搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

强磁场在ZnCr2Se4中诱导的各向异性太赫兹共振吸收

张朋 刘政 戴建明 杨昭荣 苏付海

引用本文:
Citation:

强磁场在ZnCr2Se4中诱导的各向异性太赫兹共振吸收

张朋, 刘政, 戴建明, 杨昭荣, 苏付海

Anisotropic resonance absorptions induced by high magnetic field in ZnCr2Se4

Zhang Peng, Liu Zheng, Dai Jian-Ming, Yang Zhao-Rong, Su Fu-Hai
PDF
HTML
导出引用
  • 作为典型的具有螺旋磁结构的材料, ZnCr2Se4承载着诸如磁电耦合、磁致伸缩和负热膨胀等有趣特性, 并可能具备多种不同的量子基态. 本文利用太赫兹时域光谱技术研究了ZnCr2Se4在低温强磁场(T = 4—60 K, H = 0—10 T)下的自旋动力学行为. 当外加磁场高于4 T时, 可以观察到亚太赫兹频率范围的磁共振吸收, 并呈现出随磁场增加蓝移特征. 当磁场( H )方向垂直于太赫兹波矢( k )方向时, 仅观察到单个共振吸收, 且其磁场行为符合线性拉莫尔进动关系. 这种磁场依赖性对应传统的铁磁共振, 意味着螺旋自旋态在高磁场下演化为线性铁磁态. 然而, 在 Hk 同时平行于样品的$ \langle 111\rangle $晶向配置下, 当磁场强度高于7 T时, 其太赫兹共振明显劈裂为高频和低频两个吸收峰, 并且其高频吸收表现出非线性磁场依赖关系. 这种奈尔温度以下特有的各向异性太赫兹自旋动力学效应可能与最近发现的量子临界区域有关.
    As a typical helimagnet, ZnCr2Se4 possesses fascinating effects including magnetoelectric coupling, magnetostriction, negative thermal expansion, as well as possible diversity in quantum ground states. Here in this work, we investigate magnetic excitation arising from spiral spin structure in ZnCr2Se4 single crystal by using terahertz (THz) time domain spectroscopy (THz-TDS) under magnetic fields up to 10 T and at low temperatures. The magnetic resonance absorption is observed in a sub-THz region as the applied magnetic field is above 4 T, featuring the blue shift with magnetic field increasing. As the THz wave vector ( k ) is vertical to the external magnetic field (H), the single resonance frequency conforms well with the linear Larmor relation, corresponding to a spin structure transformation from helical to ferromagnetic state with magnetic field increasing in ZnCr2Se4. However, in the geometry in which both k and H are along the $ \langle 111\rangle $ direction of crystal, a well-defined resonance splitting emerges when H > 7 T. Especially, the high-frequency absorption shows pronouncedly nonlinear magnetic field dependence. It is suggested that such anisotropic spin dynamics below Néel temperature be linked with the field-driven quantum criticality unveiled in recent work.
      通信作者: 苏付海, fhsu@issp.ac.cn
    • 基金项目: 国家自然科学基金(批准号: 11774354, 51727806)和阜阳市应急科技攻关(批准号: FK20202829)资助的课题
      Corresponding author: Su Fu-Hai, fhsu@issp.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11774354, 51727806) and the Fuyang Key Emergency Science and Technology Project, China (Grant No. FK20202829)
    [1]

    Harris M J, Bramwell S T, McMorrow D F, Zeiske T, Godfrey K W 1988 Phys. Rev. Lett. 79 2554

    [2]

    Chen G, Balents L, Schnyder A P 2009 Phys. Rev. Lett. 102 096406Google Scholar

    [3]

    Gu C C, Zhao Z Y, Chen X L, Lee M, Choi E S, Han Y Y, Ling L S, Pi L, Zhang Y H, Chen G, Yang Z R, Zhou H D, Sun X F 2018 Phys. Rev. Lett. 120 147204Google Scholar

    [4]

    Rudolf T, Kant Ch, Mayr F, Hemberger J, Tsurkan V, Loidl A 2007 Phys. Rev. B 75 052410Google Scholar

    [5]

    Akimitsu J, Siratori K, Shirane G, Iizumi M, Watanabe T 1978 J. Phys. Soc. Jpn. 44 172Google Scholar

    [6]

    Hidaka M, Tokiwa N, Fujii M, Watanabe S, Akimitsu J 2003 Phys. Status Solidi B 236 9Google Scholar

    [7]

    Plumier R J 1966 J. Appl. Phys. 37 964Google Scholar

    [8]

    Tymoshenko Y V, Onykiienko Y A, Müller T, Thomale R, Rachel S, Cameron A S, Portnichenko P Y, Efremov D V, Tsurkan V, Abernathy D L, Ollivier J, Schneidewind A, Piovano A, Felea V, Loidl A, Inosov D S 2017 Phys. Rev. X 7 041049

    [9]

    Felea V, Yasin S, Gunther A, Deisenhofer J, Krug von Nidda H A, Zherlitsyn S, Tsurkan V, Lemmens P, Wosnitza J, Loidl A 2012 Phys. Rev. B 86 104420Google Scholar

    [10]

    Laurita N J, Deisenhofer J, Pan LiDong, Morris C M, Schmidt M, Johnsson M, Tsurkan V, Loidl A, Armitage N P 2015 Phys. Rev. Lett. 114 207201Google Scholar

    [11]

    Shuvaev A M, Travkin V D, Ivanov V Yu, Mukhin A A, Pimenov A 2010 Phys. Rev. Lett. 104 097202Google Scholar

    [12]

    金钻明, 阮舜逸, 李炬赓, 林贤, 任伟, 曹世勋, 马国宏, 姚建铨 2019 物理学报 68 167501Google Scholar

    Jin Z M, Yuan S Y, Li J G, Lin X, Ren W, Cao S X, Ma G H, Yao J S 2019 Acta Phys. Sin. 68 167501Google Scholar

    [13]

    van Mechelen J L M, van der Marel D, Crassee I, and Kolodiazhnyi T 2011 Phys. Rev. Lett. 106 217601Google Scholar

    [14]

    Kampfrath T, Sell A, Klatt G, Pashkin A, Mährlein S, Dekorsy T, Wolf M, Fiebig M, Leitenstorfer A, Huber R 2011 Nat. Photonics 5 31Google Scholar

    [15]

    Zhou R Z, Jin Z M, Li G F, Li G F, Ma G H, Cheng Z X, Wang X L, 2012 Appl. Phys. Lett. 100 061102Google Scholar

    [16]

    Liu X M, Xie T, Guo J J, Yang S M, Song Y, Xian Lin, S X Cao, Cheng Z X, Jin Z M, Wu A H, Ma G H, Yao J S 2018 Appl. Phys. Lett. 113 022401Google Scholar

    [17]

    Siratori K 1971 J. Phys. Soc. Jpn. 30 709Google Scholar

    [18]

    Zhang P, Su F H, Chen X L, Zhang S L, Mei H Y, Yang Z R, Dai J M, Pi L 2016 Appl. Phys. Express 9 10

    [19]

    Hemberger J, Krug von Nidda H A, Tsurkan V, Loidl A 2007 Phys. Rev. Lett. 98 147203Google Scholar

    [20]

    Murakawa H, Onose Y, Ohgushi K, Ishiwata S, Tokura Y 2008 J. Phys. Soc. Jpn. 77 043709Google Scholar

    [21]

    Guo J J, Cheng L, Zhuang R, Zhang W J, Lin X, Jin Z M, Cao S X, Sheng Z G, Ma G H 2020 J. Phys. Condens. Matter. 32 185401Google Scholar

    [22]

    Li X W, Bamba M, Yuan N, Zhang Q, ZhaoY G, Xiang M L, Xu K, Jin Z M, Wei R, Ma G H, Cao S X, Turchinovich D, Kono J 2018 Science 361 794Google Scholar

    [23]

    Lin X, Jiang J J, Jin Z M, Wang D Y, Tian Z, Han J G, Cheng Z X, Ma G H 2015 Appl. Phys. Lett. 106 092403Google Scholar

  • 图 1  (a) ZnCr2Se4晶体结构; (b) 外磁场下ZnCr2Se4磁结构演化; (c) 外磁场下太赫兹透射测量配置示意图, 太赫兹波矢(k)平行于外磁场(H)方向; (d) k垂直于H配置, 对于两种测量配置, 太赫兹电场分量始终保持p型偏振, 从而确保太赫兹磁场分量和应用的稳态外部磁场保持正交

    Fig. 1.  (a) ZnCr2Se4 crystal structure; (b) the evolution of magnetic structure of ZnCr2Se4 under external magnetic field; (c) configuration of THz transmission measurements under external magnetic field, the THz wave vector (k) is parallel with external magnetic field (H); (d) the k is vertical with H. In both cases, the THz electric field (ETHz) is set as p polarization, and therefore the magnetic field component of THz waveform (HTHz) is perpendicular with steady external magnetic field.

    图 2  (a) kH配置下, 不同外磁场下透过ZnCr2Se4单晶样品的THz时域波形图, 红色为不加样品时的时域信号, 幅度缩小5倍; (b) 这些时域波形图对应的快速傅里叶变换(FFT), 虚线为表征吸收位置变化的引导线

    Fig. 2.  (a) In the configuration of k//H, THz waveforms transmitted through ZnCr2Se4 single crystal measured under different magnetic fields at 4 K temperature. The red trace with the 0.2 scale factor is the reference waveform trough empty sample holder; (b) corresponding FFT amplitude spectra in frequency domain. The y axis is logarithmic scale. The dotted lines are guides for the eye.

    图 3  相对零磁场归一化的太赫兹透射谱 (a) 太赫兹波矢平行磁场配置; (b) 太赫兹波矢垂直磁场配置. 测量温度为4 K

    Fig. 3.  Normalized THz transmission spectra with respect to the spectrum without the application of external magnetic field: (a) THz wave vector is parallel with the external magnetic field; (b) THz wave vector is vertical with the external magnetic field. The measurement temperature is 4 K.

    图 4  不同磁场下在如下温度中太赫兹吸收光谱曲线 (a) 4 K; (b) 20 K; (c) 45 K; (d) 60 K

    Fig. 4.  The THz absorption spectra obtained under different external magnetic fields at temperatures: (a) 4 K; (b) 20 K; (c) 45 K; (d) 60 K.

    图 5  不同温度下共振频率随磁场的变化示意图 (a) 代表4 K温度下kHkH两种配置下测量结果, 红色实线表示根据关系式 $ \hslash \omega =g{\mu }_{\rm{B}}H$, 对kH配置测量数据的线性拟合, 灰色虚线代表对kH配置下的共振频率的线性外推; (b) kH配置下, 20, 45和60 K不同温度的测量结果, 红色实线代表根据关系式$ \hslash \omega =g{\mu }_{\rm{B}}H$, 对T = 45 K数据的拟合

    Fig. 5.  The frequencies at the maxima of the absorption spectra as a function of applied magnetic field at tempera-tures of 4 K (a), and 20, 45 and 60 K (b). In Fig.5 (a), the red solid line represents the fitting according to the equation $ \hslash \omega =g{\mu }_{\rm{B}}H$. The grey dash line denotes the linear extrapolation for the low-frequency absorption. In Fig. 5 (b), the red solid line is obtained from the fitting to the data taken at T = 45 K using the equation, $ \hslash \omega =g{\mu }_{\rm{B}}H$.

  • [1]

    Harris M J, Bramwell S T, McMorrow D F, Zeiske T, Godfrey K W 1988 Phys. Rev. Lett. 79 2554

    [2]

    Chen G, Balents L, Schnyder A P 2009 Phys. Rev. Lett. 102 096406Google Scholar

    [3]

    Gu C C, Zhao Z Y, Chen X L, Lee M, Choi E S, Han Y Y, Ling L S, Pi L, Zhang Y H, Chen G, Yang Z R, Zhou H D, Sun X F 2018 Phys. Rev. Lett. 120 147204Google Scholar

    [4]

    Rudolf T, Kant Ch, Mayr F, Hemberger J, Tsurkan V, Loidl A 2007 Phys. Rev. B 75 052410Google Scholar

    [5]

    Akimitsu J, Siratori K, Shirane G, Iizumi M, Watanabe T 1978 J. Phys. Soc. Jpn. 44 172Google Scholar

    [6]

    Hidaka M, Tokiwa N, Fujii M, Watanabe S, Akimitsu J 2003 Phys. Status Solidi B 236 9Google Scholar

    [7]

    Plumier R J 1966 J. Appl. Phys. 37 964Google Scholar

    [8]

    Tymoshenko Y V, Onykiienko Y A, Müller T, Thomale R, Rachel S, Cameron A S, Portnichenko P Y, Efremov D V, Tsurkan V, Abernathy D L, Ollivier J, Schneidewind A, Piovano A, Felea V, Loidl A, Inosov D S 2017 Phys. Rev. X 7 041049

    [9]

    Felea V, Yasin S, Gunther A, Deisenhofer J, Krug von Nidda H A, Zherlitsyn S, Tsurkan V, Lemmens P, Wosnitza J, Loidl A 2012 Phys. Rev. B 86 104420Google Scholar

    [10]

    Laurita N J, Deisenhofer J, Pan LiDong, Morris C M, Schmidt M, Johnsson M, Tsurkan V, Loidl A, Armitage N P 2015 Phys. Rev. Lett. 114 207201Google Scholar

    [11]

    Shuvaev A M, Travkin V D, Ivanov V Yu, Mukhin A A, Pimenov A 2010 Phys. Rev. Lett. 104 097202Google Scholar

    [12]

    金钻明, 阮舜逸, 李炬赓, 林贤, 任伟, 曹世勋, 马国宏, 姚建铨 2019 物理学报 68 167501Google Scholar

    Jin Z M, Yuan S Y, Li J G, Lin X, Ren W, Cao S X, Ma G H, Yao J S 2019 Acta Phys. Sin. 68 167501Google Scholar

    [13]

    van Mechelen J L M, van der Marel D, Crassee I, and Kolodiazhnyi T 2011 Phys. Rev. Lett. 106 217601Google Scholar

    [14]

    Kampfrath T, Sell A, Klatt G, Pashkin A, Mährlein S, Dekorsy T, Wolf M, Fiebig M, Leitenstorfer A, Huber R 2011 Nat. Photonics 5 31Google Scholar

    [15]

    Zhou R Z, Jin Z M, Li G F, Li G F, Ma G H, Cheng Z X, Wang X L, 2012 Appl. Phys. Lett. 100 061102Google Scholar

    [16]

    Liu X M, Xie T, Guo J J, Yang S M, Song Y, Xian Lin, S X Cao, Cheng Z X, Jin Z M, Wu A H, Ma G H, Yao J S 2018 Appl. Phys. Lett. 113 022401Google Scholar

    [17]

    Siratori K 1971 J. Phys. Soc. Jpn. 30 709Google Scholar

    [18]

    Zhang P, Su F H, Chen X L, Zhang S L, Mei H Y, Yang Z R, Dai J M, Pi L 2016 Appl. Phys. Express 9 10

    [19]

    Hemberger J, Krug von Nidda H A, Tsurkan V, Loidl A 2007 Phys. Rev. Lett. 98 147203Google Scholar

    [20]

    Murakawa H, Onose Y, Ohgushi K, Ishiwata S, Tokura Y 2008 J. Phys. Soc. Jpn. 77 043709Google Scholar

    [21]

    Guo J J, Cheng L, Zhuang R, Zhang W J, Lin X, Jin Z M, Cao S X, Sheng Z G, Ma G H 2020 J. Phys. Condens. Matter. 32 185401Google Scholar

    [22]

    Li X W, Bamba M, Yuan N, Zhang Q, ZhaoY G, Xiang M L, Xu K, Jin Z M, Wei R, Ma G H, Cao S X, Turchinovich D, Kono J 2018 Science 361 794Google Scholar

    [23]

    Lin X, Jiang J J, Jin Z M, Wang D Y, Tian Z, Han J G, Cheng Z X, Ma G H 2015 Appl. Phys. Lett. 106 092403Google Scholar

  • [1] 王宁, 黄峰, 陈盈, 朱国锋, 苏浩斌, 郭翠霞, 王向峰. 磁场诱导的TmFeO3单晶自旋重取向. 物理学报, 2024, 73(1): 017801. doi: 10.7498/aps.73.20231322
    [2] 汪静丽, 杨志雄, 董先超, 尹亮, 万洪丹, 陈鹤鸣, 钟凯. 基于VO2的太赫兹各向异性编码超表面. 物理学报, 2023, 72(12): 124204. doi: 10.7498/aps.72.20222171
    [3] 朱照照, 冯正, 蔡建旺. 基于IrMn/Fe/Pt交换偏置结构的无场自旋太赫兹源. 物理学报, 2022, 71(4): 048703. doi: 10.7498/aps.71.20211831
    [4] 刘紫玉, 亓丽梅, 道日娜, 戴林林, 武利勤. 基于VO2的波束可调太赫兹天线. 物理学报, 2022, 71(18): 188703. doi: 10.7498/aps.71.20220817
    [5] 段铜川, 闫韶健, 赵妍, 孙庭钰, 李阳梅, 朱智. 水的氢键网络动力学与其太赫兹频谱的关系. 物理学报, 2021, 70(24): 248702. doi: 10.7498/aps.70.20211731
    [6] 朱照照, 冯正, 蔡建旺. 基于IrMn/Fe/Pt交换偏置结构的无场自旋太赫兹源. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211831
    [7] 郭志超, 张桐耀, 张靖. 微米气室铯原子自旋噪声谱. 物理学报, 2020, 69(3): 037201. doi: 10.7498/aps.69.20191623
    [8] 苏玉伦, 尉正行, 程亮, 齐静波. 基于超快自旋-电荷转换的太赫兹辐射源. 物理学报, 2020, 69(20): 204202. doi: 10.7498/aps.69.20200715
    [9] 冯正, 王大承, 孙松, 谭为. 自旋太赫兹源:性能、调控及其应用. 物理学报, 2020, 69(20): 208705. doi: 10.7498/aps.69.20200757
    [10] 向天, 程亮, 齐静波. 拓扑绝缘体中的超快电荷自旋动力学. 物理学报, 2019, 68(22): 227202. doi: 10.7498/aps.68.20191433
    [11] 黄瑞, 李春, 金蔚, GeorgiosLefkidis, WolfgangHübner. 双磁性中心内嵌富勒烯Y2C2@C82-C2(1)中的超快自旋动力学行为. 物理学报, 2019, 68(2): 023101. doi: 10.7498/aps.68.20181887
    [12] 王长, 曹俊诚. 太赫兹场和倾斜磁场对超晶格电子动力学特性调控规律研究. 物理学报, 2015, 64(9): 090502. doi: 10.7498/aps.64.090502
    [13] 何斌, 丁丁, 屈世显, 王建国. 强磁场下He2++H(1s)的碰撞激发过程的态选择截面研究. 物理学报, 2013, 62(7): 073401. doi: 10.7498/aps.62.073401
    [14] 丁丁, 何斌, 屈世显, 王建国. 强磁场下He2++H(1s)的碰撞电离微分截面及电离机理研究. 物理学报, 2013, 62(3): 033401. doi: 10.7498/aps.62.033401
    [15] 曾思良, 倪飞飞, 何建锋, 邹士阳, 颜君. 强磁场中氢原子的能级结构. 物理学报, 2011, 60(4): 043201. doi: 10.7498/aps.60.043201
    [16] 门福殿, 王炳福, 何晓刚, 隗群梅. 强磁场中弱相互作用费米气体的热力学性质. 物理学报, 2011, 60(8): 080501. doi: 10.7498/aps.60.080501
    [17] 赵安昆, 任忠鸣, 任树洋, 操光辉, 任维丽. 强磁场对真空蒸镀制取Te薄膜的影响. 物理学报, 2009, 58(10): 7101-7107. doi: 10.7498/aps.58.7101
    [18] 李文平, 张雅鑫, 刘盛纲, 刘大刚. 特殊三反射镜太赫兹波段准光腔回旋管的动力学理论. 物理学报, 2008, 57(5): 2875-2881. doi: 10.7498/aps.57.2875
    [19] 禹争光, 马衍伟, 王栋樑, 张现平, 高召顺, K. Watanabe, 黄伟文. 高性能MgB2长线材制备及性能表征. 物理学报, 2007, 56(11): 6680-6684. doi: 10.7498/aps.56.6680
    [20] 王春江, 王 强, 王亚勤, 黄 剑, 赫冀成. 强磁场对Al-Si合金凝固组织中硅分布的影响. 物理学报, 2006, 55(2): 648-654. doi: 10.7498/aps.55.648
计量
  • 文章访问数:  8112
  • PDF下载量:  313
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-09-09
  • 修回日期:  2020-09-16
  • 上网日期:  2020-10-13
  • 刊出日期:  2020-10-20

/

返回文章
返回