-
针对电力设备局部放电(PD)超声波检测中存在的时间-空域特征解耦、硬件成本高及计算量大的技术瓶颈,提出基于核主成分分析(KPCA)伪白化的改进型非圆FastICA (mnc-FastICA)提取TDOA/DOA参数的混合定位方法。该方法通过时间-空域特征联合提取与智能优化机制,实现了小规模传感器阵列下的高精度定位。主要创新如下:首先,构建KPCA伪白化预处理框架,利用多项式核函数映射信号非线性升维再降维,在保留TDOA与DOA特征关联性的同时抑制环境噪声;其次,通过mnc-FastICA算法盲分离超声信号后,联合广义互相关法GCC与阵列流型解析技术同步提取TDOA/DOA参数;最后,建立融合双参数的最大似然估计模型,并引入非洲秃鹫优化算法实现全局最优解快速收敛。实验表明:在仅配置2个正交阵列(共8个传感器)的小规模硬件架构下,本方法TDOA估计误差降至2.34%,DOA估计精度优于2°,定位误差达1.54 cm。该方法有效解决了PD检测中时间-空域特征联合、硬件成本与定位精度的矛盾,为电力设备状态监测提供新方案.
-
关键词:
- TDOA/DOA混合定位 /
- KPCA-mnc-FastICA /
- 局部放电 /
- 超声定位
To address the technical bottlenecks of spatiotemporal feature decoupling, high hardware costs, and excessive computational complexity in ultrasonic detection of partial discharge (PD) in electrical equipment, this paper proposes a TDOA/DOA hybrid localization method based on Kernel Principal Component Analysis (KPCA) and modified noncircular FastICA (mnc-FastICA). By integrating spatiotemporal feature extraction with intelligent optimization mechanisms, this method achieves high-precision localization using a small-scale sensor array. The key innovations are as follows: First, a KPCA-assisted pseudo-whitening preprocessing framework is constructed, leveraging Polynomial kernel mapping for nonlinear signal dimensionality reduction, which preserves the correlation between time delay (TDOA) and direction-of-arrival (DOA) features while suppressing environmental noise. Second, after blind separation of ultrasonic signals via the mnc-FastICA algorithm, TDOA/DOA parameters are synchronously extracted through a combination of the Generalized Cross-Correlation (GCC) method and array manifold analysis. Finally, a maximum likelihood estimation model integrating dual parameters is established, and the African Vulture Optimization Algorithm (AVOA) is introduced to accelerate global optimal solution convergence. Experimental results demonstrate that, with a compact hardware configuration of two orthogonal arrays (8 sensors in total), the proposed method achieves a TDOA estimation error of 2.34%, DOA estimation accuracy better than 2°, and localization errors as low as 1.54 cm. This approach effectively resolves the contradictions among spatiotemporal feature coupling, hardware cost, and localization accuracy in PD detection, offering a novel solution for condition monitoring of electrical equipment.-
Keywords:
- Hybrid TDOA/DOA /
- KPCA-mnc-FastICA /
- Partial discharge /
- Ultrasonic location
-
[1] Md-Rashid H, Refaat S, Abu-Rub H 2021IEEE Ace. 9 64587
[2] Niu B, Ma F Y, Zhou X 2019High Voltage Appr. 55 108(in Chinese) [牛勃, 马飞越, 周秀2019高压电器55 108]
[3] Yan B W, Chang D G, Fan Y H, Zhang G J, Zhan J Y, Shuo X J 2017IEEE Trans. Dielectr. Electr. Insul. 243647
[4] Tang J, Chen J, Zhang X X, Xu Z R 2009Procee. CSEE 29 125(in Chinese) [唐炬, 陈娇, 张晓星, 许中荣2009中国电机工程学报29 125]
[5] Li B W, Zhang X G 2020Jour. Nanj. Univer. 56 917(in Chinese) [李保伟, 张兴敢2020南京大学学报56 917]
[6] Li Y, Ren M, Wang B, Xi Y J, Liu Y, Dong M 2022Power Sys. Tech. 47 1(in Chinese) [李易, 任明, 王彬, 席英杰, 刘阳, 董明2022电网技术47 4351]
[7] Ghosh G, Chatterjee B, Dalai S 2017IEEE Trans. Dielectr. Electr. Insul. 24237
[8] Guan Y, Dong M, Xi Y J, Li Y, Zhang C X 2023Power Sys. Tech. 48 1721(in Chinese) [关羽, 董明, 席英杰, 李易, 张崇兴2023电网技术48 1721]
[9] Wang Y L, Zhang X H, Li L L, Gao J G, Guo N, Cheng C 2021Acta Phys. Sin. 70 311(in Chinese) [王玉龙, 张晓虹, 李丽丽, 高俊国, 郭宁, 程成2021物理学报70 311]
[10] Thu L N N, Tuan D V, Yoana S 2019Sensers 192121
[11] Jia T Y, Wang H Y, Shen X H, Gao J J, Liu X 2017OCEANS 2017-Aberdeen Aberdeen, UK, June 19-22, 2017 p1
[12] Muhammad U L, Hafiz S M, Amna R, Zakria Q, Abbas Z K, Mahmud M A P 2021Eng. 143910
[13] Wang G L, Du F, Pan W, Wang T T, Luo Y F 2019high Vol.Eng. 45 2509(in Chinese) [王国利, 杜非, 潘伟, 王婷婷, 罗勇芬2019高电压技术45 2509]
[14] Xu S 2020IEEE Commu. Lett. 241966
[15] Xie Q, Zhang J T, Chen Y D, Liu Y, Zhang Y 2019High Voltage Appr. 55 1(in Chinese) [谢庆, 张建涛, 陈艺丹, 刘怡, 张莹2019高压电器55 1]
[16] Visalakshi A, Deepika R S, Chinthaginjala V R, Bagadi K, Mohammad A, Ayman A A 2022IEEE Access 10132875
[17] Gulia S, Prasad P, Goyal S K, Raakesh K 2020Atmop. Poll. 991588
[18] Ning S, He Y G, Ali F, Wu Y T, Tong J 2021IEEE Sensors Jour. 216741
[19] Fokin G 2019201921st International Conference on Advanced Communication Technology (ICACT) PyeongChang, Korea (South), February 17-20, 2019 p1
[20] Li X L, Yi X, Zhang Z K 2021Inter. Jour. Anten. Prop. 11
[21] Wu P, SU S J, ZUO Z, Guo X J, Sun B, Wen X D 2019Sensors 192554
[22] Jiang F, Zhang Z K 2021IET Commu. 15802
[23] Liu F, Wang R, Zhao Y J 2018IET Commu. 15802
[24] Zhou L J, Cai J Y, Hu J J, Guo L, Liao W 2021Sensors 183747
[25] Ruan Z L, Wei P, Qian G B, Yuan X L 2017Jour. Univer. Electr. Sci. Tech. 46 505(in Chinese) [阮宗利, 魏平, 钱国兵, 袁晓垒2017电子科技大学学报46 505]
[26] Yue Y G, Cao L, Hu J, Cai S T, Hang B, Wu H 2019IEEE Access 758541
[27] Chang Y T, Wu C L, Cheng H 20142014 International Symposium on Computer, Consumer and Control Taichung, China, June 10-12, 2014 p1
[28] Chen T, Wang M X, Huang X S 2018201814th IEEE International Conference on Signal Processing (ICSP) Beijing, China, August 12-16, 2018 p1
[29] Xiao J, Liu J W, Hu X, Qi X G 2023Jour. Jilin Univer. Eng. Tech. 54 3558(in Chinese) [肖剑, 刘经纬, 胡欣, 齐小刚2023吉林大学学报(工学版) 54 3558]
[30] Bingham E, Hyvärinen A 2000Inter. Jour. Neur. Sys. 101
[31] Novey M, Adali T 2008IEEE Trans. Sig. Proc. 562148
[32] Pei S T, Liu D W, Ye Z J, Yang J J, Liu Y P 2023IET Sci. Meas. Tech. 1711.
计量
- 文章访问数: 23
- PDF下载量: 0
- 被引次数: 0