-
局部放电是导致电力设备绝缘劣化或击穿的重要原因之一. 为此, 结合即到达时差法定位原理, 在广义互相关法的基础上, 引入量子遗传算法对局部放电源进行精准定位. 而后以声波传播损耗、反射及折射现象导致的声压衰减效应为研究切入点, 首次建立局部放电源超声波信号标定的数学模型. 结果表明: 在针-板放电模型中, 利用量子遗传算法计算的局部放电源较为精准, 其最大偏差为(0.27 ± 0.13) cm, 与遗传算法、模拟退火算法、粒子群优化算法以及广义互相关法相比, 其定位精度分别提高了33.57%, 41.51%, 32.12%以及87.26%. 与此同时, 由于声压衰减效应, 当测量得到的超声信号电压幅值相同时, 随着测试距离增大, 放电源处的视在放电量逐渐增加. 若测试距离为37.80 cm时, 局部放电源的视在放电量为633.83 pC, 与7.00 cm相比, 放电强度增大了28.51%. 局部放电源的放电曲线与标定拟合曲线几乎完全重合, 验证了放电源放电程度标定模型的准确性.In the insulation system of power equipment, the partial discharge (PD) of short period does not cause the insulation to produce the penetrating breakdown, however the long-term PD of is one of the important causes of local deterioration, and even breakdown in dielectric. Therefore, it is very important to study the location of PD source and the calibration of discharge intensity. To achieve this, in this paper we take the needle-plate discharge model for example and go through the following steps respectively. Firstly, combined with the positive correlation between the ultrasonic signal and the apparent discharge magnitude in the process of PD, the ultrasonic method to detect partial discharge can be implemented. Then, based on the principle of time difference of arrival method (TDOAM), the accuracy of location is analyzed by using quantum genetic algorithm (QGA), genetic algorithm (GA), simulated annealing algorithm (SAA), particle swarm optimization (PSO) and generalized cross correlation method (GCC), respectively. And thus, starting from the study of the attenuation effect of sound pressure caused by the propagation loss, reflection and refraction of acoustic wave, the calibration model of PD intensity is established for the first time after determining the location of PD source with high precision. Some important findings are extracted from simulations and experimental results. First, the localization algorithm of PD source with high precision is observed. The localization of PD source by means of QGA is the most accurate, with maximum deviation of (0.27 ± 0.13) cm. Comparing with GA, SAA, PSO and GCC, the accuracy of location is improved by 33.57%, 41.51%, 32.11% and 87.26%, respectively. Second, due to the attenuation effect of sound pressure, when the measured voltage amplitude of ultrasonic signal is the same, the apparent discharge magnitude of PD source gradually increases with the test distance increasing. When the test distance is 37.80 cm, the apparent discharge magnitude of PD source is 633.83 pC, which increases by 28.51% compared with 7.00 cm. Moreover, simulation results and measurement results are compared with each other and they are well consistent. The discharge curve almost coincides with the calibration fitting curve of PD source when the test distance is 7.00 cm. Finally, it is concluded that the discharge intensity calibration model of PD source is accurate, which is of great significance in evaluating the extent of insulation damage.
-
Keywords:
- partial discharge /
- localization of ultrasonic method /
- discharge intensity /
- mathematical model
[1] 李丹, 胡海云 2014 物理学报 63 117701Google Scholar
Li D, Hu H Y 2014 Acta Phys. Sin. 63 117701Google Scholar
[2] Lü Z P, Rowland S M, Chen S Y, Zheng H L 2018 IEEE Trans. Dielectr. Electr. Insul. 25 1999Google Scholar
[3] 赵法强, 唐明, 郭飞飞 2020 电线电缆 63 20Google Scholar
Zhao F Q, Tang M, Guo F F 2020 Electric Wire & Cable 63 20Google Scholar
[4] Romano P, Presti G, Imburgia A, Candela R 2018 IEEE Electr. Insul. M. 34 32Google Scholar
[5] 李军浩, 韩旭涛, 刘泽辉, 李彦明 2015 高电压技术 41 2583Google Scholar
Li J H, Han X T, Liu Z H, Li Y M 2015 High Voltage Eng. 41 2583Google Scholar
[6] Heredia L C C, Mor A R 2019 Int. J. Electr. Power Energy Syst. 107 224Google Scholar
[7] Callender G, Golosnoy I O, Rapisarda P, Lewin P L 2018 J. Phys. D: Appl. Phys. 51 125601Google Scholar
[8] 杜劲超, 陈伟根, 张知先, 杨贤 2020 高电压技术 46 2185Google Scholar
Du J C, Chen W G, Zhang Z X, Yang X 2020 High Voltage Eng. 46 2185Google Scholar
[9] 夏睿, 谭笑, 陈杰, 刘洋, 胡丽斌, 李陈莹, 王伟 2020 绝缘材料 53 95Google Scholar
Xia R, Tan X, Chen J, Liu J, Hu L B, Li C Y, Wang W 2020 Insulating Mater. 53 95Google Scholar
[10] 曾喆昭, 周勇, 胡凯 2015 物理学报 64 070505Google Scholar
Zeng Z Z, Zhou Y, Hu K 2015 Acta Phys. Sin. 64 070505Google Scholar
[11] 张若兵, 金森, 杜钢 2020 高电压技术 46 273Google Scholar
Zhang R B, Jin S, Du G 2020 High Voltage Eng. 46 273Google Scholar
[12] Ahmed Z, Hussain G A, Lehtonen M, Varacka L, Kudelcik J 2016 17 th International Scientific Conference on Electric Power Engineering Prague, Czech Republic, May 16-18, 2016 p1
[13] Iorkyase E T, Tachtatzis C, Atkinson R C, Glover I A 2015 Loughborough Antennas & Propagation Conference UK, Loughborough, November 2−3, 2015 p1
[14] 卢毅, 楼樟达 1999 电工技术学报 14 51Google Scholar
Lu Y, Lou Z D 1999 Trans. Chin. Electrotech. Soc. 14 51Google Scholar
[15] Li Y Q, Lu F C, Xie H L, Yin M 2004 International Conference on Power System Technology Singapore, Singapore, November 21–24, 2004 p1371
[16] 吴治国 2007 硕士学位论文 (武汉: 华中科技大学)
Wu Z G 2007 M. S. Thesis (Wuhan: Huazhong University of Science & Technology) (in Chinese)
[17] Veloso G F C, da Silva L E B, Noronha I, Lambert-Torres G 2008 IEEE International Symposium on Industrial Electronics Cambridge, UK, June 30–July 2, 2008 p1003
[18] Tang L J, Luo R C, Deng M, Su J 2008 IEEE Trans. Dielectr. Electr. Insul. 15 492Google Scholar
[19] 张丽君, 谢庆, 李菱, 律方成 2012 高压电器 48 30Google Scholar
Zhang L J, Xie Q, Li L, Lv F C 2012 High Voltage Apparatus 48 30Google Scholar
[20] 谢庆, 律方成, 李燕青, 黄华平, 李宁远, 谭向宇 2014 电工技术学报 26 217Google Scholar
Xie Q, Lv F C, Li Y Q, Huang H P, Li N Y, Tan X Y 2014 Trans. Chin. Electrotech.l Soc. 26 217Google Scholar
[21] 瞿磊 2020 硕士学位论文 (上海: 上海电机学院)
Qu L 2020 M. S. Thesis (Shanghai: Shanghai Dian Ji university) (in Chinese)
[22] Zhu Y C, Zhou L, Xu H S 2020 Neural Comput. Appl. 32 1775Google Scholar
[23] Zhu M X, Wang Y B, Liu Q, Zhang J N, Deng J B, Zhang G J, Shao X J, He W L 2017 IEEE Trans. Dielectr. Electr. Insul. 24 157Google Scholar
[24] 张磊祺, 盛博杰, 姜伟, 周文俊, 田智, 唐泽洋 2015 高电压技术 41 1204Google Scholar
Zhang L Q, Sheng B J, Jiang W, Zhou W J, Tian Z, Tang Z Y 2015 High Voltage Eng. 41 1204Google Scholar
[25] 吴勇峰, 黄绍平, 金国彬 2013 物理学报 62 130505Google Scholar
Wu Y F, Huang S P, Jin G B 2013 Acta Phys. Sin. 62 130505Google Scholar
[26] 杜锦阳 2013 硕士学位论文 (哈尔滨: 哈尔滨理工大学)
Du J Y 2013 M. S. Thesis (Harbin: Harbin University of Science and Technology) (in Chinese)
[27] 芦翔 2017 硕士学位论文 (哈尔滨: 哈尔滨理工大学)
Lu X 2017 M. S. Thesis (Harbin: Harbin University of Science and Technology) (in Chinese)
[28] Morshuis P H F 2005 IEEE Trans. Dielectr. Eectrl. Insul. 12 905Google Scholar
[29] Liu H L 2016 Appl. Acoust. 102 71Google Scholar
[30] Zhu M X, Li J C, Chang D G, Zhang G J, Chen J M 2018 Energies 11 1813Google Scholar
[31] Smith J S, Baginski M E 2019 IEEE Trans. Antennas Propag. 67 2934Google Scholar
[32] Xiao Z K, Xu C G, Xiao D G, Liu F, Yin M 2017 Exp. Tech. 41 389Google Scholar
[33] Gao S G, Zhang Y, Xie Q, Kan Y Q, Li S, Liu D, Lv F C 2017 Energies 10 593Google Scholar
[34] Xie Q, Li T, Tao J H, Liu X Y, Liu D, Xu Y Q 2016 IET Radar Sonar Nav. 10 166Google Scholar
[35] 孙才新, 罗兵, 赵文麒, 赵贤正 1997 仪器仪表学报 18 453Google Scholar
Sun C X, Luo B, Zhao W Q, Zhao X Z 1997 Chin. J. Sci. Instrum. 18 453Google Scholar
-
图 1 超声波检测试验系统电路图(T1, 隔离变压器; T2, 调压器; C1, L1, 低压低通π型滤波器; T3, 高压实验变压器; C2, L2, 高压低通滤波器; CK, 耦合电容器; Zin, 检测阻抗; T, 油箱; S, 压电传感器; AMP, 前置放大器; DAQ, 数据采集卡)
Fig. 1. Test system schematic diagram of ultrasonic testing (T1, isolating transformer; T2, voltage regulator; C1, L1, low-voltage low-pass π filter; T3, high voltage test transformer; C2, L2, high-voltage low-pass filter; CK, coupling capacitor; Zin, detection impedance; T, Tank; S, piezoelectric sensor; AMP, preamplifier; DAQ, data acquisition card).
表 1 局部放电的超声定位精度比较
Table 1. Comparison of ultrasonic location accuracy of PD.
使用算法 研究对象 综合距离误差ΔR/cm 最大偏差Dmax/cm 广义互相关算法 油箱体内 3.9 4.4 时延法 变压器绝缘 0.8 0.6 基于高斯-牛顿迭代的等值声速修正算法 1.7 1.6 粒子群优化算法 2.2 1.9 遗传算法 1.8 2.0 多平台测向与全局搜索的阵列定位的结合 三电容放电管模型 7.8 6.0 基于测向线公垂线中点的局部放电相控超声几何定位算法 13.9 10.3 Chan算法 电缆绝缘 9.0 12.0 表 2 QGA的程序过程
Table 2. Procedures of QGA.
过程 程序 种群初
始化$Q\left( t \right) = \left| { {\psi _{q_j^0} } } \right\rangle = \displaystyle\sum\limits_{k = 1}^{ {2^m} } {\dfrac{1}{ {\sqrt { {2^m} } } }\left| { {S_k} } \right\rangle }$ 预设进
化条件Cmax, t, N, Pmax, Pc 算法
实现For t = 1, 2, 3, ···, Cmax for i = 1, 2, ···, N ${P_i} = {f_i}\Big/\sum\limits_{i = 1}^N { {f_i} }$ $\quad P(t) = \left\{ {p_1^t, p_2^t, \cdots, p_n^t} \right\},$ ${P_c} \!=\! \left\{\!\!\!\! \begin{array}{l}\dfrac{ { { {P_{c\max} } + {P_{\min} } } } }{ {1 \!+\! \exp\left\{ {A\left[ {\dfrac{ {2(f-f')} }{ { {f_{\max} } - {f_{\rm{avg} } } } } } \right]} \right\} } } \!+\! {P_{c\min} }, ~{f \!\geqslant\! {f_{\rm{avg} } } } \\ {P_{c\max} }, \qquad\quad\qquad\qquad\quad\qquad\qquad{f \!\leqslant\! {f_{\rm{avg} } } } \end{array} \right.$ ${P_m} \!=\! \left\{\!\!\!\! \begin{array}{l} \dfrac{ { { {P_{m\max} } - {P_{\min} } } } }{ {1 \!+\! \exp\left\{ {A\left[ {\dfrac{ {2( {f'' - f'})} }{ { {f_{\max} } - {f_{\rm{avg} } } } } } \right]} \right\} } } \!+\! {P_{m\min} }, ~~{f'' \geqslant {f_{\rm{avg} } } } \\ {P_{m\max} },\;\;\; \qquad\quad\qquad\qquad\qquad\qquad\quad{f'' \leqslant {f_{\rm{avg} } } } \end{array} \right.$ ${F_{t + 1} }({U({x, y, z, {v_{\rm{e} } }})}) \!=\! {C_{t\max} } \!-\! {U_t}( {x, y, z, {v_{\rm{e} } }})$ $X_i \;\& \; x_{ {\rm best}, i}\; \& \; f(x) > f(x_{ {\rm best}, i}) \; \& \; \Delta \theta_i$ S(αi, βi); end end S(αi, βi); P(t); X; 表 3 量子旋转门的调整策略
Table 3. Adjustment strategies of quantum rotation gates.
xi xbest,i f (x) > f (xbest,i) Δθi S(αi, βi) αi βi > 0 αi βi < 0 αi = 0 βi = 0 0 0 false 0 0 0 0 0 0 0 true 0 0 0 0 0 0 1 false 0.01π +1 –1 0 ± 1 0 1 true 0.01π –1 +1 ± 1 0 1 0 false 0.01π –1 +1 ± 1 0 1 0 true 0.01π +1 –1 0 ± 1 1 1 false 0 0 0 0 0 1 1 true 0 0 0 0 0 表 4 局部放电定位的算法参数
Table 4. Algorithm parameters of PD localization.
算法 参数 数值 QGA 群体数量 40 最大遗传次数 200 GA 群体数量 40 最大遗传次数 200 重组概率 0.9 变异概率 0.01 SAA 初始温度 10 最终温度 0.0001 衰减系数 0.8 冷却新状态迭代次数 1000 PSO 种群大小 40 学习因子 2 初始惯性权值 0.9 原始粒子群 1 迭代次数 100 表 5 不同算法的局部放电定位
Table 5. The PD location of different algorithms.
算法 位置 实验组1 (12, 14, 6) cm 实验组2 (14, 10, 6) cm 实验组3 (15, 11, 6) cm 实验组4 (16, 12, 6) cm QGA (11.79, 13.61, 5.78) (13.78, 9.88, 6.06) (14.88, 10.86, 5.90) (15.82, 11.84, 5.88) GA (12.33, 14.24, 5.73) (13.62, 10.22, 6.16) (14.65, 11.24, 6.22) (16.34, 12.30, 6.24) SAA (11.58, 13.41, 5.78) (13.66, 10.32, 6.24) (15.34, 11.22, 6.20) (16.32, 12.28, 6.26) PSO (12.12, 14.21, 6.15) (14.32, 9.72, 5.84) (15.42, 11.28, 6.30) (16.42, 12.34, 6.32) GCC (13.38, 15.06, 7.42) (15.51, 9.62, 6.94) (15.71, 8.32, 7.24) (14.76, 10.31, 7.13) 表 6 系统灵敏度和相关系数的变化
Table 6. Change of system sensitivity and correlation coefficients.
电缆纸厚度/mm 系统灵敏度 相关系数 2 14.91 0.99 3 14.37 0.99 4 14.84 0.99 表 7 局部放电的线性系数
Table 7. Linear coefficients of PD.
线性系数 K0 K1 K2 K3 K4 数值 5.01 2.98 2.93 2.86 2.95 -
[1] 李丹, 胡海云 2014 物理学报 63 117701Google Scholar
Li D, Hu H Y 2014 Acta Phys. Sin. 63 117701Google Scholar
[2] Lü Z P, Rowland S M, Chen S Y, Zheng H L 2018 IEEE Trans. Dielectr. Electr. Insul. 25 1999Google Scholar
[3] 赵法强, 唐明, 郭飞飞 2020 电线电缆 63 20Google Scholar
Zhao F Q, Tang M, Guo F F 2020 Electric Wire & Cable 63 20Google Scholar
[4] Romano P, Presti G, Imburgia A, Candela R 2018 IEEE Electr. Insul. M. 34 32Google Scholar
[5] 李军浩, 韩旭涛, 刘泽辉, 李彦明 2015 高电压技术 41 2583Google Scholar
Li J H, Han X T, Liu Z H, Li Y M 2015 High Voltage Eng. 41 2583Google Scholar
[6] Heredia L C C, Mor A R 2019 Int. J. Electr. Power Energy Syst. 107 224Google Scholar
[7] Callender G, Golosnoy I O, Rapisarda P, Lewin P L 2018 J. Phys. D: Appl. Phys. 51 125601Google Scholar
[8] 杜劲超, 陈伟根, 张知先, 杨贤 2020 高电压技术 46 2185Google Scholar
Du J C, Chen W G, Zhang Z X, Yang X 2020 High Voltage Eng. 46 2185Google Scholar
[9] 夏睿, 谭笑, 陈杰, 刘洋, 胡丽斌, 李陈莹, 王伟 2020 绝缘材料 53 95Google Scholar
Xia R, Tan X, Chen J, Liu J, Hu L B, Li C Y, Wang W 2020 Insulating Mater. 53 95Google Scholar
[10] 曾喆昭, 周勇, 胡凯 2015 物理学报 64 070505Google Scholar
Zeng Z Z, Zhou Y, Hu K 2015 Acta Phys. Sin. 64 070505Google Scholar
[11] 张若兵, 金森, 杜钢 2020 高电压技术 46 273Google Scholar
Zhang R B, Jin S, Du G 2020 High Voltage Eng. 46 273Google Scholar
[12] Ahmed Z, Hussain G A, Lehtonen M, Varacka L, Kudelcik J 2016 17 th International Scientific Conference on Electric Power Engineering Prague, Czech Republic, May 16-18, 2016 p1
[13] Iorkyase E T, Tachtatzis C, Atkinson R C, Glover I A 2015 Loughborough Antennas & Propagation Conference UK, Loughborough, November 2−3, 2015 p1
[14] 卢毅, 楼樟达 1999 电工技术学报 14 51Google Scholar
Lu Y, Lou Z D 1999 Trans. Chin. Electrotech. Soc. 14 51Google Scholar
[15] Li Y Q, Lu F C, Xie H L, Yin M 2004 International Conference on Power System Technology Singapore, Singapore, November 21–24, 2004 p1371
[16] 吴治国 2007 硕士学位论文 (武汉: 华中科技大学)
Wu Z G 2007 M. S. Thesis (Wuhan: Huazhong University of Science & Technology) (in Chinese)
[17] Veloso G F C, da Silva L E B, Noronha I, Lambert-Torres G 2008 IEEE International Symposium on Industrial Electronics Cambridge, UK, June 30–July 2, 2008 p1003
[18] Tang L J, Luo R C, Deng M, Su J 2008 IEEE Trans. Dielectr. Electr. Insul. 15 492Google Scholar
[19] 张丽君, 谢庆, 李菱, 律方成 2012 高压电器 48 30Google Scholar
Zhang L J, Xie Q, Li L, Lv F C 2012 High Voltage Apparatus 48 30Google Scholar
[20] 谢庆, 律方成, 李燕青, 黄华平, 李宁远, 谭向宇 2014 电工技术学报 26 217Google Scholar
Xie Q, Lv F C, Li Y Q, Huang H P, Li N Y, Tan X Y 2014 Trans. Chin. Electrotech.l Soc. 26 217Google Scholar
[21] 瞿磊 2020 硕士学位论文 (上海: 上海电机学院)
Qu L 2020 M. S. Thesis (Shanghai: Shanghai Dian Ji university) (in Chinese)
[22] Zhu Y C, Zhou L, Xu H S 2020 Neural Comput. Appl. 32 1775Google Scholar
[23] Zhu M X, Wang Y B, Liu Q, Zhang J N, Deng J B, Zhang G J, Shao X J, He W L 2017 IEEE Trans. Dielectr. Electr. Insul. 24 157Google Scholar
[24] 张磊祺, 盛博杰, 姜伟, 周文俊, 田智, 唐泽洋 2015 高电压技术 41 1204Google Scholar
Zhang L Q, Sheng B J, Jiang W, Zhou W J, Tian Z, Tang Z Y 2015 High Voltage Eng. 41 1204Google Scholar
[25] 吴勇峰, 黄绍平, 金国彬 2013 物理学报 62 130505Google Scholar
Wu Y F, Huang S P, Jin G B 2013 Acta Phys. Sin. 62 130505Google Scholar
[26] 杜锦阳 2013 硕士学位论文 (哈尔滨: 哈尔滨理工大学)
Du J Y 2013 M. S. Thesis (Harbin: Harbin University of Science and Technology) (in Chinese)
[27] 芦翔 2017 硕士学位论文 (哈尔滨: 哈尔滨理工大学)
Lu X 2017 M. S. Thesis (Harbin: Harbin University of Science and Technology) (in Chinese)
[28] Morshuis P H F 2005 IEEE Trans. Dielectr. Eectrl. Insul. 12 905Google Scholar
[29] Liu H L 2016 Appl. Acoust. 102 71Google Scholar
[30] Zhu M X, Li J C, Chang D G, Zhang G J, Chen J M 2018 Energies 11 1813Google Scholar
[31] Smith J S, Baginski M E 2019 IEEE Trans. Antennas Propag. 67 2934Google Scholar
[32] Xiao Z K, Xu C G, Xiao D G, Liu F, Yin M 2017 Exp. Tech. 41 389Google Scholar
[33] Gao S G, Zhang Y, Xie Q, Kan Y Q, Li S, Liu D, Lv F C 2017 Energies 10 593Google Scholar
[34] Xie Q, Li T, Tao J H, Liu X Y, Liu D, Xu Y Q 2016 IET Radar Sonar Nav. 10 166Google Scholar
[35] 孙才新, 罗兵, 赵文麒, 赵贤正 1997 仪器仪表学报 18 453Google Scholar
Sun C X, Luo B, Zhao W Q, Zhao X Z 1997 Chin. J. Sci. Instrum. 18 453Google Scholar
计量
- 文章访问数: 5904
- PDF下载量: 88
- 被引次数: 0