao F, Li E, Luo Y, Cui T J, Chen H 2019 Light. Sci. Appl. 8 30Google Scholar

    [120]

    Han T, Ye H, Luo Y, Yeo S P, Teng J, Zhang S, Qiu C W 2014 Adv. Mater. 26 3478Google Scholar

    [121]

    Fan C Z, Gao Y, Huang J P 2008 Appl. Phys. Lett. 92 251907Google Scholar

    [122]

    Chen T Y, Weng C N, Chen J S 2008 Appl. Phys. Lett. 93 114103Google Scholar

    [123]

    Narayana S, Sato Y 2012 Phys. Rev. Lett. 108 214303Google Scholar

    [124]

    Schittny R, Kadic M, Guenneau S, Wegener M 2013 Phys. Rev. Lett. 110 195901Google Scholar

    [125]

    Xu H, Shi X, Gao F, Sun H, Zhang B 2014 Phys. Rev. Lett. 112 054301Google Scholar

    [126]

    Ma Y, Liu Y, Raza M, Wang Y, He S 2014 Phys. Rev. Lett. 113 205501Google Scholar

    [127]

    Han T, Bai X, Gao D, Thong J T, Li B, Qiu C W 2014 Phys. Rev. Lett. 112 054302Google Scholar

    [128]

    Han T, Bai X, Thong J T, Li B, Qiu C W 2014 Adv. Mater. 26 1731Google Scholar

    [129]

    Li Y, Shen X, Wu Z, Huang J, Chen Y, Ni Y, Huang J 2015 Phys. Rev. Lett. 115 195503Google Scholar

    [130]

    Hou Q W, Zhao X P, Meng T, Liu C L 2016 Appl. Phys. Lett. 109 218Google Scholar

    [131]

    Li Y, Bai X, Yang T, Luo H, Qiu C W 2018 Nat. Commun. 9 273Google Scholar

    [132]

    Li Y, Zhu K J, Peng Y G, Li W, Yang T, Xu H X, Chen H, Zhu X F, Fan S, Qiu C W 2019 Nat. Mater. 18 48Google Scholar

    [133]

    Sun F, Liu Y, Yang Y, Chen Z, He S 2019 Opt. Express 27 33757Google Scholar

    [134]

    Song J, Huang S, Ma Y, Cheng Q, Hu R, Luo X 2020 Opt. Express 28 875Google Scholar

    [135]

    Teyssier J, Saenko S V, van der Marel D, Milinkovitch M C 2015 Nat. Commun. 6 6368Google Scholar

    [136]

    Shin D, Urzhumov Y, Jung Y, Kang G, Baek S, Choi M, Park H, Kim K, Smith D R 2012 Nat. Commun. 3 1213Google Scholar

    [137]

    Peng R G, Xiao Z Q, Zhao Q, Zhang F L, Meng Y G, Li B, Zhou J, Fan Y C, Zhang P, Shen N H, Koschny T, Soukoulis C M 2017 Phys. Rev. X 7 011033Google Scholar

    [138]

    Liu S, Xu H-X, Zhang H C, Cui T J 2014 Opt. Express 22 13403Google Scholar

    [139]

    Cui T J, Qi M Q, Wan X, Zhao J, Cheng Q 2014 Light. Sci. Appl. 3 e218Google Scholar

    [140]

    Huang C, Yang J, Wu X, Song J, Pu M, Wang C, Luo X 2017 ACS Photonics 5 1718Google Scholar

    [141]

    Zhao J, Yang X, Dai J Y, Cheng Q, Li X, Qi N H, Ke J C, Bai G D, Liu S, Jin S, Alu A, Cui T J 2019 Natl. Sci. Rev. 6 231Google Scholar

    [142]

    Qian C, Lin X, Lin X, Xu J, Sun Y, Li E, Zhang B, Chen H 2020 Light. Sci. Appl. 9 59Google Scholar

    [143]

    Qian C, Zheng B, Shen Y, Jing L, Li E, Shen L, Chen H 2020 Nat. Photonics 14 383Google Scholar

    [144]

    Zhang X G, Jiang W X, Jiang H L, Wang Q, Tian H W, Bai L, Luo Z J, Sun S, Luo Y, Qiu C-W, Cui T J 2020 Nat. Electro. 3 165Google Scholar

    [145]

    Li C, Meng X, Liu X, Li F, Fang G, Chen H, Chan C T 2010 Phys. Rev. Lett. 105 233906Google Scholar

    [146]

    Jiang W X, Cui T J 2011 Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 83 026601Google Scholar

    [147]

    Shoorian H R, Abrishamian M S 2013 J. Optics 15 055107Google Scholar

    [148]

    Ruan Z, Fan S 2010 Phys. Rev. Lett. 105 013901Google Scholar

    [149]

    Qian C, Lin X, Yang Y, Xiong X, Wang H, Li E, Kaminer I, Zhang B, Chen H 2019 Phys. Rev. Lett. 122 063901Google Scholar

    [150]

    Qian C, Lin X, Yang Y, Gao F, Shen Y, Lopez J, Kaminer I, Zhang B, Li E, Soljačić M, Chen H 2018 ACS Photonics 5 1506Google Scholar

    [151]

    Luo X D, Yang T, Gu Y W, Chen H Y, Ma H R 2009 Appl. Phys. Lett. 94 223513Google Scholar

  • 图 1  吸波或定向散射隐身, 美国空军F117A隐身战机的独特外观可以针对单基站雷达系统有效隐身

    Fig. 1.  Examples of absorbing or directional scattering cloaking methods: The unique appearance of U.S. Air Force F117A stealth fighter enables it to be effectively cloaked under the single-based station radar system

    图 2  吸收式隐身举例 (a)中红外波段吸收型表面遮罩[32], 若被隐身物体放置遮罩下方, 则反射波会被吸收而不会进入任何探测器; (b)红外隐身/幻觉对热成像图像的影响[33]

    Fig. 2.  Examples of absorption cloaking. (a) A mid-infrared absorption cloaking sheet[32]. Most of the reflected wave will be absorbed without entering any detector. (b) Effect of infrared cloaking/illusion on thermal images[33].

    图 3  “完美隐身”示意[37] (电磁波在通过所设计的各向异性隐身球体后, 仍然沿着原来的方向传播)

    Fig. 3.  “A perfect cloak”[37]. The electromagnetic wave still propagates in the original direction after passing through the designed anisotropic cloaking sphere.

    图 4  “自隐身材料”的工作原理及效果示意[39] (a)不同层数金属线谐振结构的等效电磁参数; (b) 自隐身结构在10 GHz斜入射平面波作用下的电场分布

    Fig. 4.  The working principle and effect of “self-cloaked material”[39]: (a) Effective parameters of the solid slab composed of closely arranged corrugated wires with different layer thickness; (b) steady-state electric field distribution under an oblique plane-wave incidence at 10 GHz upon such self-cloaked material.

    图 5  散射相消法的基本原理[41]

    Fig. 5.  Schematic of the scattering cancellation cloaking method[41].

    图 6  基于变换光学的隐身衣实例[61]

    Fig. 6.  Photo of cloak based on transformation optics[61].

    图 7  利用均匀光学变换设计的一维方向隐身衣[64] (a)变换的原始虚空间, 红色场线代表某条光线; (b)变换后的实空间, 红色场线代表该条变换后的光线; (c)用周期性层状结构实现的该一维方向隐身衣示意图

    Fig. 7.  Invisibility cloak designed by homogeneous transformation optics[64]: (a) The original virtual space of the transform; the red line represents a selected ray; (b) real space after transformation; the red line represents the transformed ray; (c) layered system for modeling the one-directional cloak.

    图 8  利用均匀光学变换原理设计的由方解石所构成的TM波可见光隐身器件[68]

    Fig. 8.  A TM wave visible light invisibility cloak composed of calcite under natural light designed by homogeneous transformation optics[68].

    图 9  利用均匀光学变换原理, 舍弃相位一致性后制作的自然光大尺寸物体隐身器件示意图[71] (a), (b) 水中型自然光大尺寸物体隐身器件对一条鱼的隐身效果; (c), (d) 陆上型自然光大尺寸物体隐身器件对一只猫的隐身效果

    Fig. 9.  Schematics of a nature light cloak for large objects when the phase consistency is ignored[71]: (a), (b) Dynamic monitoring of a fish swimming through the aquatic ray cloak; (c), (d) experimental observation of a cat in the terrestrial ray cloak.

    图 10  地毯式隐身衣 (a)地毯式隐身衣的设计方法[74], 通过对虚空间的压缩, 右侧子图的蓝色区域被变换至左侧子图中的蓝色区域, 从而隐藏实空间中的绿色物体; (b)首次实验实现的地毯式隐身衣及工字型单元结构[75]

    Fig. 10.  Carpet invisibility cloak: (a) The design of carpet invisibility cloak[74], through the compression of virtual space, the blue region of right sub-figure is transformed to the blue region in the left sub-figure, thus concealing the green objects existing in the real space in figure (a); (b) experimentally realized carpet invisibility cloak and I-shaped unit structure by Liu et al[75].

    图 11  (a)地毯式隐身效果的原理图[84]; (b)可见光频段隐身衣[86]; (c)使用环形谐振器结构在太赫兹和毫米波频段上设计的隐身器件[88]; (d)使用闭口谐振环实现的全极化表面隐身衣[92]

    Fig. 11.  (a) A schematic of carpet cloak[84]; (b) schematic view of a visible spectrum invisibility cloak[86]; (c) cloaking devices designed at terahertz and millimeter wave frequencies by applying ring resonators to metasurfaces[88]; (d) a full-polarization carpet cloak by applying closed-loop resonators[92].

    图 12  (a) 基于“补偿介质”的隐身[97]; (b) 基于多重变换光学的远程非接触式隐身[100]

    Fig. 12.  (a) Cloaking by designing a “complementary media” [97]; (b) remote cloaking based on multi-folded transformation optics[100]

    图 13  有源隐身的实现 (a) 微波电磁场有源隐身衣[110]; (b) 稳恒电流场有源隐身衣[111]; (c) 热传导场有源隐身衣[112]

    Fig. 13.  Experimental realization of active cloaking: (a) Active invisibility cloak at microwave frequency[110]; (b) active direct current field invisibility cloak[111]; (c) active heat conduction field invisibility cloak[112].

    图 14  拟态隐身效果实例 (a)捷蛙的保护色使得其与草原环境融为一体; (b)身着吉利服士兵的散射波与草原背景的散射波大体一致, 很难被观察者发现

    Fig. 14.  Examples of imitation cloaking methods: (a) The protective color of a frog (Rana dalmatina) makes it difficult to be distinguished from the grasslands environment; (b) the scattering wave of soldiers in ghillie suit is almost the same as that of grasslands background, which is difficult to be spotted by enemy observers.

    图 15  可调隐身衣 (a)一维温控变换光学隐身衣[137]; (b) 基于可调超构表面设计的地毯式隐身/幻觉设备[140]; (c)针对时谐电磁波的数字可调超构表面, 可以用来人为制造多普勒相移, 即物体移动速度的光学幻觉[141]; (d)基于人工神经网络模型的自适应微波段隐身设备[143]

    Fig. 15.  Tunable invisibility cloak: (a) Temperature tunable one-dimensional transformation optics invisibility cloak[137]; (b) carpet cloaking/illusion device based on tunable metasurface[140]; (c) the time-domain digital-coding metasurface which is able to create the analogue of Doppler shift, or velocity illusion[141]; (d) deep learning-enabled self-adaptive microwave cloak[143].

  • [1]

    Deng L J, Han M G 2007 Appl. Phys. Lett. 91 023119Google Scholar

    [2]

    Sun X Y, Liu X, Shen X, Wu Y, Wang Z Y, Kim J K 2017 Compos. Part a-Appl S. 92 190Google Scholar

    [3]

    Panwar R, Puthucheri S, Singh D, Agarwala V 2015 IEEE T. Magn. 51 1Google Scholar

    [4]

    Falcone F, Lopetegi T, Laso M A, Baena J D, Bonache J, Beruete M, Marques R, Martin F, Sorolla M 2004 Phys. Rev. Lett. 93 197401Google Scholar

    [5]

    Peng L, Ran L, Chen H, Zhang H, Kong J A, Grzegorczyk T M 2007 Phys. Rev. Lett. 98 157403Google Scholar

    [6]

    Foteinopoulou S, Economou E N, Soukoulis C M 2003 Phys. Rev. Lett. 90 107402Google Scholar

    [7]

    Chen H, Ran L, Huangfu J, Zhang X, Chen K, Grzegorczyk T M, Au Kong J 2004 Phys. Rev. E 70 057605Google Scholar

    [8]

    Grbic A, Eleftheriades G V 2002 J. Appl. Phys. 92 5930Google Scholar

    [9]

    Lu J, Grzegorczyk T M, Zhang Y, Pacheco Jr J, Wu B I, Kong J A, Chen M 2003 Opt. Express 11 723Google Scholar

    [10]

    Chen H S, Chen M 2011 Mater. Today. 14 34Google Scholar

    [11]

    Luo C, Ibanescu M, Johnson S G, Joannopoulos J D 2003 Science 299 368Google Scholar

    [12]

    Kong J A, Wu B I, Zhang Y 2002 Appl. Phys. Lett. 80 2084Google Scholar

    [13]

    Chen X, Li C F 2004 Phys. Rev. E. Stat. Nonlin. Soft. Matter. Phys. 69 066617Google Scholar

    [14]

    Shen N H, Chen J, Wu Q Y, Lan T, Fan Y X, Wang H T 2006 Opt. Express 14 10574Google Scholar

    [15]

    Allen K W, Dykes D J P, Reid D R, Lee R T 2020 Prog. Electromagn. Res. 167 19

    [16]

    Cheng Y, Li W, Mao X 2019 Prog. Electromagn. Res. 165 35Google Scholar

    [17]

    Lin B-Q, Guo J, Wang Y, Wang Z, Huang B, Liu X 2018 Prog. Electromagn. Res. 161 125Google Scholar

    [18]

    Ramahi O M, Almoneef T S, AlShareef M, Boybay M S 2012 Appl. Phys. Lett. 101 173903Google Scholar

    [19]

    El Badawe M, Ramahi O M 2018 Prog. Electromagn. Res. 161 35Google Scholar

    [20]

    Landy N I, Sajuyigbe S, Mock J J, Smith D R, Padilla W J 2008 Phys. Rev. Lett. 100 207402Google Scholar

    [21]

    Tao H, Landy N I, Bingham C M, Zhang X, Averitt R D, Padilla W J 2008 Opt. Express 16 7181Google Scholar

    [22]

    Zou Y H, Jiang L Y, Wen S C, Shu W X, Qing Y J, Tang Z X, Luo H L, Fan D Y 2008 Appl. Phys. Lett. 93 261115Google Scholar

    [23]

    Wang B N, Koschny T, Soukoulis C M 2009 Phys. Rev. B 80 033108Google Scholar

    [24]

    Shen X P, Yang Y, Zang Y Z, Gu J Q, Han J G, Zhang W L, Cui T J 2012 Appl. Phys. Lett. 101 154102Google Scholar

    [25]

    Huang L, Chen H 2011 Prog. Electromagn. Res. 113 103Google Scholar

    [26]

    Cui Y, Fung K H, Xu J, Ma H, Jin Y, He S, Fang N X 2012 Nano. Lett. 12 1443Google Scholar

    [27]

    Ding F, Cui Y, Ge X, Jin Y, He S 2012 Appl. Phys. Lett. 100 103506Google Scholar

    [28]

    Xu H X, Wang G M, Qi M Q, Liang J G, Gong J Q, Xu Z M 2012 Phys. Rev. B 86 205104Google Scholar

    [29]

    Soric J C, Fleury R, Monti A, Toscano A, Bilotti F, Alu A 2014 IEEE T. Antenn. Propag. 62 4220Google Scholar

    [30]

    Li W, Wei J, Wang W, Hu D, Li Y, Guan J 2016 Mater. Des. 110 27Google Scholar

    [31]

    Mou J, Shen Z 2017 Sci. Rep. 7 6922Google Scholar

    [32]

    Jiang Z H, Yun S, Toor F, Werner D H, Mayer T S 2011 ACS Nano 5 4641Google Scholar

    [33]

    Moghimi M J, Lin G Y, Jiang H R 2018 Adv. Eng. Mater. 20 1800038Google Scholar

    [34]

    Xu H X, Ma S, Ling X, Zhang X K, Tang S, Cai T, Sun S, He Q, Zhou L 2018 ACS Photonics 5 1691Google Scholar

    [35]

    Xu H X, Zhang L, Kim Y, Wang G M, Zhang X K, Sun Y, Ling X, Liu H, Chen Z, Qiu C W 2018 Adv. Opt. Mater. 6 1800010Google Scholar

    [36]

    Inami M, Kawakami N, Tachi S 2003 Optical Camouflage Using Retro-reflective Projection Technology (Tokyo: 2nd IEEE/ACM International Symposium on Mixed and Augmented Reality) pp348, 349

    [37]

    Pendry J B, Schurig D, Smith D R 2006 Science 312 1780Google Scholar

    [38]

    Chen H, Wu B I, Zhang B, Kong J A 2007 Phys. Rev. Lett. 99 063903Google Scholar

    [39]

    Ye D, Lu L, Joannopoulos J D, Soljacic M, Ran L 2016 Proc. Natl. Acad. Sci. 113 2568Google Scholar

    [40]

    Hayran Z, Kurt H, Herrero R, Botey M, Staliunas K, Staliunas K 2018 ACS Photonics 5 2068Google Scholar

    [41]

    Alu A, Engheta N 2005 Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 72 016623Google Scholar

    [42]

    Edwards B, Alu A, Silveirinha M G, Engheta N 2009 Phys. Rev. Lett. 103 153901Google Scholar

    [43]

    Xu S, Cheng X, Xi S, Zhang R, Moser H O, Shen Z, Xu Y, Huang Z, Zhang X, Yu F, Zhang B, Chen H 2012 Phys. Rev. Lett. 109 223903Google Scholar

    [44]

    Rainwater D, Kerkhoff A, Melin K, Soric J C, Moreno G, Alu A 2012 New J. Phys. 14 013054Google Scholar

    [45]

    Soric J C, Chen P Y, Kerkhoff A, Rainwater D, Melin K, Alu A 2013 New J. Phys. 15 033037Google Scholar

    [46]

    Yang T, Chen H, Luo X, Ma H 2008 Opt. Express 16 18545Google Scholar

    [47]

    Yang F, Mei Z L, Jiang W X, Cui T J 2015 J. Optics 17 105610Google Scholar

    [48]

    Chen T H, Yang F, Mei Z L 2015 Phys. Status. Solidi. A 212 1746Google Scholar

    [49]

    Gömöry F, Solovyov M, Šouc J, Navau C, Prat-Camps J, Sanchez A 2012 Science 335 1466Google Scholar

    [50]

    Mach-Batlle R, Parra A, Laut S, Del-Valle N, Navau C, Sanchez A 2018 Phys. Rev. Appl. 9 034007Google Scholar

    [51]

    Zhu J, Jiang W, Liu Y, Yin G, Yuan J, He S, Ma Y 2015 Nat. Commun. 6 8931Google Scholar

    [52]

    Jiang W, Ma Y G, Zhu J F, Yin G, Liu Y C, Yuan J, He S L 2017 Npg Asia Mater. 9 e341Google Scholar

    [53]

    Leonhardt U 2006 Science 312 1777Google Scholar

    [54]

    Leonhardt U 2006 New J. Phys. 8 118Google Scholar

    [55]

    Leonhardt U 2007 Nat. Photonics 1 207Google Scholar

    [56]

    Leonhardt U, Philbin T G (Wolf E Ed.) 2009 Progress in Optics (Elsevier) pp69–152

    [57]

    Teixeira F L, Chew W C 2012 J. Electromagnet. Wave. 13 665Google Scholar

    [58]

    Ward A J, Pendry J B 1996 J. Mod. Optic 43 773Google Scholar

    [59]

    Teixeira F L, Chew W C 1999 J. Math. Phys. 40 169Google Scholar

    [60]

    Cummer S A, Popa B I, Schurig D, Smith D R, Pendry J 2006 Phys. Rev. E. Stat. Nonlin. Soft. Matter. Phys. 74 036621Google Scholar

    [61]

    Schurig D, Mock J J, Justice B J, Cummer S A, Pendry J B, Starr A F, Smith D R 2006 Science 314 977Google Scholar

    [62]

    Cai W S, Chettiar U K, Kildishev A V, Shalaev V M 2007 Nat. Photonics. 1 224Google Scholar

    [63]

    Smolyaninov I I, Hung Y J, Davis C C 2008 Opt. Lett. 33 1342Google Scholar

    [64]

    Xi S, Chen H, Wu B I, Kong J A 2009 IEEE Microw. Wirel. Co. 19 131Google Scholar

    [65]

    Landy N, Smith D R 2013 Nat. Mater. 12 25Google Scholar

    [66]

    Luo Y, Zhang J, Chen H, Ran L, Wu B I, Kong J A 2009 IEEE T. Antenn. Propag. 57 3926Google Scholar

    [67]

    Sun F, Zhang Y, Evans J, He S 2019 Prog. Electromagn. Res. 165 107Google Scholar

    [68]

    Chen H, Zheng B 2012 Sci. Rep. 2 255Google Scholar

    [69]

    Howell J C, Howell J B, Choi J S 2014 Appl. Opt. 53 1958Google Scholar

    [70]

    Choi J S, Howell J C 2014 Opt. Express 22 29465Google Scholar

    [71]

    Chen H, Zheng B, Shen L, Wang H, Zhang X, Zheludev N I, Zhang B 2013 Nat. Commun. 4 2652Google Scholar

    [72]

    Shen L, Zheng B, Liu Z Z, Wang Z J, Lin S S, Dehdashti S, Li E P, Chen H S 2015 Adv. Opt. Mater. 3 1738Google Scholar

    [73]

    Zheng B, Zhu R, Jing L, Yang Y, Shen L, Wang H, Wang Z, Zhang X, Liu X, Li E, Chen H 2018 Adv. Sci. 5 1800056Google Scholar

    [74]

    Li J, Pendry J B 2008 Phys. Rev. Lett. 101 203901Google Scholar

    [75]

    Liu R, Ji C, Mock J J, Chin J Y, Cui T J, Smith D R 2009 Science 323 366Google Scholar

    [76]

    Valentine J, Li J, Zentgraf T, Bartal G, Zhang X 2009 Nat. Mater. 8 568Google Scholar

    [77]

    Lee J H, Blair J, Tamma V A, Wu Q, Rhee S J, Summers C J, Park W 2009 Opt. Express 17 12922Google Scholar

    [78]

    Gabrielli L H, Cardenas J, Poitras C B, Lipson M 2009 Nat. Photonics 3 461Google Scholar

    [79]

    Zhou F, Bao Y, Cao W, Stuart C T, Gu J, Zhang W, Sun C 2011 Sci. Rep. 1 78Google Scholar

    [80]

    Fischer J, Ergin T, Wegener M 2011 Opt. Lett. 36 2059Google Scholar

    [81]

    Gharghi M, Gladden C, Zentgraf T, Liu Y, Yin X, Valentine J, Zhang X 2011 Nano. Lett. 11 2825Google Scholar

    [82]

    Zhang B, Chan T, Wu B I 2010 Phys. Rev. Lett. 104 233903Google Scholar

    [83]

    Yu N, Genevet P, Kats M A, Aieta F, Tetienne J P, Capasso F, Gaburro Z 2011 Science 334 333Google Scholar

    [84]

    Zhang J, Mei Z L, Zhang W R, Yang F, Cui T J 2013 Appl. Phys. Lett. 103 151115Google Scholar

    [85]

    Estakhri N M, Alu A 2014 IEEE. Antenn. Wirel. Pr. 13 1775Google Scholar

    [86]

    Ni X, Wong Z J, Mrejen M, Wang Y, Zhang X 2015 Science 349 1310Google Scholar

    [87]

    Orazbayev B, Estakhri N M, Beruete M, Alu A 2015 Phys. Rev. B 91 195444Google Scholar

    [88]

    Orazbayev B, Estakhri N M, Alu A, Beruete M 2017 Adv. Opt. Mater. 5 1600606Google Scholar

    [89]

    Cheng J, Jafar-Zanjani S, Mosallaei H 2016 Sci. Rep. 6 38440Google Scholar

    [90]

    Tao H, Yang Z Y, Wang Z K, Zhao M 2016 J. Opt. Soc. Am. B 33 2251Google Scholar

    [91]

    Yang Y, Wang H, Yu F, Xu Z, Chen H 2016 Sci. Rep. 6 20219Google Scholar

    [92]

    Yang Y, Jing L, Zheng B, Hao R, Yin W, Li E, Soukoulis C M, Chen H 2016 Adv. Mater. 28 6866Google Scholar

    [93]

    Wei M, Yang Q, Zhang X, Li Y, Gu J, Han J, Zhang W 2017 Opt. Express 25 15635Google Scholar

    [94]

    Wang C, Yang Y, Liu Q, Liang D, Zheng B, Chen H, Xu Z, Wang H 2018 Opt. Express 26 14123Google Scholar

    [95]

    Yang J N, Huang C, Wu X Y, Sun B, Luo X G 2018 Adv. Opt. Mater. 6 1800073Google Scholar

    [96]

    Ma H, Qu S B, Xu Z, Wang J F 2009 Appl. Phys. Lett. 94 103501Google Scholar

    [97]

    Lai Y, Chen H, Zhang Z Q, Chan C T 2009 Phys. Rev. Lett. 102 093901Google Scholar

    [98]

    Lai Y, Ng J, Chen H, Han D, Xiao J, Zhang Z Q, Chan C T 2009 Phys. Rev. Lett. 102 253902Google Scholar

    [99]

    Wu X, Lin Z, Chen H, Chan C T 2009 Appl. Opt. 48 G101Google Scholar

    [100]

    Zheng B, Madni H A, Hao R, Zhang X, Liu X, Li E, Chen H 2016 Light. Sci. Appl. 5 e16177Google Scholar

    [101]

    Madni H A, Zheng B, Yang Y, Wang H, Zhang X, Yin W, Li E, Chen H 2016 Sci. Rep. 6 36846Google Scholar

    [102]

    Madni H A, Hussain K, Jiang W X, Liu S, Aziz A, Iqbal S, Mahboob A, Cui T J 2018 Sci. Rep. 8 9641Google Scholar

    [103]

    Nelson P A, Elliott S J 1991 (Academic Press) pp290–293

    [104]

    Miller D A B 2006 Opt. Express 14 12457Google Scholar

    [105]

    Zhang B, Chen H, Wu B I, Kong J A 2008 Phys. Rev. Lett. 100 063904Google Scholar

    [106]

    Vasquez F G, Milton G W, Onofrei D 2009 Phys. Rev. Lett. 103 073901Google Scholar

    [107]

    Vasquez F G, Milton G W, Onofrei D 2009 Opt. Express 17 14800Google Scholar

    [108]

    Zheng H H, Xiao J J, Lai Y, Chan C T 2010 Phys. Rev. B 81 195116Google Scholar

    [109]

    Selvanayagam M, Eleftheriades G V 2012 IEEE Antenn. Wirel. Pr. 11 1226Google Scholar

    [110]

    Selvanayagam M, Eleftheriades G V 2013 Phys. Rev. X 3 041011Google Scholar

    [111]

    Ma Q, Mei Z L, Zhu S K, Jin T Y, Cui T J 2013 Phys. Rev. Lett. 111 173901Google Scholar

    [112]

    Nguyen D M, Xu H Y, Zhang Y M, Zhang B L 2015 Appl. Phys. Lett. 107 121901Google Scholar

    [113]

    Yang F, Mei Z L, Jin T Y, Cui T J 2012 Phys. Rev. Lett. 109 053902Google Scholar

    [114]

    Liu M, Mei Z L, Ma X, Cui T J 2012 Appl. Phys. Lett. 101 051905Google Scholar

    [115]

    Mei Z L, Liu Y S, Yang F, Cui T J 2012 Opt. Express 20 25758Google Scholar

    [116]

    Yang F, Mei Z L, Yang X Y, Jin T Y, Cui T J 2013 Adv. Funct. Mater. 23 4306Google Scholar

    [117]

    Jiang W X, Luo C Y, Ge S, Qiu C W, Cui T J 2015 Adv. Mater. 27 4628Google Scholar

    [118]

    Han T, Liu Y, Liu L, Qin J, Li Y, Bao J, Ni D, Qiu C W 2018 Sci. Rep. 8 12208Google Scholar

    [119]

    Chen T, Zheng B, Yang Y, Shen L, Wang Z, Gao F, Li E, Luo Y, Cui T J, Chen H 2019 Light. Sci. Appl. 8 30Google Scholar

    [120]

    Han T, Ye H, Luo Y, Yeo S P, Teng J, Zhang S, Qiu C W 2014 Adv. Mater. 26 3478Google Scholar

    [121]

    Fan C Z, Gao Y, Huang J P 2008 Appl. Phys. Lett. 92 251907Google Scholar

    [122]

    Chen T Y, Weng C N, Chen J S 2008 Appl. Phys. Lett. 93 114103Google Scholar

    [123]

    Narayana S, Sato Y 2012 Phys. Rev. Lett. 108 214303Google Scholar

    [124]

    Schittny R, Kadic M, Guenneau S, Wegener M 2013 Phys. Rev. Lett. 110 195901Google Scholar

    [125]

    Xu H, Shi X, Gao F, Sun H, Zhang B 2014 Phys. Rev. Lett. 112 054301Google Scholar

    [126]

    Ma Y, Liu Y, Raza M, Wang Y, He S 2014 Phys. Rev. Lett. 113 205501Google Scholar

    [127]

    Han T, Bai X, Gao D, Thong J T, Li B, Qiu C W 2014 Phys. Rev. Lett. 112 054302Google Scholar

    [128]

    Han T, Bai X, Thong J T, Li B, Qiu C W 2014 Adv. Mater. 26 1731Google Scholar

    [129]

    Li Y, Shen X, Wu Z, Huang J, Chen Y, Ni Y, Huang J 2015 Phys. Rev. Lett. 115 195503Google Scholar

    [130]

    Hou Q W, Zhao X P, Meng T, Liu C L 2016 Appl. Phys. Lett. 109 218Google Scholar

    [131]

    Li Y, Bai X, Yang T, Luo H, Qiu C W 2018 Nat. Commun. 9 273Google Scholar

    [132]

    Li Y, Zhu K J, Peng Y G, Li W, Yang T, Xu H X, Chen H, Zhu X F, Fan S, Qiu C W 2019 Nat. Mater. 18 48Google Scholar

    [133]

    Sun F, Liu Y, Yang Y, Chen Z, He S 2019 Opt. Express 27 33757Google Scholar

    [134]

    Song J, Huang S, Ma Y, Cheng Q, Hu R, Luo X 2020 Opt. Express 28 875Google Scholar

    [135]

    Teyssier J, Saenko S V, van der Marel D, Milinkovitch M C 2015 Nat. Commun. 6 6368Google Scholar

    [136]

    Shin D, Urzhumov Y, Jung Y, Kang G, Baek S, Choi M, Park H, Kim K, Smith D R 2012 Nat. Commun. 3 1213Google Scholar

    [137]

    Peng R G, Xiao Z Q, Zhao Q, Zhang F L, Meng Y G, Li B, Zhou J, Fan Y C, Zhang P, Shen N H, Koschny T, Soukoulis C M 2017 Phys. Rev. X 7 011033Google Scholar

    [138]

    Liu S, Xu H-X, Zhang H C, Cui T J 2014 Opt. Express 22 13403Google Scholar

    [139]

    Cui T J, Qi M Q, Wan X, Zhao J, Cheng Q 2014 Light. Sci. Appl. 3 e218Google Scholar

    [140]

    Huang C, Yang J, Wu X, Song J, Pu M, Wang C, Luo X 2017 ACS Photonics 5 1718Google Scholar

    [141]

    Zhao J, Yang X, Dai J Y, Cheng Q, Li X, Qi N H, Ke J C, Bai G D, Liu S, Jin S, Alu A, Cui T J 2019 Natl. Sci. Rev. 6 231Google Scholar

    [142]

    Qian C, Lin X, Lin X, Xu J, Sun Y, Li E, Zhang B, Chen H 2020 Light. Sci. Appl. 9 59Google Scholar

    [143]

    Qian C, Zheng B, Shen Y, Jing L, Li E, Shen L, Chen H 2020 Nat. Photonics 14 383Google Scholar

    [144]

    Zhang X G, Jiang W X, Jiang H L, Wang Q, Tian H W, Bai L, Luo Z J, Sun S, Luo Y, Qiu C-W, Cui T J 2020 Nat. Electro. 3 165Google Scholar

    [145]

    Li C, Meng X, Liu X, Li F, Fang G, Chen H, Chan C T 2010 Phys. Rev. Lett. 105 233906Google Scholar

    [146]

    Jiang W X, Cui T J 2011 Phys. Rev. E Stat. Nonlin. Soft Matter Phys. 83 026601Google Scholar

    [147]

    Shoorian H R, Abrishamian M S 2013 J. Optics 15 055107Google Scholar

    [148]

    Ruan Z, Fan S 2010 Phys. Rev. Lett. 105 013901Google Scholar

    [149]

    Qian C, Lin X, Yang Y, Xiong X, Wang H, Li E, Kaminer I, Zhang B, Chen H 2019 Phys. Rev. Lett. 122 063901Google Scholar

    [150]

    Qian C, Lin X, Yang Y, Gao F, Shen Y, Lopez J, Kaminer I, Zhang B, Li E, Soljačić M, Chen H 2018 ACS Photonics 5 1506Google Scholar

    [151]

    Luo X D, Yang T, Gu Y W, Chen H Y, Ma H R 2009 Appl. Phys. Lett. 94 223513Google Scholar

  • [1] 袁金健, 顾民, 黄润生. 运动界面的电磁波相位匹配. 物理学报, 2024, 73(13): 134201. doi: 10.7498/aps.73.20240269
    [2] 王浩, 姚能智, 王斌, 王学生. 流动隐身衣的均匀化设计与减阻特性研究. 物理学报, 2022, 0(0): 0-0. doi: 10.7498/aps.71.20220346
    [3] 王浩, 姚能智, 王斌, 王学生. 流动隐身衣的均匀化设计与减阻特性. 物理学报, 2022, 71(13): 134703. doi: 10.7498/aps.70.20220346
    [4] 王伟豪, 崔志文. 柱状双层声电效应测井界面电磁波. 物理学报, 2019, 68(20): 204301. doi: 10.7498/aps.68.20190891
    [5] 权家琪, 圣宗强, 吴宏伟. 基于人工表面等离激元结构的全向隐身. 物理学报, 2019, 68(15): 154101. doi: 10.7498/aps.68.20190283
    [6] 杨瑞科, 李茜茜, 姚荣辉. 沙尘大气电磁波多重散射及衰减. 物理学报, 2016, 65(9): 094205. doi: 10.7498/aps.65.094205
    [7] 张向东, 陈虹, 王磊, 赵志高, 赵爱国. 圆柱形分层五模材料声学隐身衣的理论与数值分析. 物理学报, 2015, 64(13): 134303. doi: 10.7498/aps.64.134303
    [8] 罗孝阳, 刘道亚, 姚丽芳, 董建峰. 新型椭圆形互补隐身斗篷设计. 物理学报, 2014, 63(8): 084101. doi: 10.7498/aps.63.084101
    [9] 李粮生, 闫华, 侯兆国, 殷红成. 部分Bessel形电磁波. 物理学报, 2013, 62(3): 030301. doi: 10.7498/aps.62.030301
    [10] 高东宝, 曾新吾. 基于各向同性材料的层状椭圆柱形声隐身衣设计. 物理学报, 2012, 61(18): 184301. doi: 10.7498/aps.61.184301
    [11] 吴群, 张狂, 孟繁义, 李乐伟. 三维椭球隐身条件的严格推导及其隐身特性验证. 物理学报, 2010, 59(9): 6071-6077. doi: 10.7498/aps.59.6071
    [12] 黄朝军, 刘亚锋, 龙姝明, 孙彦清, 吴振森. 烟尘中电磁波传输特性的Monte Carlo模拟. 物理学报, 2009, 58(4): 2397-2404. doi: 10.7498/aps.58.2397
    [13] 葛广顶, 王秉中, 黄海燕, 郑罡. 时间反演电磁波超分辨率特性. 物理学报, 2009, 58(12): 8249-8253. doi: 10.7498/aps.58.8249
    [14] 吴群, 张狂, 孟繁义, 李乐伟. 正N边形柱的隐身条件的严格推导及其隐身特性验证. 物理学报, 2009, 58(3): 1619-1626. doi: 10.7498/aps.58.1619
    [15] 张拴勤, 石云龙, 黄长庚, 连长春. 隐身涂层的光谱反射特性设计. 物理学报, 2007, 56(9): 5508-5512. doi: 10.7498/aps.56.5508
    [16] 李运周, 史庆藩, 王 琪. 高频电磁波多次散射的数值求解. 物理学报, 2006, 55(3): 1119-1125. doi: 10.7498/aps.55.1119
    [17] 徐文兰, 张栓勤, 徐 怡. 可见光隐身涂料设计. 物理学报, 2004, 53(9): 3215-3219. doi: 10.7498/aps.53.3215
    [18] 朱永强, 王煜, 沈彬彬, 洪鑫锋, 梁子长. 粉碎电磁波的性质和应用. 物理学报, 2001, 50(5): 832-836. doi: 10.7498/aps.50.832
    [19] 夏蒙棼, 胡慧玲. 高频电磁波驱动等离子体电流. 物理学报, 1982, 31(2): 150-158. doi: 10.7498/aps.31.150
    [20] 顾福年. 电磁波在螺旋线上的传播. 物理学报, 1959, 15(12): 637-651. doi: 10.7498/aps.15.637
计量
  • 文章访问数:  20452
  • PDF下载量:  1086
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-26
  • 修回日期:  2020-07-10
  • 上网日期:  2020-07-20
  • 刊出日期:  2020-08-05

/

返回文章
返回