搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

NiFe2O4纳米粒子掺杂对单畴YBCO超导块材性能的影响

李国政 陈超

引用本文:
Citation:

NiFe2O4纳米粒子掺杂对单畴YBCO超导块材性能的影响

李国政, 陈超

Influence of NiFe2O4 nanoparticle doping on properties of single-domain YBCO bulk superconductors

Li Guo-Zheng, Chen Chao
PDF
HTML
导出引用
  • 采用一种新型的顶部籽晶熔渗生长(TSIG)工艺制备了铁酸镍(NiFe2O4, NFO)纳米粒子掺杂的YBCO超导块材, 并对其生长形貌、微观结构、超导性能进行了研究. 结果表明, 在低掺杂量下, YBCO单畴体的正常生长不会受NFO掺杂的影响, 但是在高掺杂水平下样品边缘开始出现明显的随机成核. 磁悬浮力性能测试结果表明, 随着NFO掺杂量的增加, 样品的最大磁悬浮力先增大后减小, 掺杂重量百分比为0.2%的样品表现出最大的磁悬浮力(33.93 N). 低温磁性测试结果表明, 随着NFO掺杂量的增加, 样品的Tc值逐渐降低, 而且超导转变宽度(ΔTc)也逐渐变宽. 最佳掺杂下(重量百分比为0.2%)样品的零场Jc值为8.68 × 104 A/cm2, 比未掺杂样品提高了31%. 电子探针微区分析(EPMA)结果表明, YBCO体系中掺杂的纳米NFO在热处理过程中发生了分解, 而溶解出的Ni和Fe离子最终以元素替代的方式存在于YBCO块材内, 这可以在超导基体中引入晶格畸变和弱超导区作为有效的磁通钉扎中心, 从而提高样品的超导性能.
    NiFe2O4 (NFO) nanoparticle doped YBCO bulk superconductors are fabricated by using a novel top-seed infiltration growth (TSIG) technique. The growth morphology, microstructure and superconducting properties are investigated. The results show that at low doping levels, the normal growth of YBCO single domain is not affected by the NFO doping, but at high doping levels, obvious random nucleation appears at the edge of the sample. The measurement of levitation force indicates that the maximum levitation force on the sample first increases and then decreases with the increase of the NFO doping amount, and the largest levitation force is obtained to be 33.93 N for the sample with a doping level of 0.2% (weight percent). Low-temperature magnetization measurement shows that the YBCO sample exhibits that Tc value decreases with NFO amount increasing, and the superconducting transition width (ΔTc) also broadens gradually. The sample with the optimal doping (0.2% weight percent) presents an enhanced zero-field Jc value of 8.68 × 104 A/cm2, which is 31% higher than the sample without dopant. In addition, a more obvious secondary peak of 4.37 × 104 A/cm2 at a field of 1 T is observed for the 0.2 wt.% NFO doped sample, which indicates the existence of enhanced δTc pinning in the bulk. The SEM measurement shows that two types of particles are trapped in the Y-123 matrix for YBCO sample doped with 0.2% weight percent NFO: one is the large particle with a size mainly ranging from 0.5 μm to 2.0 μm, and the other is small nano-inclusion mainly ranging from dozens of nanometers to about several hundreds of nanometers. Such a microstructure is very similar to the microstructure of the undoped sample we reported earlier. So whether the NFO nanoparticles exist in the microstructure cannot be judged just from the morphology of the nano-inclusions. The electron probe microarea analysis (EPMA) result shows that different concentration distributions of Ni and Fe elements are observed in the sample doped with 0.2% weight percent NFO, which indicates the separation of NFO nanoparticles in the heat treatment process, and the dissolved Ni and Fe ions finally exist in the form of element substitutions in the YBCO bulk. Such element substitutions can introduce local lattice distortions and weak-superconducting regions into the superconducting matrix, which can act as effective flux pinning centers, and hence improving the properties of the samples.
      通信作者: 李国政, ligz1984@126.com
    • 基金项目: 国家自然科学基金(批准号: 51872199)资助的课题.
      Corresponding author: Li Guo-Zheng, ligz1984@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 51872199)
    [1]

    Tomita M, Murakami M 2003 Nature 421 517Google Scholar

    [2]

    Yang W M, Li G Z, Ma J, Chao X X, Li J W 2010 IEEE Trans. Appl. Supercond. 20 2317Google Scholar

    [3]

    Kenfaui D, Sibeud P F, Louradour E, Chaud X, Noudem J G 2014 Adv. Funct. Mater. 24 3996Google Scholar

    [4]

    Namburi D K, Durrell J H, Jaroszynski J, Shi Y, Ainslie M, Huang K, Dennis, A R, Hellstrom E E, Cardwell D A 2018 Supercond. Sci. Technol. 31 125004Google Scholar

    [5]

    王妙, 杨万民, 张晓菊, 唐艳妮, 王高峰 2012 物理学报 61 196102Google Scholar

    Wang M, Yang W M, Zhang X J, Tang Y N, Wang G F 2012 Acta Phys. Sin. 61 196102Google Scholar

    [6]

    王妙, 杨万民, 杨芃焘, 王小梅, 张明, 胡成西 2016 物理学报 65 227401Google Scholar

    Wang M, Yang W M, Yang P T, Wang X M, Zhang M, Hu C X 2016 Acta Phys. Sin. 65 227401Google Scholar

    [7]

    Delamare, M P, Monot I, Wang J, Provost J, Desgardin G 1996 Supercond. Sci. Technol. 9 534Google Scholar

    [8]

    王妙, 杨万民, 马俊, 唐艳妮, 张晓菊, 王高峰 2012 中国科学: 物理学 力学 天文学 42 346Google Scholar

    Wang M, Yang W M, Ma J, Tang Y N, Zhang X J, Wang G F 2012 Sci. Sin.Phys. Mech. Astron. 42 346Google Scholar

    [9]

    Chen S Y, Chen I G, Wu M K 2005 Supercond. Sci. Technol. 18 916Google Scholar

    [10]

    Tsuzuki K, Hara S, Xu Y, Morita M, Teshima H, Yanagisawa O, Noudem J, Harnois C, Izumi M 2011 IEEE Trans. Appl. Supercond. 21 2714Google Scholar

    [11]

    Hara S, Zhou D, Li B, Izumi M 2013 IEEE Trans. Appl. Supercond. 23 7200804Google Scholar

    [12]

    郭莉萍, 杨万民, 郭玉霞, 陈丽平, 李强 2015 物理学报 64 077401Google Scholar

    Guo L P, Yang W M, Guo Y X, Chen L P, Li Q 2015 Acta Phys. Sin. 64 077401Google Scholar

    [13]

    张晓娟, 张玉凤, 彭里其, 周文礼, 徐燕, 周迪帆, 和泉充 2015 物理学报 64 247401Google Scholar

    Zhang X J, Zhang Y F, Peng L Q, Zhou W L, Xu Y, Zhou D F, Izumi M 2015 Acta Phys. Sin. 64 247401Google Scholar

    [14]

    Li G Z, Dong L, Deng X Y 2016 J. Am. Ceram. Soc. 99 388Google Scholar

    [15]

    Li G Z, Dong L, Deng X Y 2015 J. Am. Ceram. Soc. 98 2707Google Scholar

    [16]

    李国政, 杨万民 2011 物理学报 60 037401Google Scholar

    Li G Z, Yang W M 2011 Acta Phys. Sin. 60 037401Google Scholar

    [17]

    Chen S L, Yang W M, Li J W, Yuan X C, Ma J, Wang M 2014 Physica C 496 39Google Scholar

    [18]

    Shang M, Feng Q, Jiao Y L, Xiao L, Zheng M H, Yan Q Z, Ge C C 2010 Physica C 470 491Google Scholar

    [19]

    Chen Z, Xue R, Li T, Dai H, Zhang Z 2013 J Alloy. Compd. 553 53Google Scholar

    [20]

    Zhou Y X, Scruggs S, Salama K 2006 Supercond. Sci. Technol. 19 S556Google Scholar

    [21]

    Huhtinen H, Awana V P S, Gupta A, Kishan H, Laiho R, Narlikar A V 2007 Supercond. Sci. Technol. 20 S159Google Scholar

    [22]

    Chen D X, Goldfarb R B 1989 J. Appl. Phys. 66 2489Google Scholar

  • 图 1  前驱坯块的装配方式

    Fig. 1.  Configuration pattern of the precursor pellets.

    图 2  不同纳米NFO掺杂量下YBCO样品的表面形貌图

    Fig. 2.  Top surface morphology of the YBCO samples with different nano-NFO additions.

    图 3  不同纳米NFO掺杂量下YBCO样品的磁悬浮力曲线

    Fig. 3.  The levitation force of the YBCO samples with different nano-NFO additions.

    图 4  不同纳米NFO掺杂量下YBCO样品的超导转变温度曲线

    Fig. 4.  Superconducting transition temperature of the YBCO samples with different nano-NFO additions.

    图 5  掺杂重量比0.2%纳米NFO的YBCO样品的微观结构图

    Fig. 5.  Microstructure of the YBCO sample doped with weight percent of 0.2% nano-NFO.

    图 6  掺杂重量比0.2%纳米NFO的YBCO样品的微区成分分析

    Fig. 6.  Microarea composition analysis of the YBCO sample doped with weight percent of 0.2% nano-NFO.

    图 7  掺杂重量比为0%和0.2%纳米NFO的YBCO样品的Jc性能

    Fig. 7.  Jc property of the YBCO samples doped with weight percent of 0% and 0.2% nano-NFO.

  • [1]

    Tomita M, Murakami M 2003 Nature 421 517Google Scholar

    [2]

    Yang W M, Li G Z, Ma J, Chao X X, Li J W 2010 IEEE Trans. Appl. Supercond. 20 2317Google Scholar

    [3]

    Kenfaui D, Sibeud P F, Louradour E, Chaud X, Noudem J G 2014 Adv. Funct. Mater. 24 3996Google Scholar

    [4]

    Namburi D K, Durrell J H, Jaroszynski J, Shi Y, Ainslie M, Huang K, Dennis, A R, Hellstrom E E, Cardwell D A 2018 Supercond. Sci. Technol. 31 125004Google Scholar

    [5]

    王妙, 杨万民, 张晓菊, 唐艳妮, 王高峰 2012 物理学报 61 196102Google Scholar

    Wang M, Yang W M, Zhang X J, Tang Y N, Wang G F 2012 Acta Phys. Sin. 61 196102Google Scholar

    [6]

    王妙, 杨万民, 杨芃焘, 王小梅, 张明, 胡成西 2016 物理学报 65 227401Google Scholar

    Wang M, Yang W M, Yang P T, Wang X M, Zhang M, Hu C X 2016 Acta Phys. Sin. 65 227401Google Scholar

    [7]

    Delamare, M P, Monot I, Wang J, Provost J, Desgardin G 1996 Supercond. Sci. Technol. 9 534Google Scholar

    [8]

    王妙, 杨万民, 马俊, 唐艳妮, 张晓菊, 王高峰 2012 中国科学: 物理学 力学 天文学 42 346Google Scholar

    Wang M, Yang W M, Ma J, Tang Y N, Zhang X J, Wang G F 2012 Sci. Sin.Phys. Mech. Astron. 42 346Google Scholar

    [9]

    Chen S Y, Chen I G, Wu M K 2005 Supercond. Sci. Technol. 18 916Google Scholar

    [10]

    Tsuzuki K, Hara S, Xu Y, Morita M, Teshima H, Yanagisawa O, Noudem J, Harnois C, Izumi M 2011 IEEE Trans. Appl. Supercond. 21 2714Google Scholar

    [11]

    Hara S, Zhou D, Li B, Izumi M 2013 IEEE Trans. Appl. Supercond. 23 7200804Google Scholar

    [12]

    郭莉萍, 杨万民, 郭玉霞, 陈丽平, 李强 2015 物理学报 64 077401Google Scholar

    Guo L P, Yang W M, Guo Y X, Chen L P, Li Q 2015 Acta Phys. Sin. 64 077401Google Scholar

    [13]

    张晓娟, 张玉凤, 彭里其, 周文礼, 徐燕, 周迪帆, 和泉充 2015 物理学报 64 247401Google Scholar

    Zhang X J, Zhang Y F, Peng L Q, Zhou W L, Xu Y, Zhou D F, Izumi M 2015 Acta Phys. Sin. 64 247401Google Scholar

    [14]

    Li G Z, Dong L, Deng X Y 2016 J. Am. Ceram. Soc. 99 388Google Scholar

    [15]

    Li G Z, Dong L, Deng X Y 2015 J. Am. Ceram. Soc. 98 2707Google Scholar

    [16]

    李国政, 杨万民 2011 物理学报 60 037401Google Scholar

    Li G Z, Yang W M 2011 Acta Phys. Sin. 60 037401Google Scholar

    [17]

    Chen S L, Yang W M, Li J W, Yuan X C, Ma J, Wang M 2014 Physica C 496 39Google Scholar

    [18]

    Shang M, Feng Q, Jiao Y L, Xiao L, Zheng M H, Yan Q Z, Ge C C 2010 Physica C 470 491Google Scholar

    [19]

    Chen Z, Xue R, Li T, Dai H, Zhang Z 2013 J Alloy. Compd. 553 53Google Scholar

    [20]

    Zhou Y X, Scruggs S, Salama K 2006 Supercond. Sci. Technol. 19 S556Google Scholar

    [21]

    Huhtinen H, Awana V P S, Gupta A, Kishan H, Laiho R, Narlikar A V 2007 Supercond. Sci. Technol. 20 S159Google Scholar

    [22]

    Chen D X, Goldfarb R B 1989 J. Appl. Phys. 66 2489Google Scholar

  • [1] 刘怀远, 肖建飞, 吕昭征, 吕力, 屈凡明. Bi2O2Se纳米线的生长及其超导量子干涉器件. 物理学报, 2024, 73(4): 047803. doi: 10.7498/aps.73.20231600
    [2] 郗玲玲, 杨晓燕, 张天柱, 肖游, 尤立星, 李浩. 高综合性能超导纳米线单光子探测器. 物理学报, 2023, 72(11): 118501. doi: 10.7498/aps.72.20230326
    [3] 王妙, 杨万民, 王小梅, 昝雅婷, 陈森林, 张明, 胡成西. 二次单畴化制备GdBCO超导块材的方法及其性能. 物理学报, 2021, 70(15): 158101. doi: 10.7498/aps.70.20202141
    [4] 洪梓凡, 陈海峰, 贾一凡, 祁祺, 刘英英, 过立新, 刘祥泰, 陆芹, 李立珺, 王少青, 关云鹤, 胡启人. 引入籽晶层的物理溅射生长Ga2O3外延薄膜特性研究. 物理学报, 2020, 69(22): 228103. doi: 10.7498/aps.69.20200810
    [5] 王妙, 邬华春, 杨万民, 杨芃焘, 王小梅, 郝大鹏, 党文佳, 张明, 胡成西. BaO掺杂对单畴GdBCO超导块材性能的影响(二). 物理学报, 2017, 66(16): 167401. doi: 10.7498/aps.66.167401
    [6] 王妙, 杨万民, 杨芃焘, 王小梅, 张明, 胡成西. BaO掺杂对单畴GdBCO超导块材性能的影响. 物理学报, 2016, 65(22): 227401. doi: 10.7498/aps.65.227401
    [7] 张晓娟, 张玉凤, 彭里其, 周文礼, 徐燕, 周迪帆, 和泉充. 纳米微粒BaFe12O19掺杂对单畴超导块材GdBa2Cu3O7-δ性能的影响. 物理学报, 2015, 64(24): 247401. doi: 10.7498/aps.64.247401
    [8] 郭莉萍, 杨万民, 郭玉霞, 陈丽平, 李强. Ni2O3掺杂对新固相源顶部籽晶熔渗生长法制备单畴GdBCO超导块材超导性能的影响. 物理学报, 2015, 64(7): 077401. doi: 10.7498/aps.64.077401
    [9] 丁发柱, 古宏伟, 张腾, 王洪艳, 屈飞, 彭星煜, 周微微. 掺杂Y2O3和BaCeO3提高MOD-YBCO超导性能的研究. 物理学报, 2013, 62(13): 137401. doi: 10.7498/aps.62.137401
    [10] 王妙, 杨万民, 张晓菊, 唐艳妮, 王高峰. 不同粒径纳米Y2Ba4CuBiOy 相掺杂对TSIG法单畴YBCO超导块材性能的影响. 物理学报, 2012, 61(19): 196102. doi: 10.7498/aps.61.196102
    [11] 李国政, 杨万民. 用一种新的装配方式制备单畴GdBCO超导块材. 物理学报, 2011, 60(3): 037401. doi: 10.7498/aps.60.037401
    [12] 李国政, 杨万民. 单畴GdBCO超导块材制备方法的改进及超导特性研究. 物理学报, 2011, 60(4): 047401. doi: 10.7498/aps.60.047401
    [13] 李国政, 杨万民. 用顶部籽晶熔渗生长工艺由新成分液相源制备单畴GdBCO超导块材. 物理学报, 2010, 59(7): 5028-5034. doi: 10.7498/aps.59.5028
    [14] 刘锦宏, 张凌飞, 田庚方, 李济晨, 李发伸. 低温固相反应法制备的NiFe2O4纳米颗粒的结构与磁性. 物理学报, 2007, 56(10): 6050-6055. doi: 10.7498/aps.56.6050
    [15] 张现平, 马衍伟, 高召顺, 禹争光, K. Watanabe, 闻海虎. 纳米C和SiC掺杂对MgB2带材超导性能的影响. 物理学报, 2006, 55(9): 4873-4877. doi: 10.7498/aps.55.4873
    [16] 于冬亮, 都有为. NiFe2O4纳米线阵列的制备与磁性. 物理学报, 2005, 54(2): 930-934. doi: 10.7498/aps.54.930
    [17] 窦瑞芬, 贾金锋, 徐茂杰, 潘明虎, 何 珂, 张丽娟, 薛其坤. 单畴的单原子In纳米线阵列的制备与研究. 物理学报, 2004, 53(3): 871-876. doi: 10.7498/aps.53.871
    [18] 沙建军, 姚仲文, 郁金南, 郁 刚, 罗金汉, 闻海虎, 杨万里, 李世亮. Y2BaCuO5粒子掺杂的单畴熔融织构YBCO超导体工艺与性能研究. 物理学报, 2000, 49(7): 1356-1361. doi: 10.7498/aps.49.1356
    [19] 隋郁, 苏文辉, 郑凡磊, 许大鹏. NiFe2O4纳米固体的穆斯堡尔谱研究. 物理学报, 1997, 46(12): 2442-2453. doi: 10.7498/aps.46.2442
    [20] 梁敬魁, 解思深, 车广灿, 黄久齐, 张玉苓, 赵忠贤. Bi2Sr2CaCu2O8的晶体结构与超导性能. 物理学报, 1988, 37(12): 2038-2043. doi: 10.7498/aps.37.2038
计量
  • 文章访问数:  4026
  • PDF下载量:  50
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-07-13
  • 修回日期:  2020-08-03
  • 上网日期:  2020-11-30
  • 刊出日期:  2020-12-05

/

返回文章
返回