搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

原子系综中光学腔增强的Duan-Lukin-Cirac-Zoller写过程激发实验

袁亮 温亚飞 李雅 刘超 李淑静 徐忠孝 王海

引用本文:
Citation:

原子系综中光学腔增强的Duan-Lukin-Cirac-Zoller写过程激发实验

袁亮, 温亚飞, 李雅, 刘超, 李淑静, 徐忠孝, 王海

Optical cavity enhancement experiment of Duan-Lukin-Cirac-Zoller writing excitation process in atomic ensemble

Yuan Liang, Wen Ya-Fei, Li Ya, Liu Chao, Li Shu-Jing, Xu Zhong-Xiao, Wang Hai
PDF
HTML
导出引用
  • 原子系综中的Duan-Lukin-Cirac-Zoller (DLCZ)过程是产生光与原子(量子界面)量子关联和纠缠的重要手段. 当一束写光与原子发生作用时, 将会产生斯托克斯(Stokes)光子的自发拉曼散射, 并同时产生一个自旋波(spin-wave)存储在原子系综中, 上述过程即为DLCZ量子记忆产生过程. 这一过程被广泛地研究. 本文将87Rb原子系综放入驻波腔, 并使Stokes光子与光学腔共振, 我们观察到有腔且锁定的情况下Stokes光子产生概率比无腔时增大了8.7倍. 在此条件下研究了Stokes光子产生概率和写光功率的关系, Stokes光子产生概率随写光功率线性增大.
    The Duan-Lukin-Cirac-Zoller (DLCZ) process in the atomic ensemble is an important means to generate quantum correlation and entanglement between photons and atoms (quantum interface). When a write pulse acts on atoms, the DLCZ quantum memory process will be generated, which has been extensively studied. In the process a spontaneous Raman scattering (SRS) of a Stokes photon is generated, and a spin-wave excitation stored in the atomic ensemble is created at the same time. The higher probability of the generation of Stokes photons will cause more noise and reduce entanglement. On the contrary, the low generation probability of Stokes photons affects the success probability of entanglement distribution on a quantum repeater. How to increase generation probability of Stokes photons without causing more noise is an urgent problem to be resolved. In this work, a 87Rb atomic ensemble is placed in a standing wave cavity which resonates with the Stokes photon. This cavity has a trip length of 0.6 m and a free spectral range (FSR) of 256 MHz. The optical loss of all the optical elements in this cavity is 9%, of which 4% loss originates from the other optical elements and 5% loss from the vacuum chamber of the magneto-optical trap (MOT). The fineness of the cavity with the cold atoms is measured to be ~19.1. By calculating the total probability of Stokes photon emission out of the cavity, we derive the enhancement factor of this standing wave cavity when the cavity loss is l. When this cavity is locked with PDH frequency locking technique, we observe that the production probability of the Stokes photons is 8.7 times higher than that without cavity due to the optical cavity enhancement effect. Under this condition, the relationship between the generation probability of Stokes photons and the power of write beam is studied. The write excitation probability changes linearly with the power of write beam. This work provides an experimental solution to reducing the noise caused by time multimode operation in DLCZ scheme.
      通信作者: 王海, wanghai@sxu.edu.cn
    • 基金项目: 国家重点基础研究发展计划(批准号: 2016YFA0301402)、国家自然科学基金(批准号: 11475109, 11274211, 11604191, 11804207, 61805133)和山西省“1331 工程”重点学科建设计划(批准号: 1331KSC)资助的课题
      Corresponding author: Wang Hai, wanghai@sxu.edu.cn
    • Funds: Project supported by the National Basic Research Program of China (Grant No. 2016YFA0301402), the National Natural Science Foundation of China (Grant Nos. 11475109, 11274211, 11604191, 11804207, 61805133), and the Fund for “1331Project” Key Subjects Construction of Shanxi Provincie, China (Grant No. 1331KSC)
    [1]

    Sangouard N, Simon C, de Riedmatten H, Gisin N 2011 Rev. Mod. Phys. 83 33Google Scholar

    [2]

    Yuan Z S, Chen Y A, Zhao B, Chen S, Schmiedmayer J, Pan J W 2008 Nature 454 1098Google Scholar

    [3]

    Duan L M, Lukin M D, Cirac J I, Zoller P 2001 Nature 414 413Google Scholar

    [4]

    Gisin N, Ribordy G, Tittle W, Zbinden H 2002 Rev. Mod. Phys. 74 145Google Scholar

    [5]

    Bao X H, Reingruber A, Dietrich P, Rui J, Dück A, Strassel T, Li L, Liu N L, Zhao B, Pan J W 2012 Nat. Phys. 8 517Google Scholar

    [6]

    Chen S, Chen Y A, Strassel T, Yuan Z S, Zhao B, Schmiedmayer J, Pan J W 2006 Phys. Rev. Lett. 97 173004Google Scholar

    [7]

    Chen S, Chen Y A, Zhao B, Yuan Z S, Schmiedmayer J, Pan J W 2007 Phys. Rev. Lett. 99 180505Google Scholar

    [8]

    Kuzmich A, Bowen W P, Boozer A D, Boca A, Chou C W, Duan L M, Kimble H J 2003 Nature 423 731Google Scholar

    [9]

    Matsukevich D N, Chaneliere T, Bhattacharya M, et al. 2005 Phys. Rev. Lett. 95 040405Google Scholar

    [10]

    Matsukevich D N, Chaneliere T, Jenkins S D, et al. 2006 Phys. Rev. Lett. 97 013601Google Scholar

    [11]

    Simon J, Tanji H, Thompson J K, Vuletic V 2007 Phys. Rev. Lett. 98 183601Google Scholar

    [12]

    Zhao B, Chen Y A, Bao X H, et al. 2008 Nat. Phys. 5 95Google Scholar

    [13]

    Zhao R, Dudin Y O, Jenkins S D, et al. 2008 Nat. Phys. 5 100Google Scholar

    [14]

    de Riedmatten H, Laurat J, Chou C W, et al. 2006 Phys. Rev. Lett. 97 113603Google Scholar

    [15]

    Matsukevich D N, Chaneliere T, Jenkins S D, Lan S Y, Kennedy T A, Kuzmich A 2006 Phys. Rev. Lett. 96 030405Google Scholar

    [16]

    Yang S J, Wang X J, Li J, Rui J, Bao X H, Pan J W 2015 Phys. Rev. Lett. 114 210501Google Scholar

    [17]

    Korzh B, Lim C C W, Houlmann R, et al. 2015 Nat. Photonics 9 163Google Scholar

    [18]

    Yin H L, Chen T Y, Yu Z W, et al. 2016 Phys. Rev. Lett. 117 190501Google Scholar

    [19]

    Collins M J, Xiong C, Rey I H, et al. 2013 Nat. Commun. 4 2582Google Scholar

    [20]

    Xiong C, Zhang X, Liu Z, et al. 2016 Nat. Commun. 7 10853Google Scholar

    [21]

    Tian L, Xu Z, Chen L, Ge W, Yuan H, Wen Y, Wang S, Li S, Wang H 2017 Phys. Rev. Lett. 119 130505Google Scholar

    [22]

    Wen Y, Zhou P, Xu Z, Yuan L, Zhang H, Wang S, Tian L, Li S, Wang H 2019 Phys. Rev. A 100 012342Google Scholar

    [23]

    Simon C, de Riedmatten H, Afzelius M 2010 Phys. Rev. A 82 010304(RGoogle Scholar

    [24]

    Heller L, Farrera P, Heinze G, de Riedmatten H 2020 Phys. Rev. Lett. 124 210504Google Scholar

  • 图 1  ${}^{87}{\rm{Rb}}$实验能级图 (a)表示SRS中的写过程, W表示写光光场, ${\sigma ^ + }$(${\sigma ^ - }$)代表左(右)旋圆偏振的Stokes光子

    Fig. 1.  Relevant ${}^{87}{\rm{Rb}}$ atomic levels. (a) is the writing process of the SRS process, The coupling light field are writing light field(W), ${\sigma ^ + }$(${\sigma ^ - }$) represents left (right) polarization of Stokes.

    图 2  实验装置图. 其中PZT代表压电陶瓷; CM表示腔镜; BS表示分束镜; Filter表示标准具滤波器; $\lambda /4$, $\lambda /2$分别代表四分之一玻片和二分之一玻片; PBS为偏振分束棱镜; PD表示单光子探测器

    Fig. 2.  Experimental setup. PZT represents the piezoelectric ceramic transducer; CM, cavity mirror; BS, beam splitter; Filter, F-P etalon; $\lambda /4$, $\lambda /2$, quarter wave plate and half wave plate; PBS, polarization beam splitter; PD, single photon detector.

    图 3  实验时序图. 图中Cleaning为态制备过程, Write代表写过程, Locking表示腔锁定时序, MOT代表冷原子俘获过程

    Fig. 3.  Time sequence of experimental cycle. Cleaning, the state cleaning process; Write, the writing process; Locking, the locking cavity process; and MOT, the cold atom preparation process.

    图 4  有无驻波腔时激发率随写光功率的变化对比

    Fig. 4.  Excitation probability as the function of power of write light field with cavity and without cavity.

  • [1]

    Sangouard N, Simon C, de Riedmatten H, Gisin N 2011 Rev. Mod. Phys. 83 33Google Scholar

    [2]

    Yuan Z S, Chen Y A, Zhao B, Chen S, Schmiedmayer J, Pan J W 2008 Nature 454 1098Google Scholar

    [3]

    Duan L M, Lukin M D, Cirac J I, Zoller P 2001 Nature 414 413Google Scholar

    [4]

    Gisin N, Ribordy G, Tittle W, Zbinden H 2002 Rev. Mod. Phys. 74 145Google Scholar

    [5]

    Bao X H, Reingruber A, Dietrich P, Rui J, Dück A, Strassel T, Li L, Liu N L, Zhao B, Pan J W 2012 Nat. Phys. 8 517Google Scholar

    [6]

    Chen S, Chen Y A, Strassel T, Yuan Z S, Zhao B, Schmiedmayer J, Pan J W 2006 Phys. Rev. Lett. 97 173004Google Scholar

    [7]

    Chen S, Chen Y A, Zhao B, Yuan Z S, Schmiedmayer J, Pan J W 2007 Phys. Rev. Lett. 99 180505Google Scholar

    [8]

    Kuzmich A, Bowen W P, Boozer A D, Boca A, Chou C W, Duan L M, Kimble H J 2003 Nature 423 731Google Scholar

    [9]

    Matsukevich D N, Chaneliere T, Bhattacharya M, et al. 2005 Phys. Rev. Lett. 95 040405Google Scholar

    [10]

    Matsukevich D N, Chaneliere T, Jenkins S D, et al. 2006 Phys. Rev. Lett. 97 013601Google Scholar

    [11]

    Simon J, Tanji H, Thompson J K, Vuletic V 2007 Phys. Rev. Lett. 98 183601Google Scholar

    [12]

    Zhao B, Chen Y A, Bao X H, et al. 2008 Nat. Phys. 5 95Google Scholar

    [13]

    Zhao R, Dudin Y O, Jenkins S D, et al. 2008 Nat. Phys. 5 100Google Scholar

    [14]

    de Riedmatten H, Laurat J, Chou C W, et al. 2006 Phys. Rev. Lett. 97 113603Google Scholar

    [15]

    Matsukevich D N, Chaneliere T, Jenkins S D, Lan S Y, Kennedy T A, Kuzmich A 2006 Phys. Rev. Lett. 96 030405Google Scholar

    [16]

    Yang S J, Wang X J, Li J, Rui J, Bao X H, Pan J W 2015 Phys. Rev. Lett. 114 210501Google Scholar

    [17]

    Korzh B, Lim C C W, Houlmann R, et al. 2015 Nat. Photonics 9 163Google Scholar

    [18]

    Yin H L, Chen T Y, Yu Z W, et al. 2016 Phys. Rev. Lett. 117 190501Google Scholar

    [19]

    Collins M J, Xiong C, Rey I H, et al. 2013 Nat. Commun. 4 2582Google Scholar

    [20]

    Xiong C, Zhang X, Liu Z, et al. 2016 Nat. Commun. 7 10853Google Scholar

    [21]

    Tian L, Xu Z, Chen L, Ge W, Yuan H, Wen Y, Wang S, Li S, Wang H 2017 Phys. Rev. Lett. 119 130505Google Scholar

    [22]

    Wen Y, Zhou P, Xu Z, Yuan L, Zhang H, Wang S, Tian L, Li S, Wang H 2019 Phys. Rev. A 100 012342Google Scholar

    [23]

    Simon C, de Riedmatten H, Afzelius M 2010 Phys. Rev. A 82 010304(RGoogle Scholar

    [24]

    Heller L, Farrera P, Heinze G, de Riedmatten H 2020 Phys. Rev. Lett. 124 210504Google Scholar

  • [1] 温亚飞, 田剑锋, 王志强, 庄园园. 冷原子系综中光纤腔增强且高保真度的光学存储. 物理学报, 2023, 72(6): 060301. doi: 10.7498/aps.72.20222178
    [2] 马腾飞, 王敏杰, 王圣智, 焦浩乐, 谢燕, 李淑静, 徐忠孝, 王海. 光学腔增强Duan-Lukin-Cirac-Zoller量子记忆读出效率的研究. 物理学报, 2022, 71(2): 020301. doi: 10.7498/aps.71.20210881
    [3] 王凯楠, 程冰, 周寅, 陈佩军, 朱栋, 翁堪兴, 王河林, 彭树萍, 王肖隆, 吴彬, 林强. 基于1560 nm外腔式激光器的拉曼光锁相技术. 物理学报, 2021, 70(17): 170303. doi: 10.7498/aps.70.20210432
    [4] 马腾飞, 王敏杰, 王圣智, 谢燕, 焦浩乐, 李淑静, 徐忠孝, 王海. 光学腔增强Duan-Lukin-Cirac-Zoller量子记忆读出效率的实验研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20210881
    [5] 刘艳红, 周瑶瑶, 闫智辉, 贾晓军. 利用自发拉曼散射建立三个原子节点的纠缠. 物理学报, 2021, 70(9): 094201. doi: 10.7498/aps.70.20201299
    [6] 王圣智, 温亚飞, 张常睿, 王登新, 徐忠孝, 李淑静, 王海. 读出效率对光与原子纠缠产生的影响. 物理学报, 2019, 68(2): 020301. doi: 10.7498/aps.68.20181314
    [7] 侯国辉, 罗腾, 陈秉灵, 刘杰, 林子扬, 陈丹妮, 屈军乐. 双光子荧光与相干反斯托克斯拉曼散射显微成像技术的实验研究. 物理学报, 2017, 66(10): 104204. doi: 10.7498/aps.66.104204
    [8] 李斌, 罗时文, 余安澜, 熊东升, 王新兵, 左都罗. 共焦腔增强的空气拉曼散射. 物理学报, 2017, 66(19): 190703. doi: 10.7498/aps.66.190703
    [9] 徐航, 彭雪峰, 戴世勋, 徐栋, 张培晴, 许银生, 李杏, 聂秋华. Ge-Sb-Se硫系玻璃拉曼增益特性研究. 物理学报, 2016, 65(15): 154207. doi: 10.7498/aps.65.154207
    [10] 王志辉, 田亚莉, 李刚, 张天才. 用于铯原子内态操控的双光子拉曼激光的产生及应用. 物理学报, 2015, 64(18): 184209. doi: 10.7498/aps.64.184209
    [11] 王涛, 杨旭, 刘晓斐, 雷府川, 高铭, 胡蕴琪, 龙桂鲁. 基于回音壁微腔拉曼激光的纳米粒子探测. 物理学报, 2015, 64(16): 164212. doi: 10.7498/aps.64.164212
    [12] 邵辉丽, 李栋, 闫雪, 陈丽清, 袁春华. 基于增强拉曼散射的光子-原子双模压缩态的实现. 物理学报, 2014, 63(1): 014202. doi: 10.7498/aps.63.014202
    [13] 韩茹, 樊晓桠, 杨银堂. n-SiC拉曼散射光谱的温度特性. 物理学报, 2010, 59(6): 4261-4266. doi: 10.7498/aps.59.4261
    [14] 高 玮, 吕志伟, 何伟明, 董永康. 水中受激布里渊散射微弱Stokes信号光的高增益放大. 物理学报, 2008, 57(4): 2248-2252. doi: 10.7498/aps.57.2248
    [15] 韩 茹, 杨银堂, 柴常春. n-SiC的电子拉曼散射及二级拉曼谱研究. 物理学报, 2008, 57(5): 3182-3187. doi: 10.7498/aps.57.3182
    [16] 郭少锋, 陆启生, 程湘爱, 周 萍, 邓少永, 银 燕. 反射光中Stokes成分对受激布里渊散射过程的影响. 物理学报, 2004, 53(6): 1831-1835. doi: 10.7498/aps.53.1831
    [17] 张桂明, 李悦科, 高云峰. 非等同双原子与双模腔场拉曼相互作用模型的腔场谱. 物理学报, 2004, 53(11): 3739-3743. doi: 10.7498/aps.53.3739
    [18] 高云峰, 冯 健. 非简并拉曼过程中交流斯塔克位移对腔场谱的影响. 物理学报, 2004, 53(3): 762-766. doi: 10.7498/aps.53.762
    [19] 张立辉, 李高翔, 彭金生. 位相损耗腔中简并双光子拉曼耦合系统中的熵特性. 物理学报, 2002, 51(3): 541-546. doi: 10.7498/aps.51.541
    [20] 赵保恒. 自发破缺规范理论中的光子-光子散射. 物理学报, 1976, 25(1): 53-57. doi: 10.7498/aps.25.53
计量
  • 文章访问数:  3966
  • PDF下载量:  96
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-08-24
  • 修回日期:  2020-12-09
  • 上网日期:  2021-03-19
  • 刊出日期:  2021-04-05

/

返回文章
返回