搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Gauss声束对离轴椭圆柱的声辐射力矩

臧雨宸 林伟军 苏畅 吴鹏飞

引用本文:
Citation:

Gauss声束对离轴椭圆柱的声辐射力矩

臧雨宸, 林伟军, 苏畅, 吴鹏飞

Acoustic radiation torque on an off-axis elliptical cylinder in Gauss beams

Zang Yu-Chen, Lin Wei-Jun, Su Chang, Wu Peng-Fei
PDF
HTML
导出引用
  • 利用部分波展开法求解得到了Gauss声束入射下刚性和非刚性椭圆柱的声散射系数, 推导了一般情况下的声辐射力矩表达式. 在此基础上, 通过一系列数值仿真详细分析了离轴距离、入射角度和束腰半径对声辐射力矩的影响. 结果表明: 正向与负向声辐射力矩均可以在一定条件下存在; 低频情况下刚性椭圆柱比非刚性椭圆柱更容易产生较强的声辐射力矩; 特定频率的入射声场可以激发出非刚性椭圆柱不同阶的共振散射模式, 因而非刚性椭圆柱的声辐射力矩峰值与频率的关系更密切; 增加束腰半径有利于扩大散射截面, 进而增加椭圆柱的声辐射力矩. 该研究结果预期可以为利用声辐射力矩实现粒子的可控旋转和流体黏度的反演提供一定的理论指导.
    As one of the nonlinear effects of acoustic waves, the time-averaged acoustic radiation torque expression is derived from the transfer of angular momentum from the incident beam to the object. In recent years, the acoustic radiation torque has received substantial attention since it is the underlying principle of well-controlled particle rotations and spins, which provides a new degree of freedom in particle manipulation and acousto-fluidic applications in addition to the translational displacement caused by the acoustic radiation force. Cylindrical particles, such as fibers, carbon nanotubes and other surface acoustic wave devices, are commonly encountered in various applications. The acoustic scattering coefficients for an elliptical cylinder arbitrarily located at the field of Gauss beam in two-dimensions are computed based on the partial-wave series expansion method and the Graf’s additional theorem for cylindrical functions to obtain the off-axis beam shape coefficients. It is worth mentioning that both the rigid and non-rigid cylinders are considered in this work, which requires different boundary conditions at the cylinder surface. Moreover, the closed-form expression of the acoustic radiation torque in this case is derived. On this basis, several numerical simulations are performed with particular emphasis on the off-axis distance, the incident angle and the beam waist. The simulated results show that both the positive and negative acoustic radiation torque can exist under certain conditions, which means that 1) the elliptical cylinder can be rotated in either the clockwise or the counterclockwise direction, 2) rigid elliptical cylinders are more likely to experience a strong acoustic radiation torque than non-rigid elliptical cylinders at low frequencies, 3) the incident wave field with a specific frequency can excite a different resonance scattering mode for a non-rigid elliptical cylinder, therefore the acoustic radiation torque peak is more related to the beam frequency than to the elliptical cylinder’s location in the field, and 4) increasing the beam width can enlarge the scattering cross section area, and thus enhancing the acoustic radiation torque on the elliptical cylinder. The results in this study are expected to provide a theoretical guide for the controllable rotation of a particle and the viscosity inversion of fluid by using the acoustic radiation torque. The exact formalism presented here by using the multipole expansion method, which is valid for any frequency range, can be used to validate other approaches by using purely numerical methods.
      通信作者: 林伟军, linwj@mail.ioa.ac.cn
    • 基金项目: 国家自然科学基金 (批准号: 11604361, 11904384)、国家重点研发计划 (批准号: 2018YFC0114900)和中国科学院青年创新促进会(批准号: 2019024)资助的课题
      Corresponding author: Lin Wei-Jun, linwj@mail.ioa.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11604361, 11904384), the National Key R & D Program of China (Grant No. 2018YFC0114900), and the Youth Innovation Promotion Association, Chinese Academy of Sciences, China (Grant No. 2019024)
    [1]

    Wu J R 1991 J. Acoust. Soc. Am. 89 2140Google Scholar

    [2]

    黄先玉, 蔡飞燕, 李文成, 郑海荣, 何兆剑, 邓科, 赵鹤平 2017 物理学报 66 044301Google Scholar

    Huang X Y, Cai F Y, Li W C, Zheng H R, He Z J, Deng K, Zhao H P 2017 Acta Phys. Sin. 66 044301Google Scholar

    [3]

    Ozcelik A, Rufo J, Guo F, Gu Y Y, Li P, Lata J 2018 Nat. Methods 15 1021Google Scholar

    [4]

    Baudoin M, Thomas J L 2020 Annu. Rev. Fluid Mech. 52 205Google Scholar

    [5]

    Lierke E G 1996 Acustica 82 220

    [6]

    Yarin A L, Pfaffenlehner M, Tropea C 1998 J. Fluid Mech. 356 65Google Scholar

    [7]

    Chung S K, Trinh E H 1998 J. Cryst. Growth 194 384Google Scholar

    [8]

    Mitri F G, Garzon F H, Sinha D N 2011 Rev. Sci. Instrum. 82 034903Google Scholar

    [9]

    Maidanik G 1958 J. Acoust. Soc. Am. 30 620Google Scholar

    [10]

    Fan Z W, Mei D Q, Yang K J, Chen Z C 2008 J. Acoust. Soc. Am. 124 2727Google Scholar

    [11]

    Zhang L K, Marston P L 2011 J. Acoust. Soc. Am. 129 1679Google Scholar

    [12]

    Zhang L K, Marston P L 2011 Phys. Rev. E 84 065601Google Scholar

    [13]

    Silva G T, Lobo T P, Mitri F G 2012 EPL 97 54003Google Scholar

    [14]

    Mitri F G 2012 Phys. Rev. E 85 026602Google Scholar

    [15]

    Mitri F G, Lobo T P, Silva G T 2012 Phys. Rev. E 86 059902Google Scholar

    [16]

    Zhang L K 2018 Phys. Rev. Appl. 10 034039Google Scholar

    [17]

    Gong Z X, Marston P L 2019 Phys. Rev. Appl. 11 064022Google Scholar

    [18]

    Zeng Q, Li L L, Ma H L, Xu J H, Fan Y S, Wang H 2013 Appl. Phys. Lett. 102 213106Google Scholar

    [19]

    Yamahira S, Hatanaka S, Kuwabara M 2000 Jpn. J. Appl. Phys. 39 3683Google Scholar

    [20]

    Shilton R, Tan M K, Yeo L Y, Friend J R 2008 J. Appl. Phys. 104 014910Google Scholar

    [21]

    Hasheminejad S M, Sanaei R 2007 J. Comput. Acoust. 15 377Google Scholar

    [22]

    Wang J T, Dual J 2011 J. Acoust. Soc. Am. 129 3490Google Scholar

    [23]

    Mitri F G 2016 Phys. Fluids 28 077104Google Scholar

    [24]

    Mitri F G 2016 Wave Motion 66 31Google Scholar

    [25]

    Mitri F G 2017 J. Appl. Phys. 121 144901Google Scholar

    [26]

    Wang H B, Gao S, Qiao Y P, Liu J H, Liu X Z 2019 Phys. Fluids 31 047103Google Scholar

    [27]

    Mitri F G 2018 Appl. Phys. 124 054902Google Scholar

    [28]

    Mitri F G, Fellah Z E A, Silva G T 2014 J. Sound Vib. 333 7326Google Scholar

    [29]

    Qiao Y P, Zhang X F, Zhang G B 2017 J. Acoust. Soc. Am. 141 4633Google Scholar

    [30]

    Flax L, Dragonette L R, Uberall H 1978 J. Acoust. Soc. Am. 63 723Google Scholar

    [31]

    Werby M F, Uberall H, Nagl A, Brown S H, Dickey J W 1988 J. Acoust. Soc. Am. 84 1425Google Scholar

    [32]

    Wiegel F W 1979 Phys. Lett. A 70 112Google Scholar

  • 图 1  Gauss声束斜入射到无限长椭圆柱上

    Fig. 1.  Description for the interaction of a Gauss beam with an infinitely long elliptical cylinder.

    图 2  椭圆柱的声辐射力矩函数随kbky0的变化关系(kx0 = 0, kW0 = 3) (a) a/b = 1/2, 刚性; (b) a/b = 1/2, PDMS-TBE; (c) a/b = 2/3, 刚性; (d) a/b = 2/3, PDMS-TBE; (e) a/b = 1, 刚性; (f) a/b = 1, PDMS-TBE; (g) a/b = 3/2, 刚性; (h) a/b = 3/2, PDMS-TBE; (i) a/b = 2, 刚性; (j) a/b = 2, PDMS-TBE

    Fig. 2.  The acoustic radiation torque function plots for an elliptical cylinder versus kb and ky0 (kx0 = 0, kW0 = 3): (a) a/b = 1/2, rigid; (b) a/b = 1/2, PDMS-TBE; (c) a/b = 2/3, rigid; (d) a/b = 2/3, PDMS-TBE; (e) a/b = 1, rigid; (f) a/b = 1, PDMS-TBE; (g) a/b = 3/2, rigid; (h) a/b = 3/2, PDMS-TBE; (i) a/b = 2, rigid; (j) a/b = 2, PDMS-TBE.

    图 3  PDMS椭圆柱的共振散射函数幅值$\left| {{f^{{\rm{res}}}}} \right|$随角度θ的变化关系$(kx_0 \!=\! 0, ky_0 \!=\! 6, \alpha \!=\! \pi/4, kW_0 \!=\! 3) ~~{\rm(a)}~ kb \!=\! 5.5; ~{\rm (b)}~ kb \!=\! 6.1$

    Fig. 3.  The resonance scattering function modulus $\left| {{f^{{\rm{res}}}}} \right|$ for a PDMS-TBE elliptical cylinder versus the angle θ (kx0 = 0, ky0 = 6, α = π/4, kW0 = 3): (a) kb = 5.5; (b) kb = 6.1.

    图 4  椭圆柱的声辐射力矩函数随kbkx0的变化关系(ky0 = –3, kW0 = 3) (a) a/b = 1/2, 刚性; (b) a/b = 1/2, PDMS-TBE; (c) a/b = 2/3, 刚性; (d) a/b = 2/3, PDMS-TBE; (e) a/b = 1, 刚性; (f) a/b = 1, PDMS-TBE; (g) a/b = 3/2, 刚性; (h) a/b = 3/2, PDMS-TBE; (i) a/b = 2, 刚性; (j) a/b = 2, PDMS-TBE

    Fig. 4.  The acoustic radiation torque function plots for an elliptical cylinder versus kb and kx0 (ky0 = –3, kW0 = 3): (a) a/b = 1/2, rigid; (b) a/b = 1/2, PDMS-TBE; (c) a/b = 2/3, rigid; (d) a/b = 2/3, PDMS-TBE; (e) a/b = 1, rigid; (f) a/b = 1, PDMS-TBE; (g) a/b = 3/2, rigid; (h) a/b = 3/2, PDMS-TBE; (i) a/b = 2, rigid; (j) a/b = 2, PDMS-TBE.

    图 5  椭圆柱的声辐射力矩函数随kbα的变化关系(kx0 = –3, ky0 = –3, kW0 = 3) (a) a/b = 1/2, 刚性; (b) a/b = 1/2, PDMS-TBE; (c) a/b = 2/3, 刚性; (d) a/b = 2/3, PDMS-TBE; (e) a/b = 1, 刚性; (f) a/b = 1, PDMS-TBE; (g) a/b = 3/2, 刚性; (h) a/b = 3/2, PDMS-TBE; (i) a/b = 2, 刚性; (j) a/b = 2, PDMS-TBE

    Fig. 5.  The acoustic radiation torque function plots for an elliptical cylinder versus kb and α (kx0 = –3, ky0 = –3, kW0 = 3): (a) a/b = 1/2, rigid; (b) a/b = 1/2, PDMS-TBE; (c) a/b = 2/3, rigid; (d) a/b = 2/3, PDMS-TBE; (e) a/b = 1, rigid; (f) a/b = 1, PDMS-TBE; (g) a/b = 3/2, rigid; (h) a/b = 3/2, PDMS-TBE; (i) a/b = 2, rigid; (j) a/b = 2, PDMS-TBE.

    图 6  椭圆柱的声辐射力矩函数随kbkW0的变化关系(kx0 = –3, ky0 = –3, α = π/4) (a) a/b = 1/2, 刚性; (b) a/b = 1/2, PDMS-TBE; (c) a/b = 2/3, 刚性; (d) a/b = 2/3, PDMS-TBE; (e) a/b = 1, 刚性; (f) a/b = 1, PDMS-TBE; (g) a/b = 3/2, 刚性; (h) a/b = 3/2, PDMS-TBE; (i) a/b = 2, 刚性; (j) a/b = 2, PDMS-TBE

    Fig. 6.  The acoustic radiation torque function plots for an elliptical cylinder versus kb and kW0 (kx0 = –3, ky0 = –3, α = π/4): (a) a/b = 1/2, rigid; (b) a/b = 1/2, PDMS-TBE; (c) a/b = 2/3, rigid; (d) a/b = 2/3, PDMS-TBE; (e) a/b = 1, rigid; (f) a/b = 1, PDMS-TBE; (g) a/b = 3/2, rigid; (h) a/b = 3/2, PDMS-TBE; (i) a/b = 2, rigid; (j) a/b = 2, PDMS-TBE.

    图 7  PDMS-TBE椭圆柱的声辐射力矩函数随kb的变化关系(kx0 = 0, ky0 = 6, kW0 = 3, α = π/4)

    Fig. 7.  The acoustic radiation torque function plots for a PDMS-TBE elliptical cylinder versus kb (kx0 = 0, ky0 = 6, kW0 = 3, α = π/4).

  • [1]

    Wu J R 1991 J. Acoust. Soc. Am. 89 2140Google Scholar

    [2]

    黄先玉, 蔡飞燕, 李文成, 郑海荣, 何兆剑, 邓科, 赵鹤平 2017 物理学报 66 044301Google Scholar

    Huang X Y, Cai F Y, Li W C, Zheng H R, He Z J, Deng K, Zhao H P 2017 Acta Phys. Sin. 66 044301Google Scholar

    [3]

    Ozcelik A, Rufo J, Guo F, Gu Y Y, Li P, Lata J 2018 Nat. Methods 15 1021Google Scholar

    [4]

    Baudoin M, Thomas J L 2020 Annu. Rev. Fluid Mech. 52 205Google Scholar

    [5]

    Lierke E G 1996 Acustica 82 220

    [6]

    Yarin A L, Pfaffenlehner M, Tropea C 1998 J. Fluid Mech. 356 65Google Scholar

    [7]

    Chung S K, Trinh E H 1998 J. Cryst. Growth 194 384Google Scholar

    [8]

    Mitri F G, Garzon F H, Sinha D N 2011 Rev. Sci. Instrum. 82 034903Google Scholar

    [9]

    Maidanik G 1958 J. Acoust. Soc. Am. 30 620Google Scholar

    [10]

    Fan Z W, Mei D Q, Yang K J, Chen Z C 2008 J. Acoust. Soc. Am. 124 2727Google Scholar

    [11]

    Zhang L K, Marston P L 2011 J. Acoust. Soc. Am. 129 1679Google Scholar

    [12]

    Zhang L K, Marston P L 2011 Phys. Rev. E 84 065601Google Scholar

    [13]

    Silva G T, Lobo T P, Mitri F G 2012 EPL 97 54003Google Scholar

    [14]

    Mitri F G 2012 Phys. Rev. E 85 026602Google Scholar

    [15]

    Mitri F G, Lobo T P, Silva G T 2012 Phys. Rev. E 86 059902Google Scholar

    [16]

    Zhang L K 2018 Phys. Rev. Appl. 10 034039Google Scholar

    [17]

    Gong Z X, Marston P L 2019 Phys. Rev. Appl. 11 064022Google Scholar

    [18]

    Zeng Q, Li L L, Ma H L, Xu J H, Fan Y S, Wang H 2013 Appl. Phys. Lett. 102 213106Google Scholar

    [19]

    Yamahira S, Hatanaka S, Kuwabara M 2000 Jpn. J. Appl. Phys. 39 3683Google Scholar

    [20]

    Shilton R, Tan M K, Yeo L Y, Friend J R 2008 J. Appl. Phys. 104 014910Google Scholar

    [21]

    Hasheminejad S M, Sanaei R 2007 J. Comput. Acoust. 15 377Google Scholar

    [22]

    Wang J T, Dual J 2011 J. Acoust. Soc. Am. 129 3490Google Scholar

    [23]

    Mitri F G 2016 Phys. Fluids 28 077104Google Scholar

    [24]

    Mitri F G 2016 Wave Motion 66 31Google Scholar

    [25]

    Mitri F G 2017 J. Appl. Phys. 121 144901Google Scholar

    [26]

    Wang H B, Gao S, Qiao Y P, Liu J H, Liu X Z 2019 Phys. Fluids 31 047103Google Scholar

    [27]

    Mitri F G 2018 Appl. Phys. 124 054902Google Scholar

    [28]

    Mitri F G, Fellah Z E A, Silva G T 2014 J. Sound Vib. 333 7326Google Scholar

    [29]

    Qiao Y P, Zhang X F, Zhang G B 2017 J. Acoust. Soc. Am. 141 4633Google Scholar

    [30]

    Flax L, Dragonette L R, Uberall H 1978 J. Acoust. Soc. Am. 63 723Google Scholar

    [31]

    Werby M F, Uberall H, Nagl A, Brown S H, Dickey J W 1988 J. Acoust. Soc. Am. 84 1425Google Scholar

    [32]

    Wiegel F W 1979 Phys. Lett. A 70 112Google Scholar

  • [1] 刘腾, 乔玉配, 宫门阳, 刘晓宙. 有界黏性流体中自由球形粒子的声辐射力. 物理学报, 2025, 74(1): 014301. doi: 10.7498/aps.74.20241354
    [2] 刘昀鹏, 李义丰, 蓝君. 基于圆柱形非均匀迷宫结构的动态可调定向声辐射. 物理学报, 2023, 72(6): 064301. doi: 10.7498/aps.72.20222186
    [3] 王燕萍, 蔡飞燕, 李飞, 张汝钧, 李永川, 王金萍, 张欣, 郑海荣. 基于二维声子晶体板共振声场的微粒操控. 物理学报, 2023, 72(14): 144207. doi: 10.7498/aps.72.20230099
    [4] 潘瑞琪, 李凡, 杜芷玮, 胡静, 莫润阳, 王成会. 平面波声场中内置偏心液滴的弹性球壳声辐射力. 物理学报, 2023, 72(5): 054302. doi: 10.7498/aps.72.20222155
    [5] 陈聪, 张若钦, 李锋, 李志远. 基于亚波长管道增强的漩涡声场悬浮操控微粒和液滴的实验研究. 物理学报, 2023, 72(12): 124302. doi: 10.7498/aps.72.20230383
    [6] 臧雨宸, 苏畅, 吴鹏飞, 林伟军. 零阶Bessel驻波场中任意粒子声辐射力和力矩的Born近似. 物理学报, 2022, 71(10): 104302. doi: 10.7498/aps.71.20212251
    [7] 朱纪霖, 高东宝, 曾新吾. 基于相位变换声镊的单个微粒平面移动操控. 物理学报, 2021, 70(21): 214302. doi: 10.7498/aps.70.20210981
    [8] 郭文杰, 李天匀, 朱翔, 屈凯旸. 部分浸没圆柱壳声固耦合计算的半解析法研究. 物理学报, 2018, 67(8): 084302. doi: 10.7498/aps.67.20172681
    [9] 商德江, 钱治文, 何元安, 肖妍. 基于联合波叠加法的浅海信道下圆柱壳声辐射研究. 物理学报, 2018, 67(8): 084301. doi: 10.7498/aps.67.20171963
    [10] 黄先玉, 蔡飞燕, 李文成, 郑海荣, 何兆剑, 邓科, 赵鹤平. 空气中一维声栅对微粒的声操控. 物理学报, 2017, 66(4): 044301. doi: 10.7498/aps.66.044301
    [11] 梁彬, 袁樱, 程建春. 声单向操控研究进展. 物理学报, 2015, 64(9): 094305. doi: 10.7498/aps.64.094305
    [12] 王亮, 曹英晖, 贾峰, 刘震宇. 超椭圆柱面梯度线圈设计. 物理学报, 2014, 63(23): 238301. doi: 10.7498/aps.63.238301
    [13] 段晓敏, 赵新玉, 孙华飞. 矩形表面波探头声场的高斯声束叠加法. 物理学报, 2014, 63(1): 014301. doi: 10.7498/aps.63.014301
    [14] 丁红星, 沈中华, 李加, 祝雪丰, 倪晓武. 复合兰姆波声子晶体中超宽部分禁带. 物理学报, 2012, 61(19): 196301. doi: 10.7498/aps.61.196301
    [15] 王战, 董建峰, 刘锦景, 罗孝阳. 基于线变换的椭圆柱外隐身斗篷的设计研究. 物理学报, 2012, 61(20): 204101. doi: 10.7498/aps.61.204101
    [16] 刘启能. 一维固-固结构圆柱声子晶体中弹性波的传输特性. 物理学报, 2011, 60(3): 034301. doi: 10.7498/aps.60.034301
    [17] 侯春风, 郭汝海. 椭圆柱形量子点的能级结构. 物理学报, 2005, 54(5): 1972-1976. doi: 10.7498/aps.54.1972
    [18] 张碧星, 汪承灏, Anders Bostr?m. 压电条SH声辐射场研究. 物理学报, 2005, 54(5): 2111-2117. doi: 10.7498/aps.54.2111
    [19] 王佐卿, 周素华, 汪承浩. 声表面波在声栅上的Bragg衍射. 物理学报, 1983, 32(2): 156-167. doi: 10.7498/aps.32.156
    [20] 钱祖文. 关于声散射声. 物理学报, 1976, 25(6): 472-480. doi: 10.7498/aps.25.472
计量
  • 文章访问数:  5116
  • PDF下载量:  58
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-03
  • 修回日期:  2020-12-04
  • 上网日期:  2021-04-05
  • 刊出日期:  2021-04-20

/

返回文章
返回