搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

利用静电场中光电离效率谱精确确定1,3-二乙氧基苯分子的电离能

段春泱 李娜 赵岩 李昌勇

引用本文:
Citation:

利用静电场中光电离效率谱精确确定1,3-二乙氧基苯分子的电离能

段春泱, 李娜, 赵岩, 李昌勇

Accurate determination of ionization energy of 1, 3-diethoxybenzene via photoionization efficiency spectrum in electrostatic field

Duan Chun-Yang, Li Na, Zhao Yan, Li Chang-Yong
PDF
HTML
导出引用
  • 电离能是原子和分子的重要的特性参数, 在光物理和光化学过程中起着重要作用, 精确电离能对相关研究具有重要意义. 电离能是调试零动能光谱信号的重要参考数据, 在判断异构物数量和分子构型方面也起着关键作用. 1,3-二乙氧基苯是一种重要的苯的衍生物, 实验证实在超声分子束中包含两种旋转异构物I(down-up)和III(down-down). 它们的精确电离能还未见文献报道. 本文采用直线式飞行时间质谱仪测量了静电场中1,3-二乙氧基苯光电离效率曲线, 通过不同电场强度下测量的电离能(Stark效应)对场强的平方根线性拟合给出了两种异构物I和III精确的电离能分别为(62419 ± 2) cm–1和(63378 ± 2) cm–1. 相对于通常的脉冲电场加速机制和零动能光谱测量的电离能, 精确度大约分别由(± 10) cm–1和(± 5) cm–1提高到(± 2) cm–1. 分析和讨论了不同方法测量的物理机制和优缺点.
    Ionization energy (IE) is an important characteristic parameter of atoms or molecules. It plays an important role in the process of photophysics and photochemistry. The precise ionization energy is very important for relevant research. Especially, it is very useful for adjusting the signal of the zero-kinetic energy (ZEKE) spectrum, and it also plays a key role in judging the number of rotamers and molecular configuration. In linear time-of-flight mass spectrometers, pulsed electric fields are usually used to drive photo-ionized ions to the detector to produce the photoionization efficiency (PIE) spectrum. The ionization energy is directly obtained from the PIE curve. The uncertainty of the measured IE is usually greater than or equal to ± 10 cm–1. The ZEKE spectroscopy is based on the long-lived Rydberg state field ionization technology. In the ZEKE experiments, the laser excites molecules to the Rydberg state and then a pulsed field ionization (PFI) is used for measurement. A peak with high signal-to-noise ratio and narrow linewidth signal appears near the ionization threshold. Therefore, the more accurate ionization energy can be obtained, and the uncertainty of the measured value is about ± 5 cm–1. The 1,3-diethoxybenzene is an important benzene derivative, and experiments have confirmed that there are two rotamers, i.e. I (down-up) and III (down-down) in the supersonic molecular beam. In this paper, a linear time-of-flight mass spectrometer is used to measure the photoionization efficiency curves of 1,3-diethoxybenzene in electrostatic fields. From the linear fitting of the ionization energy values measured under different electric fields (Stark effect) to the square root of the field strengths, the precise ionization energy values of rotamer I and rotamer III are determined to be (62419 ± 2) cm–1 and (63378 ± 2) cm–1, respectively. Compared with the accuracies of the values measured by the usual pulsed electric field acceleration mechanism and the ZEKE spectroscopy, the accuracy is improved from about ± 10 and ± 5 to ± 2 cm–1, respectively. The physical mechanism, advantages and disadvantages of different methods are analyzed and discussed. The present research results show that the ionization energy measured in the electrostatic field is more accurate, the physical meaning of the measurement process is clear, and the threshold data are easy to collect. This is the first report on the precise ionization energy of 1,3-diethoxybenzene rotamers.
      通信作者: 李昌勇, lichyong@sxu.edu.cn
    • 基金项目: 国家重点基础研究发展计划(批准号: 2017YFA0304203)、国家自然科学基金重点项目(批准号: 61835007)、国家自然科学基金(批准号: 61575115)、长江学者和创新团队发展计划(批准号: IRT_17R70)、高等学校学科创新引智计划(批准号: D18001)和山西省“1331工程”重点学科建设计划资助的课题
      Corresponding author: Li Chang-Yong, lichyong@sxu.edu.cn
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2017YFA0304203), the Key Program of the National Natural Science Foundation of China (Grant No. 61835007), the National Natural Science Foundation of China (Grant No. 61575115), the Program for Changjiang Scholars and Innovative Research Team in University of Ministry of Education of China (Grant No. IRT_17R70), the 111 Project (Grant No. D18001), and the Project for Shanxi ‘‘1331 Project” Key Subjects Construction, China
    [1]

    Zhang L J, Yu D, Dong C W, Cheng M, Hu L L, Zhou Z M, Du Y K, Zhu Q H, Zhang C H 2013 Spectrochim. Acta, Part A 104 235Google Scholar

    [2]

    Yang S C, Huang H W, Tzeng W B 2010 J. Phys. Chem. A 114 11144Google Scholar

    [3]

    Qin C, Tzeng S Y, Zhang B, Tzeng W B 2019 J. Mol. Spectrosc. 355 26Google Scholar

    [4]

    Xu Y Q, Tzeng S Y, Zhang B, Tzeng W B 2013 Spectrochim. Acta, Part A 102 365Google Scholar

    [5]

    Lee Y R, Kim M H, Kim H L, Kwon C H 2018 J. Chem. Phys. 149 174302Google Scholar

    [6]

    Wu P Y, Tzeng W B 2015 J. Mol. Spectrosc. 316 72Google Scholar

    [7]

    Tsai C Y, Tzeng W B 2013 J. Photoch. Photobio. A 270 53Google Scholar

    [8]

    Dai W S, Zhang Z, Du Y K 2020 Spectrochim. Acta, Part A 224 117398Google Scholar

    [9]

    Xiao D Q, Yu D, Xu X L, Yu Z J, Cheng M, Du Y K, Zheng W J, Zhu Q H 2009 Phys. Chem. Chem. Phys. 11 3532Google Scholar

    [10]

    Xu Y Q, Tzeng S Y, Shivatare V, Takahashi K, Zhang B, Tzeng W B 2015 J. Chem. Phys. 142 124314Google Scholar

    [11]

    Huang J H, Huang K L, Liu S Q, Luo Q, Tzeng W B 2007 J. Photoch. Photobio. A 188 252Google Scholar

    [12]

    Li C Y, Lin J L, Tzeng W B 2005 J. Chem. Phys. 122 044311Google Scholar

    [13]

    Zhang L J, Dong C W, Cheng M, Hu L L, Du Y K, Zhu Q H, Zhang C H 2012 Spectrochim. Acta, Part A 96 578Google Scholar

    [14]

    Li C Y, Pradhan M, Tzeng W B 2005 Chem. Phys. Lett. 411 506Google Scholar

    [15]

    Lin J L, Li C Y, Tzeng W B 2004 J. Chem. Phys. 120 10513Google Scholar

    [16]

    Qin C, Tzeng S Y, Zang B, Tzeng W B 2014 Acta Phys. Chim. Sin. 30 1416Google Scholar

    [17]

    Wu P Y, Tzeng S Y, Hsu Y C, Tzeng W B 2017 J. Mol. Spectrosc. 332 3Google Scholar

    [18]

    Lin J L, Tzeng W B 2000 Phys. Chem. Chem. Phys 2 3759Google Scholar

    [19]

    Shivatare V, Tzeng W B 2014 Bull. Korean Chem. Soc. 35 815Google Scholar

    [20]

    Lin J L, Li Y C, Tzeng W B 2007 Chem. Phys. 334 189Google Scholar

    [21]

    Ketkov S Y, Tzeng S Y, Wu P Y, Markin G V, Tzeng W B 2017 Chem. Eur. J. 23 1Google Scholar

    [22]

    Zhang L J, Li D Z, Cheng M, Du Y K, Zhu Q H 2017 Spectrochim. Acta, Part A 183 177Google Scholar

    [23]

    Hao J Y, Duan C Y, Yang Y G, Li C Y, Jia S T 2020 J. Mol. Spectrosc. 369 111258Google Scholar

    [24]

    Jin Y H, Zhao Y, Yang Y G, Wang L R, Li C Y, Jia S T 2018 Chem. Phys. Lett. 692 395Google Scholar

    [25]

    李鑫, 赵岩, 靳颖辉, 王晓锐, 余谢秋, 武媚, 韩昱行, 杨勇刚, 李昌勇, 贾锁堂 2017 物理学报 66 093301Google Scholar

    Li X, Zhao Y, Jin Y H, Wang X R, Yu X Q, Wu M, Han Y Y, Yang Y G, Li C Y, Jia S T 2017 Acta Phys. Sin. 66 093301Google Scholar

    [26]

    Zhao Y, Jin Y H, Hao J Y, Yang Y G, Wang L R, Li C Y, Jia S T 2019 Spectrochim. Acta, Part A 207 328Google Scholar

    [27]

    Ullrich S, Geppert W D, Dessent C E H, Mu1ler-Dethlefs K 2000 J. Phys. Chem. A 104 11864

    [28]

    Wilke M, Schneider M, Wilke J, Ruiz-Santoyo J A, Campos-Amador J J, Gonzalez-Medina M. E, Alvarez-Valtierra L, Schmitt M 2017 J. Mol. Struct. 1140 59Google Scholar

    [29]

    李昌勇, 张临杰, 赵建明, 贾锁堂 2012 物理学报 61 163202Google Scholar

    Li C Y, Zhang L J, Zhao J M, Jia S T 2012 Acta Phys. Sin. 61 163202Google Scholar

    [30]

    Li C Y, Hao T, Zgang H, Zhu X B, TAO G Q, Zhang L J, Zhao J M, Jia S T 2012 J. Phys. Soc. Jpn. 81 044302Google Scholar

    [31]

    Dong H, Wang T, Li C Y, Zhao J M, Zhang L J 2013 Chin. Phys. B 22 073201Google Scholar

    [32]

    Dong H, Hang K S, Li C Y, Zhao J M, Zhang L, Jia S T 2014 Chin. Phys. B 23 093202Google Scholar

    [33]

    董慧杰, 王新宇, 李昌勇, 贾锁堂 2015 物理学报 64 093201Google Scholar

    Gong H J, Wang X Y, Li C Y, Jia S T 2015 Acta Phys. Sin. 64 093201Google Scholar

    [34]

    Wang L M, Li C Y, Zhang H, Zhang L J, Yang Y G, Man Y, Zhao J M, Jia S T 2016 Phys. Rev. A 93 033416Google Scholar

    [35]

    Chupka W A 1993 J. Chem. Phys. 98 4520Google Scholar

    [36]

    Zhang B, Li C Y, Su H W, Lin J L, Tzeng W B 2004 Chem. Phys. Lett. 390 65Google Scholar

    [37]

    Choi K W, Choi S, Baek S J, Kim S K 2007 J. Chem. Phys. 126 034308Google Scholar

  • 图 1  直线式飞行时间质谱仪原理图. P1, P2, P3, P4, P5为离子透镜的片状电极; P1与P2间区域I为激光和分子束相互作用区. MCP为微通道板探测器

    Fig. 1.  Schematic diagram of a linear time-of-flight mass spectrometer. P1, P2, P3, P4, P5 are the electrodes of the electrostatic lens; the region I between P1 and P2 is the interaction area between lasers and molecular beam. MCP is a microchannel plate detector.

    图 2  1,3-二乙氧基苯分子的三种构型, 根据取代基OC2H5的方向命名三种构型分别为I, down-up; II, up-up; III, down-down

    Fig. 2.  Three configurations of 1,3-diethoxybenzene molecule. The three configurations are named according to the direction of the substituent OC2H5 as I, down-up; II, up-up; III, down-down.

    图 3  异构物I在不同电场中的光电离效率曲线(a)及其测量的电离能对电场强度平方根的线性拟合(b). 图(a)中箭头指向了电场中电离阈值的取值点

    Fig. 3.  The photoionization efficiency curves of isomer I (down-up) in different electric fields (a), and the linear fitting of the measured ionization energy to the square root of the electric field intensity (b). The arrows in figure (a) point to the ionization thresholds in the electric fields.

    图 4  异构物III在不同电场中的光电离效率曲线(a)及其测量的电离能对电场强度平方根的线性拟合(b). 图(a)中箭头指向了电场中电离阈值的采集点

    Fig. 4.  The photoionization efficiency curves of isomer III (down-down) in different electric fields (a), and the linear fitting of the measured ionization energy to the square root of the electric field intensity (b). The arrows in figure (a) point to the ionization thresholds in the electric fields.

  • [1]

    Zhang L J, Yu D, Dong C W, Cheng M, Hu L L, Zhou Z M, Du Y K, Zhu Q H, Zhang C H 2013 Spectrochim. Acta, Part A 104 235Google Scholar

    [2]

    Yang S C, Huang H W, Tzeng W B 2010 J. Phys. Chem. A 114 11144Google Scholar

    [3]

    Qin C, Tzeng S Y, Zhang B, Tzeng W B 2019 J. Mol. Spectrosc. 355 26Google Scholar

    [4]

    Xu Y Q, Tzeng S Y, Zhang B, Tzeng W B 2013 Spectrochim. Acta, Part A 102 365Google Scholar

    [5]

    Lee Y R, Kim M H, Kim H L, Kwon C H 2018 J. Chem. Phys. 149 174302Google Scholar

    [6]

    Wu P Y, Tzeng W B 2015 J. Mol. Spectrosc. 316 72Google Scholar

    [7]

    Tsai C Y, Tzeng W B 2013 J. Photoch. Photobio. A 270 53Google Scholar

    [8]

    Dai W S, Zhang Z, Du Y K 2020 Spectrochim. Acta, Part A 224 117398Google Scholar

    [9]

    Xiao D Q, Yu D, Xu X L, Yu Z J, Cheng M, Du Y K, Zheng W J, Zhu Q H 2009 Phys. Chem. Chem. Phys. 11 3532Google Scholar

    [10]

    Xu Y Q, Tzeng S Y, Shivatare V, Takahashi K, Zhang B, Tzeng W B 2015 J. Chem. Phys. 142 124314Google Scholar

    [11]

    Huang J H, Huang K L, Liu S Q, Luo Q, Tzeng W B 2007 J. Photoch. Photobio. A 188 252Google Scholar

    [12]

    Li C Y, Lin J L, Tzeng W B 2005 J. Chem. Phys. 122 044311Google Scholar

    [13]

    Zhang L J, Dong C W, Cheng M, Hu L L, Du Y K, Zhu Q H, Zhang C H 2012 Spectrochim. Acta, Part A 96 578Google Scholar

    [14]

    Li C Y, Pradhan M, Tzeng W B 2005 Chem. Phys. Lett. 411 506Google Scholar

    [15]

    Lin J L, Li C Y, Tzeng W B 2004 J. Chem. Phys. 120 10513Google Scholar

    [16]

    Qin C, Tzeng S Y, Zang B, Tzeng W B 2014 Acta Phys. Chim. Sin. 30 1416Google Scholar

    [17]

    Wu P Y, Tzeng S Y, Hsu Y C, Tzeng W B 2017 J. Mol. Spectrosc. 332 3Google Scholar

    [18]

    Lin J L, Tzeng W B 2000 Phys. Chem. Chem. Phys 2 3759Google Scholar

    [19]

    Shivatare V, Tzeng W B 2014 Bull. Korean Chem. Soc. 35 815Google Scholar

    [20]

    Lin J L, Li Y C, Tzeng W B 2007 Chem. Phys. 334 189Google Scholar

    [21]

    Ketkov S Y, Tzeng S Y, Wu P Y, Markin G V, Tzeng W B 2017 Chem. Eur. J. 23 1Google Scholar

    [22]

    Zhang L J, Li D Z, Cheng M, Du Y K, Zhu Q H 2017 Spectrochim. Acta, Part A 183 177Google Scholar

    [23]

    Hao J Y, Duan C Y, Yang Y G, Li C Y, Jia S T 2020 J. Mol. Spectrosc. 369 111258Google Scholar

    [24]

    Jin Y H, Zhao Y, Yang Y G, Wang L R, Li C Y, Jia S T 2018 Chem. Phys. Lett. 692 395Google Scholar

    [25]

    李鑫, 赵岩, 靳颖辉, 王晓锐, 余谢秋, 武媚, 韩昱行, 杨勇刚, 李昌勇, 贾锁堂 2017 物理学报 66 093301Google Scholar

    Li X, Zhao Y, Jin Y H, Wang X R, Yu X Q, Wu M, Han Y Y, Yang Y G, Li C Y, Jia S T 2017 Acta Phys. Sin. 66 093301Google Scholar

    [26]

    Zhao Y, Jin Y H, Hao J Y, Yang Y G, Wang L R, Li C Y, Jia S T 2019 Spectrochim. Acta, Part A 207 328Google Scholar

    [27]

    Ullrich S, Geppert W D, Dessent C E H, Mu1ler-Dethlefs K 2000 J. Phys. Chem. A 104 11864

    [28]

    Wilke M, Schneider M, Wilke J, Ruiz-Santoyo J A, Campos-Amador J J, Gonzalez-Medina M. E, Alvarez-Valtierra L, Schmitt M 2017 J. Mol. Struct. 1140 59Google Scholar

    [29]

    李昌勇, 张临杰, 赵建明, 贾锁堂 2012 物理学报 61 163202Google Scholar

    Li C Y, Zhang L J, Zhao J M, Jia S T 2012 Acta Phys. Sin. 61 163202Google Scholar

    [30]

    Li C Y, Hao T, Zgang H, Zhu X B, TAO G Q, Zhang L J, Zhao J M, Jia S T 2012 J. Phys. Soc. Jpn. 81 044302Google Scholar

    [31]

    Dong H, Wang T, Li C Y, Zhao J M, Zhang L J 2013 Chin. Phys. B 22 073201Google Scholar

    [32]

    Dong H, Hang K S, Li C Y, Zhao J M, Zhang L, Jia S T 2014 Chin. Phys. B 23 093202Google Scholar

    [33]

    董慧杰, 王新宇, 李昌勇, 贾锁堂 2015 物理学报 64 093201Google Scholar

    Gong H J, Wang X Y, Li C Y, Jia S T 2015 Acta Phys. Sin. 64 093201Google Scholar

    [34]

    Wang L M, Li C Y, Zhang H, Zhang L J, Yang Y G, Man Y, Zhao J M, Jia S T 2016 Phys. Rev. A 93 033416Google Scholar

    [35]

    Chupka W A 1993 J. Chem. Phys. 98 4520Google Scholar

    [36]

    Zhang B, Li C Y, Su H W, Lin J L, Tzeng W B 2004 Chem. Phys. Lett. 390 65Google Scholar

    [37]

    Choi K W, Choi S, Baek S J, Kim S K 2007 J. Chem. Phys. 126 034308Google Scholar

  • [1] 肖智磊, 全威, 许松坡, 柳晓军, 魏政荣, 陈京. 中红外激光场下阈上电离能谱中的低能结构. 物理学报, 2022, 71(23): 233208. doi: 10.7498/aps.71.20221609
    [2] 张天成, 潘高远, 俞友军, 董晨钟, 丁晓彬. 超重元素Og(Z = 118)及其同主族元素的电离能和价电子轨道束缚能. 物理学报, 2022, 71(21): 213201. doi: 10.7498/aps.71.20220813
    [3] 陈昌远, 孙国华, 王晓华, 孙东升, 尤源, 陆法林, 董世海. 刚性对称陀螺分子Stark效应的精确解. 物理学报, 2021, 70(18): 180301. doi: 10.7498/aps.70.20210214
    [4] 万建杰, 赵鑫婷, 李冀光, 董晨钟. Stark效应诱导的类氢离子2s1/2-1s1/2跃迁几率的理论研究. 物理学报, 2021, 70(17): 173201. doi: 10.7498/aps.70.20210181
    [5] 董慧杰, 王新宇, 李昌勇, 贾锁堂. 镓原子的Stark能级结构. 物理学报, 2015, 64(9): 093201. doi: 10.7498/aps.64.093201
    [6] 朱金辉, 韦源, 谢红刚, 牛胜利, 黄流兴. 300 eV–1 GeV质子在硅中非电离能损的计算. 物理学报, 2014, 63(6): 066102. doi: 10.7498/aps.63.066102
    [7] 王丽梅, 张好, 李昌勇, 赵建明, 贾锁堂. 铯Rydberg原子Stark态的避免交叉. 物理学报, 2013, 62(1): 013201. doi: 10.7498/aps.62.013201
    [8] 曲丕丞, 王卫国, 赵无垛, 张桂秋, 李海洋. 电离效率对激光电离团簇的高价离子产物的影响. 物理学报, 2012, 61(18): 182101. doi: 10.7498/aps.61.182101
    [9] 李昌勇, 张临杰, 赵建明, 贾锁堂. 铯原子里德堡态Stark能量及电偶极矩的测量和理论计算. 物理学报, 2012, 61(16): 163202. doi: 10.7498/aps.61.163202
    [10] 王克栋, 关君, 朱川川, 刘玉芳. 从头计算研究CH3C(O)OSSOC(O)CH3的构型和能量. 物理学报, 2011, 60(7): 073102. doi: 10.7498/aps.60.073102
    [11] 常秀英, 窦秀明, 孙宝权, 熊永华, 倪海桥, 牛智川. 电场调谐InAs单量子点的发光光谱. 物理学报, 2010, 59(6): 4279-4282. doi: 10.7498/aps.59.4279
    [12] 高嵩, 徐学友, 周慧, 张延惠, 林圣路. 电场中里德伯原子动力学性质的半经典理论研究. 物理学报, 2009, 58(3): 1473-1479. doi: 10.7498/aps.58.1473
    [13] 桑萃萃, 万建杰, 董晨钟, 丁晓彬, 蒋 军. 锂原子光电离过程中的弛豫效应. 物理学报, 2008, 57(4): 2152-2160. doi: 10.7498/aps.57.2152
    [14] 唐欣欣, 罗文芸, 王朝壮, 贺新福, 查元梓, 樊 胜, 黄小龙, 王传珊. 低能质子在半导体材料Si 和GaAs中的非电离能损研究. 物理学报, 2008, 57(2): 1266-1270. doi: 10.7498/aps.57.1266
    [15] 张 敏, 班士良. 压力下应变异质结中施主杂质态的Stark效应. 物理学报, 2008, 57(7): 4459-4465. doi: 10.7498/aps.57.4459
    [16] 张书锋, 苏国林, 任雪光, 宁传刚, 周 晖, 李 彬, 李桂琴, 邓景康. 二乙酰分子内价轨道4ag+4bu的电子动量谱学研究. 物理学报, 2005, 54(4): 1552-1556. doi: 10.7498/aps.54.1552
    [17] 苏国林, 任雪光, 张书锋, 宁传刚, 周 晖, 李 彬, 黄 峰, 李桂琴, 邓景康. 环戊烯分子内价轨道1a′的电子动量谱学研究. 物理学报, 2005, 54(9): 4108-4112. doi: 10.7498/aps.54.4108
    [18] 李桂琴, 邓景康, 李 彬, 任雪光, 宁传刚, 张书锋, 苏国林. 丁酮分子内价轨道1a″的电子动量谱学研究. 物理学报, 2005, 54(10): 4669-4672. doi: 10.7498/aps.54.4669
    [19] 葛自明, 王治文, 周雅君. 类锂体系(Z=21—30)基态1s22s电离能和相对论项能的理论计算. 物理学报, 2004, 53(1): 42-47. doi: 10.7498/aps.53.42
    [20] 张森, 邱济真, 梅式民, 陈星. Ca和Sr原子n′dnl自电离态在低电场中的线性Stark效应. 物理学报, 1990, 39(8): 32-37. doi: 10.7498/aps.39.32
计量
  • 文章访问数:  5432
  • PDF下载量:  73
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-05
  • 修回日期:  2020-11-04
  • 上网日期:  2021-02-21
  • 刊出日期:  2021-03-05

/

返回文章
返回