搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

飞秒光纤激光相干合成技术最新进展

王井上 张瑶 王军利 魏志义 常国庆

引用本文:
Citation:

飞秒光纤激光相干合成技术最新进展

王井上, 张瑶, 王军利, 魏志义, 常国庆

Recent progress of coherent combining technology in femtosecond fiber lasers

Wang Jing-Shang, Zhang Yao, Wang Jun-Li, Wei Zhi-Yi, Chang Guo-Qing
PDF
HTML
导出引用
  • 飞秒光纤激光器具有平均功率高、散热性能佳、光束质量好和空间体积小等优势, 在基础研究、工业加工、生物医疗等方面得到越来越广泛的应用. 相干合成技术能够有效克服光纤中有害的非线性效应和热效应的影响, 进一步提高飞秒光纤激光器输出的脉冲能量和平均功率. 本文介绍高功率飞秒光纤激光器相干合成的基本技术路线, 重点阐述相干合成技术中关于填充孔径相干合成与平铺孔径相干合成的最新研究进展, 并详细介绍相干合成技术中不同类型主动相位锁定技术的基本原理. 相信在不远的将来, 飞秒光纤激光相干合成系统的单脉冲能量和平均功率将不断攀升, 从而开创许多崭新的研究领域.
    Widely employed in fundamental research, industrial processing, and biomedicine, femtosecond fiber lasers exhibit many attractive features such as high average power, good heat dissipation, excellent beam quality, and compact footprint. Coherent combining technology can effectively suppress the detrimental nonlinear and thermal effects in the fiber amplifiers, and therefore further increase the output pulse energy and average power of femtosecond fiber lasers. In this article, we mainly discuss different coherent combining techniques in high-power ultrafast Yb-fiber laser systems and the relevant phase-locking methods. We believe that the advent of new coherent combining techniques will further improve the average power and pulse energy of femtosecond fiber laser systems, thereby opening up some new research areas.
      通信作者: 常国庆, guoqing.chang@iphy.ac.cn
      作者简介:
      常国庆, 中国科学院物理研究所特聘研究员, 博士生导师. 在清华大学电子工程系先后获得学士和硕士学位. 2006年在美国密歇根大学电子工程系获得博士学位. 2007年在密歇根大学超快光科学中心从事博士后工作. 2008—2011年在麻省理工学院电子工程系先从事博士后工作, 后任研究员. 2012—2017年, 获聘Helmholtz研究员, 在德国自由电子激光科学中心创建超快激光与相干成像实验室, 担任实验室主任 (永久职位). 2017年加入中国科学院物理研究所. 现担任美国光学学会Optics Express编委、《光电产品与资讯》编委、中国激光杂志社青年编委、《光子学报》编委. 主要研究方向包括高功率高能量超快光纤激光技术、超快生物光子学、超快中红外激光技术等
    • 基金项目: 广东省重点领域研发计划(批准号: 2018B090904003)、国家自然科学基金(批准号: 11774234, 91850209)和用于三维生物模型大深度和高精度成像的新型多光子显微镜研制项目(批准号: YJKYYQ20190034)资助的课题
      Corresponding author: Chang Guo-Qing, guoqing.chang@iphy.ac.cn
    • Funds: Project supported by the Key-Area R&D Program of Guangdong Province, China (Grant No. 2018B090904003), the National Natural Science Foundation of China (Grant Nos. 11774234, 91850209), and the Program of Development of a New Multiphoton Microscope for Large Depth and High Precision Imaging of Three-dimensional Biological Models, China (Grant No. YJKYYQ20190034).
    [1]

    Esmiller B, Jacquelard C, Eckel H A, Wnuk E 2014 Appl. Opt. 53 I45Google Scholar

    [2]

    Leemans W, Chou W, Uesaka M 2011 ICFA Beam Dyn. Newsl. 56 10

    [3]

    Abhari R S, Rollinger B, Giovannini A Z, Morris O, Henderson I, Ellwi S S 2012 J. Micro/Nanolithogr. MEMS MOEMS 11 021114Google Scholar

    [4]

    Jauregui C, Limpert J, Tünnermann A 2013 Nat. Photonics 7 861Google Scholar

    [5]

    Eidam T, Hanf S, Seise E, Andersen T V, Gabler T, Wirth C, Schreiber T, Limpert J, Tünnermann A 2010 Opt. Lett. 35 94Google Scholar

    [6]

    Eidam T, Wirth C, Jauregui C, Stutzki F, Jansen F, Otto H J, Schmidt O, Schreiber T, Limpert J, Tünnermann A 2011 Opt. Express 19 13218Google Scholar

    [7]

    Galvanauskas A, Fermann M, Harter D 1994 Opt. Lett. 19 1201Google Scholar

    [8]

    Jauregui C, Stihler C, Limpert J 2020 Adv. Opt. Photonics 12 429Google Scholar

    [9]

    Zervas M N 2019 Opt. Express 27 19019Google Scholar

    [10]

    Stutzki F, Jansen F, Otto H J, Jauregui C, Limpert J, Tünnermann A 2014 Optica 1 233Google Scholar

    [11]

    Eidam T, Rothhardt J, Stutzki F, Jansen F, Hädrich S, Carstens H, Jauregui C, Limpert J, Tünnermann A 2011 Opt. Express 19 255Google Scholar

    [12]

    Wan P, Yang L M, Liu J 2013 Opt. Express 21 29854Google Scholar

    [13]

    程勇, 刘洋, 许立新 2007 红外与激光工程 36 163Google Scholar

    Cheng Y, Liu Y, Xu L X 2007 Infrared and Laser Engineering 36 163Google Scholar

    [14]

    王小林, 周朴, 粟荣涛, 马鹏飞, 陶汝茂, 马阎星, 许晓军, 刘泽金 2017 中国激光 44 0201001Google Scholar

    Wang X L, Zhou P, Li R T, Ma P F, Tao R M, Ma Y X, Xu X J, Liu Z J 2017 Chin. J. Laser 44 0201001Google Scholar

    [15]

    Mourou G A, Hulin D, Galvanauskas A 2006 AIP Conf. Proc. Varenna, Italy, September 19−24, 2005 pp152–163

    [16]

    Veldkamp W B, Leger J R, Swanson G J 1986 Opt. Lett. 11 303Google Scholar

    [17]

    Hassan M T, Luu T T, Moulet A, Raskazovskaya O, Zhokhov P, Garg M, Karpowicz N, Zheltikov A, Pervak V, Krausz F 2016 Nature 530 66Google Scholar

    [18]

    Mourou G, Brocklesby B, Tajima T, Limpert J 2013 Nat. Photonics 7 258Google Scholar

    [19]

    Chang G, Wei Z 2020 Science 23 101101Google Scholar

    [20]

    Stark H, Buldt J, Müller M, Klenke A, Tünnermann A, Limpert J 2019 Opt. Lett. 44 5529Google Scholar

    [21]

    Müller M, Aleshire C, Klenke A, Haddad E, Légaré F, Tünnermann A, Limpert J 2020 Opt. Lett. 45 3083Google Scholar

    [22]

    Hanna M, Guichard F, Zaouter Y, Papadopoulos D N, Druon F, Georges P 2016 J. Phys. B: At. Mol. Opt. Phys 49 062004Google Scholar

    [23]

    Klenke A, Müller M, Stark H, Kienel M, Jauregui C, Tünnermann A, Limpert J 2018 IEEE J. Sel. Top. Quantum Electron. 24 1Google Scholar

    [24]

    杨康文, 郝强, 曾和平 2018 红外与激光工程 47 103004Google Scholar

    Yang K W, Hao Q, Zeng H P 2018 Infrared and Laser Engineering 47 103004Google Scholar

    [25]

    王郁飞, 李雷, 赵鹭明 2018 红外与激光工程 47 803010Google Scholar

    Wang Y F, Li L, Zhao L M 2018 Infrared and Laser Engineering 47 803010Google Scholar

    [26]

    粟荣涛, 周朴, 张鹏飞, 王小林, 马阎星, 马鹏飞 2018 红外与激光工程 47 0103001Google Scholar

    Su R T, Zhou P, Zhang P F, Wang X L, Ma Y X, Ma P F 2018 Infrared and Laser Engineering 47 0103001Google Scholar

    [27]

    Liu Z, Jin X, Su R, Ma P, Zhou P 2019 Science China Information Sciences 62 41301Google Scholar

    [28]

    Müller M, Klenke A, Steinkopff A, Stark H, Tünnermann A, Limpert J 2018 Opt. Lett. 43 6037Google Scholar

    [29]

    Zhou S, Wise F W, Ouzounov D G 2007 Opt. Lett. 32 871Google Scholar

    [30]

    Seise E, Klenke A, Limpert J, Tünnermann A 2010 Opt. Express 18 27827Google Scholar

    [31]

    Klenke A, Seise E, Limpert J, Tünnermann A 2011 Opt. Express 19 25379Google Scholar

    [32]

    Müller M, Kienel M, Klenke A, Gottschall T, Shestaev E, Plötner M, Limpert J, Tünnermann A 2016 Opt. Lett. 41 3439Google Scholar

    [33]

    Müeller M, Klenke A, Stark H, Buldt J, Gottschall T, Tünnermann A, Limpert J 2018 Fiber Lasers XV: Technology and Systems San Francisco, California, United States, February, 26, 2018 p1051208

    [34]

    Kienel M, Müller M, Klenke A, Eidam T, Limpert J, Tünnermann A 2015 Opt. Lett. 40 522Google Scholar

    [35]

    Kienel M, Müller M, Klenke A, Limpert J, Tünnermann A 2016 Opt. Lett. 41 3343Google Scholar

    [36]

    Zhou T, Ruppe J, Zhu C, Hu I N, Nees J, Galvanauskas A 2015 Opt. Express 23 7442Google Scholar

    [37]

    Breitkopf S, Wunderlich S, Eidam T, Shestaev E, Holzberger S, Gottschall T, Carstens H, Tünnermann A, Pupeza I, Limpert J 2016 Appl. Phys. B 122 297Google Scholar

    [38]

    Astrauskas I, Kaksis E, Flöry T, Andriukaitis G, Pugžlys A, Baltuška A, Ruppe J, Chen S, Galvanauskas A, Balčiūnas T 2017 Opt. Lett. 42 2201Google Scholar

    [39]

    Yang B, Liu G, Abulikemu A, Wang Y, Wang A, Zhang Z 2020 CLEO: Applications and Technology Washington DC, United States, May 10–15, 2020 pJW2F.28

    [40]

    Fang X H, Hu M L, Liu B W, Chai L, Wang C Y, Zheltikov A M 2010 Opt. Lett. 35 2326Google Scholar

    [41]

    Klenke A, Müller M, Stark H, Stutzki F, Hupel C, Schreiber T, Tünnermann A, Limpert J 2018 Opt. Lett. 43 1519Google Scholar

    [42]

    Aleshire C, Steinkopff A, Jauregui C, Klenke A, Tünnermann A, Limpert J 2020 Opt. Express 28 21035Google Scholar

    [43]

    Heilmann A, Le Dortz J, Daniault L, Fsaifes I, Bellanger S, Bourderionnet J, Larat C, Lallier E, Antier M, Durand E 2018 Opt. Express 26 31542Google Scholar

    [44]

    Brignon A 2013 Coherent Laser Beam Combining (New Jersey: John Wiley & Sons) pp130−132

    [45]

    Fsaifes I, Daniault L, Bellanger S, Veinhard M, Bourderionnet J, Larat C, Lallier E, Durand E, Brignon A, Chanteloup J C 2020 Opt. Express 28 20152Google Scholar

    [46]

    Guichard F, Zaouter Y, Hanna M, Mai K L, Morin F, Hönninger C, Mottay E, Georges P 2015 Opt. Lett. 40 89Google Scholar

    [47]

    Kienel M, Klenke A, Eidam T, Hädrich S, Limpert J, Tünnermann A 2014 Opt. Lett. 39 1049Google Scholar

    [48]

    Augst S J, Fan T, Sanchez A 2004 Opt. Lett. 29 474Google Scholar

    [49]

    Hansch T, Couillaud B 1980 Opt. Commun. 35 441Google Scholar

    [50]

    Shay T M 2006 Opt. Express 14 12188Google Scholar

    [51]

    Vorontsov M A, Carhart G W, Ricklin J C 1997 Opt. Lett. 22 907Google Scholar

    [52]

    Tünnermann H, Shirakawa A 2019 Opt. Express 27 24223Google Scholar

    [53]

    Groß P, Boller K J, Klein M E 2005 Phys. Rev. A 71 043824Google Scholar

    [54]

    Ramirez L P, Hanna M, Bouwmans G, El Hamzaoui H, Bouazaoui M, Labat D, Delplace K, Pouysegur J, Guichard F, Rigaud P 2015 Opt. Express 23 5406Google Scholar

  • 图 1  TMI示意图[8]

    Fig. 1.  Schematic representation of TMI[8].

    图 2  掺Yb光纤CPA系统的脉冲能量与平均功率的关系(三角形, 单路; 圆圈, 结合了分脉冲放大(DPA)和空间相干合成(CBC)的CPA系统; 虚线表示脉冲重频)[19]

    Fig. 2.  Pulse energy as a function of average power for Yb-fiber CPA systems. Triangles, single emitters; circles, CPA systems incorporating divided pulse amplification (DPA) and coherent beam combining (CBC). Dashed lines mark the repetition rate[19].

    图 3  (a)填充孔径相干合成; (b)平铺孔径相干合成

    Fig. 3.  (a) Filled aperture coherent combination; (b) tiled aperture coherent combination.

    图 4  (a), (b)空间上的分束与合成; (c), (d) 时间上的分束与合成

    Fig. 4.  (a), (b) Splitting and combining in space domain; (c), (d) splitting and combining in time domain.

    图 5  12路相干合成的装置图[21]

    Fig. 5.  Setup of twelve channel coherent beam combination[21].

    图 6  多维度相干合成实验装置图[35]

    Fig. 6.  Experimental setup of multi-dimension coherent combination[35].

    图 7  使用EOM的多维度相干合成实验装置图[20]

    Fig. 7.  Experimental setup of multi-dimension coherent combination using EOM[20].

    图 8  七芯光子晶体光纤横截面的扫描电子显微镜图像[40]

    Fig. 8.  Scanning electron microscope images of a seven-core photonic crystal fiber cross section[40].

    图 9  多芯光纤相干合成的实验装置图[41]

    Fig. 9.  Setup of coherent combination in multi-core fiber[41].

    图 10  三种简化的SMS设计变体(R1, R2, R3表示多个输入光束之间共享的不同反射率镀膜区域; N1, N2, N3表示每个镀膜区域共享的光束数目)[42]

    Fig. 10.  Three simplified SMS design variants. R1, R2, R3 indicate reflectivity of coating sections shared between multiple input beams. N1, N2, N3 indicate the number of beams shared in each coating section[42].

    图 11  CBC实验装置图[43]

    Fig. 11.  Setup of CBC [43].

    图 12  采用 61根光纤合束的端面实物图[45]

    Fig. 12.  Image of the end face of 61 fibers[45].

    图 13  61根光纤相干合成实验装置图[45]

    Fig. 13.  Setup of 61 fibers coherent combination[45].

    图 14  HC装置示意图 [53]

    Fig. 14.  Setup of HC device[53].

    表 1  不同合成方法的最佳参数与特点

    Table 1.  The best parameters and characteristics of different combining methods

    技术名称子类截至目前最佳参数特点
    填充孔径空间合成P = 10.4 kW; E = 0.13 mJ; η = 96%[21]有效提高系统的平均功率
    时间合成有效提高脉冲能量
    多维度相干合成P = 674 W; E = 23 mJ; η = 71%[20]同时提高脉冲能量与平均功率
    多芯合成P = 205 W; E = 20.5 μJ; η = 80%[41]减少空间体积, 简化实验装置
    平铺孔径P = 1.5 kW; E = 750 μJ; η = 48%[45]合成效率低, 但合成通道数潜力巨大
    下载: 导出CSV
  • [1]

    Esmiller B, Jacquelard C, Eckel H A, Wnuk E 2014 Appl. Opt. 53 I45Google Scholar

    [2]

    Leemans W, Chou W, Uesaka M 2011 ICFA Beam Dyn. Newsl. 56 10

    [3]

    Abhari R S, Rollinger B, Giovannini A Z, Morris O, Henderson I, Ellwi S S 2012 J. Micro/Nanolithogr. MEMS MOEMS 11 021114Google Scholar

    [4]

    Jauregui C, Limpert J, Tünnermann A 2013 Nat. Photonics 7 861Google Scholar

    [5]

    Eidam T, Hanf S, Seise E, Andersen T V, Gabler T, Wirth C, Schreiber T, Limpert J, Tünnermann A 2010 Opt. Lett. 35 94Google Scholar

    [6]

    Eidam T, Wirth C, Jauregui C, Stutzki F, Jansen F, Otto H J, Schmidt O, Schreiber T, Limpert J, Tünnermann A 2011 Opt. Express 19 13218Google Scholar

    [7]

    Galvanauskas A, Fermann M, Harter D 1994 Opt. Lett. 19 1201Google Scholar

    [8]

    Jauregui C, Stihler C, Limpert J 2020 Adv. Opt. Photonics 12 429Google Scholar

    [9]

    Zervas M N 2019 Opt. Express 27 19019Google Scholar

    [10]

    Stutzki F, Jansen F, Otto H J, Jauregui C, Limpert J, Tünnermann A 2014 Optica 1 233Google Scholar

    [11]

    Eidam T, Rothhardt J, Stutzki F, Jansen F, Hädrich S, Carstens H, Jauregui C, Limpert J, Tünnermann A 2011 Opt. Express 19 255Google Scholar

    [12]

    Wan P, Yang L M, Liu J 2013 Opt. Express 21 29854Google Scholar

    [13]

    程勇, 刘洋, 许立新 2007 红外与激光工程 36 163Google Scholar

    Cheng Y, Liu Y, Xu L X 2007 Infrared and Laser Engineering 36 163Google Scholar

    [14]

    王小林, 周朴, 粟荣涛, 马鹏飞, 陶汝茂, 马阎星, 许晓军, 刘泽金 2017 中国激光 44 0201001Google Scholar

    Wang X L, Zhou P, Li R T, Ma P F, Tao R M, Ma Y X, Xu X J, Liu Z J 2017 Chin. J. Laser 44 0201001Google Scholar

    [15]

    Mourou G A, Hulin D, Galvanauskas A 2006 AIP Conf. Proc. Varenna, Italy, September 19−24, 2005 pp152–163

    [16]

    Veldkamp W B, Leger J R, Swanson G J 1986 Opt. Lett. 11 303Google Scholar

    [17]

    Hassan M T, Luu T T, Moulet A, Raskazovskaya O, Zhokhov P, Garg M, Karpowicz N, Zheltikov A, Pervak V, Krausz F 2016 Nature 530 66Google Scholar

    [18]

    Mourou G, Brocklesby B, Tajima T, Limpert J 2013 Nat. Photonics 7 258Google Scholar

    [19]

    Chang G, Wei Z 2020 Science 23 101101Google Scholar

    [20]

    Stark H, Buldt J, Müller M, Klenke A, Tünnermann A, Limpert J 2019 Opt. Lett. 44 5529Google Scholar

    [21]

    Müller M, Aleshire C, Klenke A, Haddad E, Légaré F, Tünnermann A, Limpert J 2020 Opt. Lett. 45 3083Google Scholar

    [22]

    Hanna M, Guichard F, Zaouter Y, Papadopoulos D N, Druon F, Georges P 2016 J. Phys. B: At. Mol. Opt. Phys 49 062004Google Scholar

    [23]

    Klenke A, Müller M, Stark H, Kienel M, Jauregui C, Tünnermann A, Limpert J 2018 IEEE J. Sel. Top. Quantum Electron. 24 1Google Scholar

    [24]

    杨康文, 郝强, 曾和平 2018 红外与激光工程 47 103004Google Scholar

    Yang K W, Hao Q, Zeng H P 2018 Infrared and Laser Engineering 47 103004Google Scholar

    [25]

    王郁飞, 李雷, 赵鹭明 2018 红外与激光工程 47 803010Google Scholar

    Wang Y F, Li L, Zhao L M 2018 Infrared and Laser Engineering 47 803010Google Scholar

    [26]

    粟荣涛, 周朴, 张鹏飞, 王小林, 马阎星, 马鹏飞 2018 红外与激光工程 47 0103001Google Scholar

    Su R T, Zhou P, Zhang P F, Wang X L, Ma Y X, Ma P F 2018 Infrared and Laser Engineering 47 0103001Google Scholar

    [27]

    Liu Z, Jin X, Su R, Ma P, Zhou P 2019 Science China Information Sciences 62 41301Google Scholar

    [28]

    Müller M, Klenke A, Steinkopff A, Stark H, Tünnermann A, Limpert J 2018 Opt. Lett. 43 6037Google Scholar

    [29]

    Zhou S, Wise F W, Ouzounov D G 2007 Opt. Lett. 32 871Google Scholar

    [30]

    Seise E, Klenke A, Limpert J, Tünnermann A 2010 Opt. Express 18 27827Google Scholar

    [31]

    Klenke A, Seise E, Limpert J, Tünnermann A 2011 Opt. Express 19 25379Google Scholar

    [32]

    Müller M, Kienel M, Klenke A, Gottschall T, Shestaev E, Plötner M, Limpert J, Tünnermann A 2016 Opt. Lett. 41 3439Google Scholar

    [33]

    Müeller M, Klenke A, Stark H, Buldt J, Gottschall T, Tünnermann A, Limpert J 2018 Fiber Lasers XV: Technology and Systems San Francisco, California, United States, February, 26, 2018 p1051208

    [34]

    Kienel M, Müller M, Klenke A, Eidam T, Limpert J, Tünnermann A 2015 Opt. Lett. 40 522Google Scholar

    [35]

    Kienel M, Müller M, Klenke A, Limpert J, Tünnermann A 2016 Opt. Lett. 41 3343Google Scholar

    [36]

    Zhou T, Ruppe J, Zhu C, Hu I N, Nees J, Galvanauskas A 2015 Opt. Express 23 7442Google Scholar

    [37]

    Breitkopf S, Wunderlich S, Eidam T, Shestaev E, Holzberger S, Gottschall T, Carstens H, Tünnermann A, Pupeza I, Limpert J 2016 Appl. Phys. B 122 297Google Scholar

    [38]

    Astrauskas I, Kaksis E, Flöry T, Andriukaitis G, Pugžlys A, Baltuška A, Ruppe J, Chen S, Galvanauskas A, Balčiūnas T 2017 Opt. Lett. 42 2201Google Scholar

    [39]

    Yang B, Liu G, Abulikemu A, Wang Y, Wang A, Zhang Z 2020 CLEO: Applications and Technology Washington DC, United States, May 10–15, 2020 pJW2F.28

    [40]

    Fang X H, Hu M L, Liu B W, Chai L, Wang C Y, Zheltikov A M 2010 Opt. Lett. 35 2326Google Scholar

    [41]

    Klenke A, Müller M, Stark H, Stutzki F, Hupel C, Schreiber T, Tünnermann A, Limpert J 2018 Opt. Lett. 43 1519Google Scholar

    [42]

    Aleshire C, Steinkopff A, Jauregui C, Klenke A, Tünnermann A, Limpert J 2020 Opt. Express 28 21035Google Scholar

    [43]

    Heilmann A, Le Dortz J, Daniault L, Fsaifes I, Bellanger S, Bourderionnet J, Larat C, Lallier E, Antier M, Durand E 2018 Opt. Express 26 31542Google Scholar

    [44]

    Brignon A 2013 Coherent Laser Beam Combining (New Jersey: John Wiley & Sons) pp130−132

    [45]

    Fsaifes I, Daniault L, Bellanger S, Veinhard M, Bourderionnet J, Larat C, Lallier E, Durand E, Brignon A, Chanteloup J C 2020 Opt. Express 28 20152Google Scholar

    [46]

    Guichard F, Zaouter Y, Hanna M, Mai K L, Morin F, Hönninger C, Mottay E, Georges P 2015 Opt. Lett. 40 89Google Scholar

    [47]

    Kienel M, Klenke A, Eidam T, Hädrich S, Limpert J, Tünnermann A 2014 Opt. Lett. 39 1049Google Scholar

    [48]

    Augst S J, Fan T, Sanchez A 2004 Opt. Lett. 29 474Google Scholar

    [49]

    Hansch T, Couillaud B 1980 Opt. Commun. 35 441Google Scholar

    [50]

    Shay T M 2006 Opt. Express 14 12188Google Scholar

    [51]

    Vorontsov M A, Carhart G W, Ricklin J C 1997 Opt. Lett. 22 907Google Scholar

    [52]

    Tünnermann H, Shirakawa A 2019 Opt. Express 27 24223Google Scholar

    [53]

    Groß P, Boller K J, Klein M E 2005 Phys. Rev. A 71 043824Google Scholar

    [54]

    Ramirez L P, Hanna M, Bouwmans G, El Hamzaoui H, Bouazaoui M, Labat D, Delplace K, Pouysegur J, Guichard F, Rigaud P 2015 Opt. Express 23 5406Google Scholar

  • [1] 史卓, 常洪祥, 王栋梁, 郭鸿宇, 董自凯, 杜志航, 梁成斌, 李灿, 周朴, 魏志义, 常国庆. 基于掺镱棒状光纤的高功率大能量四路相干合成飞秒激光系统. 物理学报, 2025, 74(1): . doi: 10.7498/aps.74.20241476
    [2] 王栋梁, 史卓, 王井上, 吴洪悦, 张晓辉, 常国庆. 1 MHz, 273 W掺镱棒状光纤啁啾脉冲放大系统. 物理学报, 2024, 73(13): 134204. doi: 10.7498/aps.73.20240300
    [3] 张万儒, 陈思雨, 粟荣涛, 姜曼, 李灿, 马阎星, 周朴. 增益开关线偏振单频脉冲光纤激光器. 物理学报, 2022, 71(19): 194204. doi: 10.7498/aps.71.20220829
    [4] 文锦辉, 胡婷, 吴琴菲. 快速扫描频率分辨光学开关装置测量超短激光脉冲. 物理学报, 2019, 68(11): 110601. doi: 10.7498/aps.68.20190034
    [5] 粟荣涛, 肖虎, 周朴, 王小林, 马阎星, 段磊, 吕品, 许晓军. 窄线宽脉冲光纤激光的自相位调制预补偿研究. 物理学报, 2018, 67(16): 164201. doi: 10.7498/aps.67.20180486
    [6] 黄沛, 方少波, 黄杭东, 侯洵, 魏志义. 基于平衡光学互相关方法的超短脉冲激光相干合成技术. 物理学报, 2018, 67(24): 244204. doi: 10.7498/aps.67.20181851
    [7] 王少奇, 邓颖, 张永亮, 李超, 王方, 康民强, 罗韵, 薛海涛, 胡东霞, 粟敬钦, 郑奎兴, 朱启华. 掺Er3+氟化物光纤振荡器中红外超短脉冲的产生. 物理学报, 2016, 65(4): 044206. doi: 10.7498/aps.65.044206
    [8] 马晓璐, 李培丽, 郭海莉, 张一, 朱天阳, 曹凤娇. 基于单模光纤的交叉相位调制型频率分辨光学开关超短脉冲测量. 物理学报, 2014, 63(24): 240601. doi: 10.7498/aps.63.240601
    [9] 汪超, 韦辉, 王江峰, 姜有恩, 范薇, 李学春. 激光二极管抽运的高重频高平均功率Nd:YAG激光器. 物理学报, 2014, 63(22): 224204. doi: 10.7498/aps.63.224204
    [10] 耿超, 罗文, 谭毅, 刘红梅, 牟进博, 李新阳. 基于自适应桶中功率评价函数的光纤放大器相干合成实验研究. 物理学报, 2013, 62(22): 224202. doi: 10.7498/aps.62.224202
    [11] 粟荣涛, 周朴, 王小林, 冀翔, 许晓军. 不同波形脉冲激光的时域误差对相干合成的影响. 物理学报, 2012, 61(8): 084206. doi: 10.7498/aps.61.084206
    [12] 朱亚东, 肖虎, 王小林, 马阎星, 周朴. 利用全光纤结构Michelson腔实现两路高功率双包层光纤激光器相干合成. 物理学报, 2012, 61(5): 054210. doi: 10.7498/aps.61.054210
    [13] 王小林, 周朴, 马阎星, 马浩统, 李霄, 许晓军, 赵伊君. 基于相位调制-解调的光纤激光相位噪声检测方法研究. 物理学报, 2011, 60(8): 084203. doi: 10.7498/aps.60.084203
    [14] 耿超, 李新阳, 张小军, 饶长辉. 倾斜相差对光纤激光相干合成的影响与模拟校正. 物理学报, 2011, 60(11): 114202. doi: 10.7498/aps.60.114202
    [15] 薛宇豪, 周军, 何兵, 李震, 漆云凤, 刘驰, 楼祺洪. 基于空间滤波的光纤激光被动相位锁定技术研究. 物理学报, 2010, 59(11): 7869-7874. doi: 10.7498/aps.59.7869
    [16] 王小林, 周朴, 马阎星, 马浩统, 许晓军, 刘泽金, 赵伊君. 基于随机并行梯度下降算法的多波长激光相干合成. 物理学报, 2010, 59(8): 5474-5478. doi: 10.7498/aps.59.5474
    [17] 王小林, 周朴, 马阎星, 马浩统, 许晓军, 刘泽金, 赵伊君. 基于随机并行梯度下降算法光纤激光相干合成的高精度相位控制系统. 物理学报, 2010, 59(2): 973-979. doi: 10.7498/aps.59.973
    [18] 马再如, 冯国英, 陈建国, 朱启华, 曾小明, 刘文兵, 周寿桓. 多个超短脉冲相干叠加构成窄带平顶长脉冲的研究. 物理学报, 2007, 56(2): 933-940. doi: 10.7498/aps.56.933
    [19] 李曙光, 周桂耀, 邢光龙, 侯蓝田, 王清月, 栗岩锋, 胡明列. 微结构光纤中超短激光脉冲传输的数值模拟. 物理学报, 2005, 54(4): 1599-1606. doi: 10.7498/aps.54.1599
    [20] 刘兰琴, 彭翰生, 魏晓峰, 朱启华, 黄小军, 王晓东, 周凯南, 曾小明, 王 逍, 郭 仪, 袁晓东, 彭志涛, 唐晓东. 高功率超短脉冲激光系统中用AOPDF实现增益窄化补偿的实验研究. 物理学报, 2005, 54(6): 2764-2768. doi: 10.7498/aps.54.2764
计量
  • 文章访问数:  12999
  • PDF下载量:  563
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-10-12
  • 修回日期:  2020-11-24
  • 上网日期:  2021-01-26
  • 刊出日期:  2021-02-05

/

返回文章
返回