搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

多层膜磁性微泡的非线性声振动特性

赵丽霞 王成会 莫润阳

引用本文:
Citation:

多层膜磁性微泡的非线性声振动特性

赵丽霞, 王成会, 莫润阳

Nonlinear acoustic characteristics of multilayer magnetic microbubbles

Zhao Li-Xia, Wang Cheng-Hui, Mo Run-Yang
PDF
HTML
导出引用
  • 超顺磁性氧化铁纳米粒子与造影剂微泡结合形成磁性微泡, 用于产生多模态造影剂, 以增强医学超声和磁共振成像. 将装载有纳米磁性颗粒的微泡包膜层看作由磁流体膜与磷脂膜组合而成的双层膜结构, 同时考虑磁性纳米颗粒体积分数α对膜密度及黏度的影响, 从气泡动力学基本理论出发, 构建多层膜结构磁性微泡非线性动力学方程. 数值分析了驱动声压和频率等声场参数、颗粒体积分数、膜层厚度以及表面张力等膜壳参数对微泡声动力学行为的影响. 结果表明, 当磁性颗粒体积分数较小且α ≤ 0.1时, 磁性微泡声响应特性与普通包膜微泡相似, 微泡的声频响应与其初始尺寸和驱动压有关; 当驱动声场频率f为磁性微泡共振频率f0的2倍(f = 2f0)时, 微泡振动失稳临界声压最低; 磁性颗粒的存在抑制了泡的膨胀和收缩但抑制效果非常有限; 磁性微泡外膜层材料的表面张力参数K及膜层厚度d也会影响微泡的振动, 当表面张力参数及膜厚取值分别为0.2—0.4 N/m及50—150 nm时, 可观察到气泡存在不稳定振动响应区.
    The combination of superparamagnetic iron oxide nanoparticles (SPIOs) with ultrasonic contrast agent (UCA) microbubble is called magnetic microbubble (MMB) and has been used to produce multimodal contrast agents to enhance medical ultrasound and magnetic resonance imaging. The nanoparticles are either covalently linked to the shell or physically entrapped into the shell. Considering the effect of the volume fraction of SPIOs on the shell density and viscosity, a nonlinear dynamic equation of magnetic microbubbles (MMBs) with multilayer membrane structure is constructed based on the basic theory of bubble dynamics. The influences of the driving sound pressure and frequency, particle volume fraction, shell thickness and surface tension on the acoustic-dynamics behavior of microbubbles are numerically analyzed. The results show that when the volume fraction of magnetic particles is small and α ≤ 0.1, the acoustic properties of magnetic microbubbles are similar to those of ordinary UCA microbubbles. The acoustic response of the microbubble depends on its initial size and driving pressure. The critical sound pressure of microbubble vibration instability is lowest when the driving sound field frequency is twice the magnetic microbubble resonance frequency f0 (f = 2f0). The presence of magnetic particles inhibits the bubbles from expanding and contracting, but the inhibition effect is very limited. The surface tension parameter K of the outer film material and thickness of the shell also affect the vibration of the microbubble. When K and film thickness are 0.2–0.4 N/m and 50–150 nm respectively, it is observed that the bubble has an unstable vibration response region.
      通信作者: 莫润阳, mmrryycn@snnu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 12074238, 11974232)资助的课题
      Corresponding author: Mo Run-Yang, mmrryycn@snnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 12074238, 11974232)
    [1]

    He W, Yang F, Wu Y H, Wen S, Chen P, Zhang Y, Gu N 2012 Mater. Lett. 68 64Google Scholar

    [2]

    Porter T R, Feinstein S B, Ten Cate F J, Van den Bosch A E 2020 Ultrasound Med. Biol. 46 1071Google Scholar

    [3]

    Stride E, Porter C, Prieto A G, Pankhurs Q 2009 Ultrasound Med. Biol. 35 861Google Scholar

    [4]

    Dimcevski G, Kotopoulis S, Bjnes T, Hoem D 2016 J. Controlled Release 243 172Google Scholar

    [5]

    Duan L, Yang F, Song L N, Fang K,Tian J L, Liang Y J, Li M X, Xu N, Chen Z D, Zhang Y, Gu N 2015 Soft Matter 11 5492Google Scholar

    [6]

    Cho E, Chung S K, Rhee K 2015 Ultrasonics 62 66Google Scholar

    [7]

    Hyun S M, Sejin S, Dong G Y, Tae W L, Jangwook L, Sangmin L, Ji Y Y, Jaeyoung L, Moon H H, Jae H P, Sun H K, Kuiwon C, Kinam P, Kwangmeyung K, Ick C K 2016 Biomaterials 108 57Google Scholar

    [8]

    Gao Y, Chan C U, Gu Q S, Lin X D, Zhang W C, David Yeo C L, Astrid M A, Manish A, Mark Chong S K, Shi P, Claus D O and Xu C J 2016 NPG. Asia Mater. 8 e260Google Scholar

    [9]

    Zhou T, Cai W B, Yang H L, Zhang H Z, Hao M H, Yuan L J, Liu J, Zhang L, Yang Y L, Liu X, Deng J L, Zhao P, Yang G D, Duan Y Y 2018 J. Controlled Release 276 113Google Scholar

    [10]

    Sciallero C, Grishenkov D, Kothapalli S V, Oddo L, Trucco A 2013 J. Acoust. Soc. Am. 134 3918Google Scholar

    [11]

    Gu Y Y, Chen C Y, Tu J, Guo X S, Wu H Y, Zhang D 2016 Ultrason. Sonochem. 29 309Google Scholar

    [12]

    Marlies O, Valeria G, Jeroen S, Benjamin D, Nico D J, Detlef L, Michel V 2010 Ultrasound Med. Biol. 36 2080Google Scholar

    [13]

    Mulvana H, Eckersley R J, Tang M X, Pankhurst Q, Stride E 2012 Ultrasound Med. Biol. 38 864Google Scholar

    [14]

    Behnia S, Mobadersani F, Yahyavi M, Rezavand A 2013 Nonlinear Dyn. 74 559Google Scholar

    [15]

    Hongray T, Ashok B, Balakrishnan J 2015 Pramana 84 517Google Scholar

    [16]

    Shi J, Yang D S, Shi S G, Hu B, Zhang H Y, Hu S Y 2016 Chin. Phys. B 25 024304Google Scholar

    [17]

    Church C C 1995 J. Acoust. Soc. Am. 97 1510Google Scholar

    [18]

    Beguin E, Bau L, Shrivastava S, Stride E 2019 ACS Appl. Mater. Interfaces 11 1829Google Scholar

    [19]

    Malvar S, Gontijo R G, Cunha F R 2018 J. Eng. Math. 108 143Google Scholar

    [20]

    莫润阳, 吴临燕, 詹思楠, 张引红 2015 物理学报 64 124301Google Scholar

    Mo R Y, Wu L Y, Zhan S N, Zhang Y H 2015 Acta Phys. Sin. 64 124301Google Scholar

    [21]

    Zhang D, Guo G P, Lu L, Yin L L, Tu J, Guo X S, Xu D, Wu J R 2014 Phys. Med. Biol. 59 6729Google Scholar

    [22]

    Hosseini S M, Ghasemi E, Fazlali A, Henneke E 2012 J. Nanopart. Res. 14 858Google Scholar

    [23]

    陈伟中 2014 声空化物理 (北京 科学出版社) 第415−417页

    Chen W Z 2014 Acoustic Cavitation Physics (Beijing: Science Press) pp415−417 (in Chinese)

    [24]

    Doinikov A, Dayton P A 2007 J. Acoust. Soc. Am. 121 3331Google Scholar

    [25]

    Sijl J, Dollet B, Overvelde M, Garbinet V, Rozendal T, De Jong N, Lohse De, Versluis M 2010 J. Acoust. Soc. Am. 128 3239Google Scholar

    [26]

    杨芳, 李熠鑫, 陈忠平, 顾宁 2009 科学通报 54 1181

    Yang F, Li Y X, Chen Z P, Gu N 2009 Chin. Sci. Bull. 54 1181

    [27]

    沈壮志, 林书玉 2011 物理学报 60 104302Google Scholar

    Shen Z Z, Lin S Y 2011 Acta Phys. Sin. 60 104302Google Scholar

  • 图 1  磁性微泡几何模型. 1-空气, 2-磁流体层, 3-磷脂薄层

    Fig. 1.  The geometric model of MMBs. 1-air, 2-magnetic fluid, 3-thin layer of phospholipid regardless of thickness.

    图 2  声压响应分岔图 (R20 = 5 μm) (a) f = f0/2; (b) f = f0; (c) f = 2f0

    Fig. 2.  Bifurcation diagram of an MMB with pressure amplitude for R20 =5 μm: (a) f = f0/2; (b) f = f0; (c) f = 2f0.

    图 3  基频激励时MMB频谱图 ((a)—(c))和庞加莱截面图((d)—(f)) (R20 = 5 μm) (a), (d) Pa = 100 kPa; (b), (e) Pa = 255 kPa; (c), (f) Pa = 350 kPa

    Fig. 3.  Spectra diagram and Poincaré cross-section of an MMB at f = f0 (R20 = 5 μm): (a), (d) Pa = 100 kPa; (b), (e) Pa =255 kPa; (c), (f) Pa = 350 kPa

    图 4  不同尺寸MMB频响曲线(Pa = 150 kPa) (a) R20 = 3 μm; (b) R20 = 4 μm; (c) R20 = 5 μm

    Fig. 4.  Bifurcation diagrams of an MMB with driving frequency as the control parameter at Pa = 150 kPa: (a) R20 = 3 μm; (b) R20 = 4 μm; (c) R20 = 5 μm.

    图 5  混沌态微泡振动相图 (Pa = 150 kPa, R20 = 5 μm) (a) f = 350 kHz; (b) f = 381 kHz; (c) f = 550 kHz

    Fig. 5.  MMB phase diagram in chaotic motion (Pa = 150 kPa, R20 = 5 μm): (a) f = 350 kHz; (b) f = 381 kHz; (c) f = 550 kHz.

    图 6  αR2/R20的影响

    Fig. 6.  R2/R20 responses to α.

    图 7  K值响应

    Fig. 7.  MMB responses to K.

    图 8  膜厚响应

    Fig. 8.  MMB responses to film thickness.

  • [1]

    He W, Yang F, Wu Y H, Wen S, Chen P, Zhang Y, Gu N 2012 Mater. Lett. 68 64Google Scholar

    [2]

    Porter T R, Feinstein S B, Ten Cate F J, Van den Bosch A E 2020 Ultrasound Med. Biol. 46 1071Google Scholar

    [3]

    Stride E, Porter C, Prieto A G, Pankhurs Q 2009 Ultrasound Med. Biol. 35 861Google Scholar

    [4]

    Dimcevski G, Kotopoulis S, Bjnes T, Hoem D 2016 J. Controlled Release 243 172Google Scholar

    [5]

    Duan L, Yang F, Song L N, Fang K,Tian J L, Liang Y J, Li M X, Xu N, Chen Z D, Zhang Y, Gu N 2015 Soft Matter 11 5492Google Scholar

    [6]

    Cho E, Chung S K, Rhee K 2015 Ultrasonics 62 66Google Scholar

    [7]

    Hyun S M, Sejin S, Dong G Y, Tae W L, Jangwook L, Sangmin L, Ji Y Y, Jaeyoung L, Moon H H, Jae H P, Sun H K, Kuiwon C, Kinam P, Kwangmeyung K, Ick C K 2016 Biomaterials 108 57Google Scholar

    [8]

    Gao Y, Chan C U, Gu Q S, Lin X D, Zhang W C, David Yeo C L, Astrid M A, Manish A, Mark Chong S K, Shi P, Claus D O and Xu C J 2016 NPG. Asia Mater. 8 e260Google Scholar

    [9]

    Zhou T, Cai W B, Yang H L, Zhang H Z, Hao M H, Yuan L J, Liu J, Zhang L, Yang Y L, Liu X, Deng J L, Zhao P, Yang G D, Duan Y Y 2018 J. Controlled Release 276 113Google Scholar

    [10]

    Sciallero C, Grishenkov D, Kothapalli S V, Oddo L, Trucco A 2013 J. Acoust. Soc. Am. 134 3918Google Scholar

    [11]

    Gu Y Y, Chen C Y, Tu J, Guo X S, Wu H Y, Zhang D 2016 Ultrason. Sonochem. 29 309Google Scholar

    [12]

    Marlies O, Valeria G, Jeroen S, Benjamin D, Nico D J, Detlef L, Michel V 2010 Ultrasound Med. Biol. 36 2080Google Scholar

    [13]

    Mulvana H, Eckersley R J, Tang M X, Pankhurst Q, Stride E 2012 Ultrasound Med. Biol. 38 864Google Scholar

    [14]

    Behnia S, Mobadersani F, Yahyavi M, Rezavand A 2013 Nonlinear Dyn. 74 559Google Scholar

    [15]

    Hongray T, Ashok B, Balakrishnan J 2015 Pramana 84 517Google Scholar

    [16]

    Shi J, Yang D S, Shi S G, Hu B, Zhang H Y, Hu S Y 2016 Chin. Phys. B 25 024304Google Scholar

    [17]

    Church C C 1995 J. Acoust. Soc. Am. 97 1510Google Scholar

    [18]

    Beguin E, Bau L, Shrivastava S, Stride E 2019 ACS Appl. Mater. Interfaces 11 1829Google Scholar

    [19]

    Malvar S, Gontijo R G, Cunha F R 2018 J. Eng. Math. 108 143Google Scholar

    [20]

    莫润阳, 吴临燕, 詹思楠, 张引红 2015 物理学报 64 124301Google Scholar

    Mo R Y, Wu L Y, Zhan S N, Zhang Y H 2015 Acta Phys. Sin. 64 124301Google Scholar

    [21]

    Zhang D, Guo G P, Lu L, Yin L L, Tu J, Guo X S, Xu D, Wu J R 2014 Phys. Med. Biol. 59 6729Google Scholar

    [22]

    Hosseini S M, Ghasemi E, Fazlali A, Henneke E 2012 J. Nanopart. Res. 14 858Google Scholar

    [23]

    陈伟中 2014 声空化物理 (北京 科学出版社) 第415−417页

    Chen W Z 2014 Acoustic Cavitation Physics (Beijing: Science Press) pp415−417 (in Chinese)

    [24]

    Doinikov A, Dayton P A 2007 J. Acoust. Soc. Am. 121 3331Google Scholar

    [25]

    Sijl J, Dollet B, Overvelde M, Garbinet V, Rozendal T, De Jong N, Lohse De, Versluis M 2010 J. Acoust. Soc. Am. 128 3239Google Scholar

    [26]

    杨芳, 李熠鑫, 陈忠平, 顾宁 2009 科学通报 54 1181

    Yang F, Li Y X, Chen Z P, Gu N 2009 Chin. Sci. Bull. 54 1181

    [27]

    沈壮志, 林书玉 2011 物理学报 60 104302Google Scholar

    Shen Z Z, Lin S Y 2011 Acta Phys. Sin. 60 104302Google Scholar

  • [1] 李松蔚, 谢勇. 基于功率谱的神经元放电早期预警信号. 物理学报, 2025, 74(1): 010501. doi: 10.7498/aps.74.20241471
    [2] 王成会, 程建春. 弹性微管内气泡的非线性受迫振动. 物理学报, 2013, 62(11): 114301. doi: 10.7498/aps.62.114301
    [3] 刘扬阳, 吕群波, 张文喜. 大气湍流畸变对空间目标清晰干涉成像仿真研究. 物理学报, 2012, 61(12): 124201. doi: 10.7498/aps.61.124201
    [4] 李锦, 刘大钊. 昼夜节律下心率变异性信号的熵信息和谱特征. 物理学报, 2012, 61(20): 208701. doi: 10.7498/aps.61.208701
    [5] 王成会, 程建春. 微管内气泡的受迫振动. 物理学报, 2012, 61(19): 194303. doi: 10.7498/aps.61.194303
    [6] 刘扬正, 林长圣, 李心朝. 新的具有光滑二次函数混沌系统的构建与实现. 物理学报, 2011, 60(6): 060507. doi: 10.7498/aps.60.060507
    [7] 冯朝文, 蔡理, 康强, 张立森. 一种新的三维自治混沌系统. 物理学报, 2011, 60(3): 030503. doi: 10.7498/aps.60.030503
    [8] 张良英, 金国祥, 曹力. 具有频率噪声的单模激光线性模型随机共振. 物理学报, 2011, 60(4): 044207. doi: 10.7498/aps.60.044207
    [9] 吴钦宽. 输电线非线性振动问题的同伦映射近似解. 物理学报, 2011, 60(6): 068802. doi: 10.7498/aps.60.068802
    [10] 王海民, 马建敏, 张文. 两个等径蛋白质气泡在Bingham流体中振动特性. 物理学报, 2010, 59(1): 401-410. doi: 10.7498/aps.59.401
    [11] 代显智, 文玉梅, 李平, 杨进, 江小芳. 采用磁电换能器的振动能量采集器. 物理学报, 2010, 59(3): 2137-2146. doi: 10.7498/aps.59.2137
    [12] 刘扬正, 姜长生. 关联可切换超混沌系统的构建与特性分析. 物理学报, 2009, 58(2): 771-778. doi: 10.7498/aps.58.771
    [13] 刘明华, 冯久超. 一个新的超混沌系统. 物理学报, 2009, 58(7): 4457-4462. doi: 10.7498/aps.58.4457
    [14] 徐彬, 吴振森, 吴健, 薛昆. 碰撞等离子体的非相干散射谱. 物理学报, 2009, 58(7): 5104-5110. doi: 10.7498/aps.58.5104
    [15] 李春彪, 王德纯. 一种恒Lyapunov指数谱混沌吸引子及其Jerk电路实现. 物理学报, 2009, 58(2): 764-770. doi: 10.7498/aps.58.764
    [16] 刘扬正, 姜长生, 李心朝, 孙 晗. 复杂超混沌Lü系统的电路实验. 物理学报, 2008, 57(11): 6808-6814. doi: 10.7498/aps.57.6808
    [17] 刘扬正, 姜长生, 林长圣, 孙 晗. 四维切换超混沌系统. 物理学报, 2007, 56(9): 5131-5135. doi: 10.7498/aps.56.5131
    [18] 宋艳丽. 简谐速度噪声及其与势场之间的频率共振. 物理学报, 2006, 55(12): 6482-6487. doi: 10.7498/aps.55.6482
    [19] 杜学能, 胡 林, 孔维姝, 王伟明, 吴 宇. 颗粒物质内部滑动摩擦力的非线性振动现象. 物理学报, 2006, 55(12): 6488-6493. doi: 10.7498/aps.55.6488
    [20] 袁常青, 赵同军, 王永宏, 展 永. 有限体系能量耗散运动的功率谱分析. 物理学报, 2005, 54(12): 5602-5608. doi: 10.7498/aps.54.5602
计量
  • 文章访问数:  5192
  • PDF下载量:  69
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-06-24
  • 修回日期:  2020-08-24
  • 上网日期:  2020-12-28
  • 刊出日期:  2021-01-05

/

返回文章
返回