搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

原子替位掺杂对单层Janus WSeTe电子结构的影响

张德贺 周文哲 李奥林 欧阳方平

引用本文:
Citation:

原子替位掺杂对单层Janus WSeTe电子结构的影响

张德贺, 周文哲, 李奥林, 欧阳方平

Effects of atomic substitutional doping on electronic structure of monolayer Janus WSeTe

Zhang De-He, Zhou Wen-Zhe, Li Ao-Lin, Ouyang Fang-Ping
PDF
HTML
导出引用
  • 基于第一性原理计算系统地研究了氮族、卤族和3d过渡金属元素(Ti, V, Cr, Mn, Fe, Co)替位掺杂对单层Janus过渡金属硫族化合物WSeTe电子结构的影响. 通过对能带结构、电荷转移以及磁性的分析, 发现氮(卤)族原子替位掺杂单层WSeTe会发生本征半导体-p (n)型半导体的转变, Ti, V原子替位掺杂单层WSeTe会发生半导体-金属的转变. 由于电荷转移以及氮族原子掺杂时价带顶的能带杂化现象, 卤族和氮族非金属元素掺杂时价带顶Γ点附近的Rashba自旋劈裂强度在同一主族随着掺杂原子原子序数的增大而增大. 3d过渡金属元素掺杂会产生能谷极化和磁性, 其中Cr, Mn原子替位掺杂会产生高于100 meV的能谷极化, 并且Cr, Mn, Fe元素掺杂在禁带中引入了电子自旋完全极化的杂质能级. 研究结果对系统地理解单层WSeTe掺杂模型的性质具有重要意义, 可以为基于单层WSeTe的电子器件设计提供理论参考.
    Based on the first principles calculations, the effects of substitutional doping of nitrogen, halogen and 3d transition metal elements on the electronic structure of monolayer Janus transition metal dichalcogenides WSeTe are studied in this paper, where the VASP software package is used based on density functional theory to perform calculations through using both the projector augmented wave method and the GGA-PBE functional method. A monolayer WSeTe hexagonal crystal system with 4 × 4 supercells is established, which contains 48 atoms. When VA (VIIA) element substitutes for monolayer WSeTe, one of the Se atoms is replaced with a nitrogen (halogen) atom; when the 3d transition metal element substitutes for monolayer WSeTe, one of the W atoms is replaced with a transition metal atom. Through the analysis of band structure, charge transfer and magnetism, it is found that VA (VIIA) nonmetallic elements doped monolayer WSeTe due to the introduction of the hole (electronic) doped, makes the Fermi level shift downward (upward), thus transforming into a p(n) type semiconductor. The Ti and V element substitutional doped monolayer WSeTe will present semiconductor-metal transformation. A doping for each of Cr, Co, Mn, Fe element doesn’t lead semiconductor material properties to change, but the each of Co, Mn, Fe element doped monolayer WSeTe can create a band gap of less than 20 meV. The VIIA (VA) non-metallic element and 3d transition metal element doped monolayer WSeTe will not have a huge influence on the original geometric structure of the material. Due to the charge transfer and doped atoms on the top of the valence band hybridization phenomenon, the Rashba spin splitting intensity near the Γ point of the top valence band increases with the increase of the atomic number of the doped atoms in the same main group when VIIA and VA non-metallic elements are doped. Moreover, the increase in atomic number and charge transfer have a greater influence on the strength of Rashba spin-orbit coupling than the change in electronegativity. The 3d transition metal element substitution doped single-layer WSeTe has obvious spin polarization phenomenon, which produces valley polarization near the Fermi level and introduces magnetism. In particular, since Cr-doped WSeTe retains the original semiconductor properties of WSeTe and has a large energy valley polarization, it may have a wide range of applications, such as in the field of spintronic devices. The monolayer WSeTe doped separately with Cr, Mn and Fe element produces an impurity band with fully polarized spin electrons in the band gap. The results are of great significance in systematically understanding the properties of monolayer WSeTe doping model and can provide theoretical reference for designing the monolayer WSeTe based electronic devices.
      通信作者: 欧阳方平, oyfp@csu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 51272291, 52073308)和中南大学升华学者计划基金(批准号: 502033019)资助的课题
      Corresponding author: Ouyang Fang-Ping, oyfp@csu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51272291, 52073308) and the Central South University Research Fund for Sheng-Hua Scholars, China (Grant No. 502033019)
    [1]

    Castro Neto A H, Guinea F, Peres N M R, Novoselov K S, Geim A K 2009 Rev. Mod. Phys. 81 109Google Scholar

    [2]

    Song L, Ci L J, Lu H 2010 Nano Lett. 10 3209Google Scholar

    [3]

    Chhowalla M, Shin H S, Eda G, et al. 2013 Nat. Chem. 5 263Google Scholar

    [4]

    Li L K, Yu Y J, Ye G J 2014 Nat. Nanotechnol. 9 372Google Scholar

    [5]

    Ngai J H, Walker F J, Ahn C H 2014 Annu. Rev. Mater. Sci. 44 1Google Scholar

    [6]

    Shanmugam M, Jacobs-Gedrim R, Song E S 2014 Nanoscale 6 12682Google Scholar

    [7]

    尹伟红, 韩勤, 杨晓红 2012 物理学报 61 248502Google Scholar

    Weihong Y, Qin H, Xiaohong Y 2012 Acta Phys. Sin. 61 248502Google Scholar

    [8]

    Withers F, Pozo-Zamudio O Del, Mishchenko A 2015 Nat. Mater. 14 301Google Scholar

    [9]

    Zhao Y, Li X, Xu M 2013 Opt. Express 21 3516Google Scholar

    [10]

    Tan C, Cao X, Wu X J 2017 Chem. Rev. 117 6225Google Scholar

    [11]

    Zhang X, Cheng H, Zhang H 2017 Adv. Mater. 29 1701704Google Scholar

    [12]

    Zhang X, Lai Z, Ma Q, Zhang H 2018 Chem. Soc. Rev. 47 3301Google Scholar

    [13]

    Cheng C, Sun J T, Chen X R, Fu H X, Meng S 2016 Nanoscale 8 17854Google Scholar

    [14]

    Cheng Y C, Zhu Z Y, Tahir M 2013 Europhys. Lett. 102 57001Google Scholar

    [15]

    Guo S D, Dong J 2018 Semicond. Sci. Technol. 33 085003Google Scholar

    [16]

    Shi Y, Li H, Li L J 2015 Chem. Soc. Rev. 44 2744Google Scholar

    [17]

    Li H, Lu G, Wang Y 2013 Small 9 1974Google Scholar

    [18]

    Balendhran S, Walia S, Nili H 2013 Adv. Funct. Mater. 23 3952Google Scholar

    [19]

    Feng Q, Mao N, Wu J 2015 ACS Nano 9 7450Google Scholar

    [20]

    Hu D, Xu G, Xing L 2017 Angew. Chem. Int. Ed. 56 3611Google Scholar

    [21]

    Ji Y, Yang M, Lin H 2018 J.Phys. Chem. C 122 3123Google Scholar

    [22]

    Meng M, Li T, Li S 2018 J. Phys. D: Appl. Phys. 51 105004Google Scholar

    [23]

    Wang M, Pang Y, Liu D Y 2018 Comput. Mater. Sci. 146 240Google Scholar

    [24]

    Guo S D 2018 Phys. Chem. Chem. Phys 20 7236Google Scholar

    [25]

    Er D, Ye H, Frey N C 2018 Nano Lett. 18 3943Google Scholar

    [26]

    Hor Y S, Richardella A, Roushan R, Xia Y, Checkelsky J G, Yazdani A 2009 Phys. Rev. B 79 195208Google Scholar

    [27]

    Wu M, Cao C, Jiang J Z 2010 Nanotechnology 21 505202Google Scholar

    [28]

    Yue Q, Chang S, Qin S, Li J 2013 Phys. Lett. A 377 1362Google Scholar

    [29]

    Ramasubramaniam A, Naveh D 2013 Phys. Rev. B 87 195201Google Scholar

    [30]

    Guan S S, Ke S S, Yu F F 2019 Appl. Surf. Sci. 496 143692Google Scholar

    [31]

    Kresse G, Kurthmuler J 1996 Comput. Mater. Sci. 6 15Google Scholar

    [32]

    Kresse G, Hafner J 1994 Phys. Rev. B 50 13181Google Scholar

    [33]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758Google Scholar

    [34]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [35]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188Google Scholar

    [36]

    Zhao X W, Qiu B, Hu G C 2019 Appl. Surf. Sci. 490 172Google Scholar

    [37]

    Hu T, Jia F H, Zhao G D 2018 Phys. Rev. B 97 235404Google Scholar

    [38]

    He J J, Li S 2018 Comput. Mater. Sci. 152 151Google Scholar

    [39]

    Peng R, Ma Y D, Zhang S 2018 J. Phys. Chem. Lett. 9 3612Google Scholar

  • 图 1  (a) VA (VIIA)和(b) TM元素替位掺杂单层WSeTe的俯视图(上)和侧视图(下)及其布里渊区和高对称点示意图; (c) 4 × 4的单层WSeTe超胞的能带结构

    Fig. 1.  (a), (b) The top view (top) and the side view (bottom) of the substitutionally doped monolayer WSeTe of VA (VIIA) and TM elements, as well as the schematic diagram of Brillouin zone and high symmetry points; (c) the energy band structure of 4 × 4 monolayer WSeTe supercell.

    图 2  (a), (b), (c) Cl, Br, I原子掺杂单层WSeTe能带结构图; (d) Br原子掺杂单层WSeTe中单个原子的投影态密度图; (e) VIIA原子掺杂单层WSeTe的差分电荷密度的俯视图(上)和侧视图(下), 红色代表等值面0.01 a.u., 蓝色代表等值面–0.01 a.u.

    Fig. 2.  (a), (b), (c) The WSeTe band structure of Cl, Br and I atom doped, respectively; (d) the project density of state for each single atom in monolayer WSeTe doped by Br atom; (e) the top view (top) and side view (bottom) of the differential charge density of a monolayer WSeTe doped with VIIA atoms, red represents the isosurface 0.01 a.u. and blue represents the isosurface –0.01 a.u..

    图 3  (a), (b), (c), (d) N, P, Sb, As掺杂单层WSeTe的能带结构图和单个原子的PDOS图; (e) VA原子掺杂单层WSeTe的差分电荷密度的俯视图(上)和侧视图(下), 红色代表等值面0.01 a.u., 蓝色代表等值面–0.01 a.u.

    Fig. 3.  (a), (b), (c), (d) The band structure diagram of N, P, Sb and As doped single-layer WSeTe and the PDOS diagram of a single atom, respectively; (e) the top view (top) and side view (bottom) of the differential charge density of a monolayer WSeTe doped with VA atoms, red represents the isosurface 0.01 a.u and blue represents the isosurface –0.01 a.u..

    图 4  3d过渡金属元素掺杂单层WSeTe的能带图, 自旋在z轴方向的期望值$ \left\langle {S}_{z} \right\rangle $的正负分别用红色和蓝色来表示, $ \left\langle {S}_{z} \right\rangle $绝对值的大小用点的大小来表示; 所有的能带经过平移使费米能级对齐, 同时费米能级固定在0 eV处

    Fig. 4.  Band diagram of 3d transition metal elements doped monolayer WSeTe. The positive and negative values of the expected value $ \left\langle {S}_{z} \right\rangle $ of the spin in the z-axis direction are represented by red and blue respectively, and the magnitude of the absolute value of $ \left\langle {S}_{z} \right\rangle $ is represented by the magnitude of the points. The spin projection along z-direction is depicted by the magnitude of the point. All the bands are shifted to align the Fermi level which is fixed at 0 eV.

    表 1  未掺杂体系的Se原子或VA (VIIA)掺杂原子和W原子之间的键长$ {d}_{\mathrm{W}-\mathrm{D}} $、体系形成能$ {E}_{\mathrm{f}} $、掺杂原子得到的电荷数$ \Delta Q $以及Rashba常数$ \alpha $

    Table 1.  Bond length $ {d}_{\mathrm{W}-\mathrm{D}} $ between VA (VIIA) doped atoms or Se atoms in an undoped system and W atoms, binding energy $ {E}_{\mathrm{f}} $, the number of charges obtained by doping atoms $ \Delta Q $ and Rashba constant $ \alpha $.

    Doped atomSeClBrINPAsSb
    $ {d}_{\mathrm{W}-\mathrm{D}} $/Å2.5702.5472.6802.8262.0212.4242.5552.799
    $ {E}_{\mathrm{f}} $/eV00.160.350.46–0.48–0.20.250.65
    $ \Delta Q $/e–0.47–0.55–0.46–0.26–1.23–0.48–0.24–0.02
    $ \alpha $/(eV·Å)0.210.180.190.220.040.130.140.21
    下载: 导出CSV

    表 2  掺杂原子与Se (Te) 原子之间的键长$ {d}_{\mathrm{S}\mathrm{e}-\mathrm{D}} $($ {d}_{\mathrm{T}\mathrm{e}-\mathrm{D}} $)、结合能$ {E}_{\mathrm{f}} $、能谷极化的大小$ \Delta {E}_{K-K'} $及体系总的磁矩$ {M}_{\mathrm{t}\mathrm{o}\mathrm{t}\mathrm{a}\mathrm{l}} $

    Table 2.  Bond length $ {d}_{\mathrm{S}\mathrm{e}-\mathrm{D}}\left({d}_{\mathrm{T}\mathrm{e}-\mathrm{D}}\right) $ between doped and Se (Te) atoms, binding energy $ {E}_{\mathrm{f}} $, energy valley polarization $ \Delta {E}_{K-K'} $ and total magnetic moment $ { M}_{\mathrm{t}\mathrm{o}\mathrm{t}\mathrm{a}\mathrm{l}} $

    Doped atomTiCoCrMnFeV
    $ {d}_{\mathrm{T}\mathrm{e}-\mathrm{D}} $/Å2.7782.5872.7242.7332.7682.733
    $ {d}_{\mathrm{S}\mathrm{e}-\mathrm{D}} $/Å2.5772.4622.5472.5512.5882.558
    $ {E}_{\mathrm{f}} $/eV–1.20.20.10.5–1.7–0.8
    $ \Delta {E}_{K-K'} $/meV2621081053473
    $ {M}_{\mathrm{t}\mathrm{o}\mathrm{t}\mathrm{a}\mathrm{l}} $/$ {\mathrm{\mu }}_{\mathrm{B}} $1.462.990.011.022.010.94
    下载: 导出CSV
  • [1]

    Castro Neto A H, Guinea F, Peres N M R, Novoselov K S, Geim A K 2009 Rev. Mod. Phys. 81 109Google Scholar

    [2]

    Song L, Ci L J, Lu H 2010 Nano Lett. 10 3209Google Scholar

    [3]

    Chhowalla M, Shin H S, Eda G, et al. 2013 Nat. Chem. 5 263Google Scholar

    [4]

    Li L K, Yu Y J, Ye G J 2014 Nat. Nanotechnol. 9 372Google Scholar

    [5]

    Ngai J H, Walker F J, Ahn C H 2014 Annu. Rev. Mater. Sci. 44 1Google Scholar

    [6]

    Shanmugam M, Jacobs-Gedrim R, Song E S 2014 Nanoscale 6 12682Google Scholar

    [7]

    尹伟红, 韩勤, 杨晓红 2012 物理学报 61 248502Google Scholar

    Weihong Y, Qin H, Xiaohong Y 2012 Acta Phys. Sin. 61 248502Google Scholar

    [8]

    Withers F, Pozo-Zamudio O Del, Mishchenko A 2015 Nat. Mater. 14 301Google Scholar

    [9]

    Zhao Y, Li X, Xu M 2013 Opt. Express 21 3516Google Scholar

    [10]

    Tan C, Cao X, Wu X J 2017 Chem. Rev. 117 6225Google Scholar

    [11]

    Zhang X, Cheng H, Zhang H 2017 Adv. Mater. 29 1701704Google Scholar

    [12]

    Zhang X, Lai Z, Ma Q, Zhang H 2018 Chem. Soc. Rev. 47 3301Google Scholar

    [13]

    Cheng C, Sun J T, Chen X R, Fu H X, Meng S 2016 Nanoscale 8 17854Google Scholar

    [14]

    Cheng Y C, Zhu Z Y, Tahir M 2013 Europhys. Lett. 102 57001Google Scholar

    [15]

    Guo S D, Dong J 2018 Semicond. Sci. Technol. 33 085003Google Scholar

    [16]

    Shi Y, Li H, Li L J 2015 Chem. Soc. Rev. 44 2744Google Scholar

    [17]

    Li H, Lu G, Wang Y 2013 Small 9 1974Google Scholar

    [18]

    Balendhran S, Walia S, Nili H 2013 Adv. Funct. Mater. 23 3952Google Scholar

    [19]

    Feng Q, Mao N, Wu J 2015 ACS Nano 9 7450Google Scholar

    [20]

    Hu D, Xu G, Xing L 2017 Angew. Chem. Int. Ed. 56 3611Google Scholar

    [21]

    Ji Y, Yang M, Lin H 2018 J.Phys. Chem. C 122 3123Google Scholar

    [22]

    Meng M, Li T, Li S 2018 J. Phys. D: Appl. Phys. 51 105004Google Scholar

    [23]

    Wang M, Pang Y, Liu D Y 2018 Comput. Mater. Sci. 146 240Google Scholar

    [24]

    Guo S D 2018 Phys. Chem. Chem. Phys 20 7236Google Scholar

    [25]

    Er D, Ye H, Frey N C 2018 Nano Lett. 18 3943Google Scholar

    [26]

    Hor Y S, Richardella A, Roushan R, Xia Y, Checkelsky J G, Yazdani A 2009 Phys. Rev. B 79 195208Google Scholar

    [27]

    Wu M, Cao C, Jiang J Z 2010 Nanotechnology 21 505202Google Scholar

    [28]

    Yue Q, Chang S, Qin S, Li J 2013 Phys. Lett. A 377 1362Google Scholar

    [29]

    Ramasubramaniam A, Naveh D 2013 Phys. Rev. B 87 195201Google Scholar

    [30]

    Guan S S, Ke S S, Yu F F 2019 Appl. Surf. Sci. 496 143692Google Scholar

    [31]

    Kresse G, Kurthmuler J 1996 Comput. Mater. Sci. 6 15Google Scholar

    [32]

    Kresse G, Hafner J 1994 Phys. Rev. B 50 13181Google Scholar

    [33]

    Kresse G, Joubert D 1999 Phys. Rev. B 59 1758Google Scholar

    [34]

    Perdew J P, Burke K, Ernzerhof M 1996 Phys. Rev. Lett. 77 3865Google Scholar

    [35]

    Monkhorst H J, Pack J D 1976 Phys. Rev. B 13 5188Google Scholar

    [36]

    Zhao X W, Qiu B, Hu G C 2019 Appl. Surf. Sci. 490 172Google Scholar

    [37]

    Hu T, Jia F H, Zhao G D 2018 Phys. Rev. B 97 235404Google Scholar

    [38]

    He J J, Li S 2018 Comput. Mater. Sci. 152 151Google Scholar

    [39]

    Peng R, Ma Y D, Zhang S 2018 J. Phys. Chem. Lett. 9 3612Google Scholar

  • [1] 严志, 方诚, 王芳, 许小红. 过渡金属元素掺杂对SmCo3合金结构和磁性能影响的第一性原理计算. 物理学报, 2024, 73(3): 037502. doi: 10.7498/aps.73.20231436
    [2] 张桥, 谭薇, 宁勇祺, 聂国政, 蔡孟秋, 王俊年, 朱慧平, 赵宇清. 基于机器学习和第一性原理计算的Janus材料的预测. 物理学报, 2024, 73(23): 230201. doi: 10.7498/aps.73.20241278
    [3] 李秋红, 马小雪, 潘靖. Al原子的替位掺杂与表面吸附对BiVO4 (010) 晶面光电催化分解水析氧性能的影响. 物理学报, 2023, 72(2): 027101. doi: 10.7498/aps.72.20221842
    [4] 陈光平, 杨金妮, 乔昌兵, 黄陆君, 虞静. Er3+掺杂TiO2的局域结构及电子性质的第一性原理研究. 物理学报, 2022, 71(24): 246102. doi: 10.7498/aps.71.20221847
    [5] 梁婷, 王阳阳, 刘国宏, 符汪洋, 王怀璋, 陈静飞. V掺杂二维MoS2体系气体吸附性能的第一性原理研究. 物理学报, 2021, 70(8): 080701. doi: 10.7498/aps.70.20202043
    [6] 钟淑琳, 仇家豪, 罗文崴, 吴木生. 稀土掺杂对LiFePO4性能影响的第一性原理研究. 物理学报, 2021, 70(15): 158203. doi: 10.7498/aps.70.20210227
    [7] 闫小童, 侯育花, 郑寿红, 黄有林, 陶小马. Ga, Ge, As掺杂对锂离子电池正极材料Li2CoSiO4的电化学特性和电子结构影响的第一性原理研究. 物理学报, 2019, 68(18): 187101. doi: 10.7498/aps.68.20190503
    [8] 郑路敏, 钟淑英, 徐波, 欧阳楚英. 锂离子电池正极材料Li2MnO3稀土掺杂的第一性原理研究. 物理学报, 2019, 68(13): 138201. doi: 10.7498/aps.68.20190509
    [9] 黄炳铨, 周铁戈, 吴道雄, 张召富, 李百奎. 空位及氮掺杂二维ZnO单层材料性质:第一性原理计算与分子轨道分析. 物理学报, 2019, 68(24): 246301. doi: 10.7498/aps.68.20191258
    [10] 陈美娜, 张蕾, 高慧颖, 宣言, 任俊峰, 林子敬. Sm3+,Sr2+共掺杂对CeO2基电解质性能影响的密度泛函理论+U计算. 物理学报, 2018, 67(8): 088202. doi: 10.7498/aps.67.20172748
    [11] 王平, 郭立新, 杨银堂, 张志勇. 铝氮共掺杂氧化锌纳米管电子结构的第一性原理研究. 物理学报, 2013, 62(5): 056105. doi: 10.7498/aps.62.056105
    [12] 张召富, 耿朝晖, 王鹏, 胡耀乔, 郑宇斐, 周铁戈. 5d过渡金属原子掺杂氮化硼纳米管的第一性原理计算. 物理学报, 2013, 62(24): 246301. doi: 10.7498/aps.62.246301
    [13] 张召富, 周铁戈, 左旭. 氧、硫掺杂六方氮化硼单层的第一性原理计算. 物理学报, 2013, 62(8): 083102. doi: 10.7498/aps.62.083102
    [14] 刘越颖, 周铁戈, 路远, 左旭. 第一主族元素(Li,Na,K)和第二主族元素(Be,Mg,Ca) 掺杂二维六方氮化硼单层的第一性原理计算研究. 物理学报, 2012, 61(23): 236301. doi: 10.7498/aps.61.236301
    [15] 王晓中, 林理彬, 何捷, 陈军. 第一性原理方法研究He掺杂Al晶界力学性质. 物理学报, 2011, 60(7): 077104. doi: 10.7498/aps.60.077104
    [16] 李荣, 罗小玲, 梁国明, 付文升. 掺杂Fe对VH2解氢性能影响的第一性原理研究. 物理学报, 2011, 60(11): 117105. doi: 10.7498/aps.60.117105
    [17] 吴红丽, 赵新青, 宫声凯. Nb掺杂影响NiTi金属间化合物电子结构的第一性原理计算. 物理学报, 2010, 59(1): 515-520. doi: 10.7498/aps.59.515
    [18] 张晖, 刘拥军, 潘丽华, 张瑜. Co掺杂BiFeO3的第一性原理研究. 物理学报, 2009, 58(10): 7141-7146. doi: 10.7498/aps.58.7141
    [19] 吴红丽, 赵新青, 宫声凯. Nb掺杂对TiO2/NiTi界面电子结构影响的第一性原理计算. 物理学报, 2008, 57(12): 7794-7799. doi: 10.7498/aps.57.7794
    [20] 张 超, 王永亮, 颜 超, 张庆瑜. 替位杂质对低能Pt原子与Pt(111)表面相互作用影响的分子动力学模拟. 物理学报, 2006, 55(6): 2882-2891. doi: 10.7498/aps.55.2882
计量
  • 文章访问数:  7016
  • PDF下载量:  229
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-09
  • 修回日期:  2020-12-21
  • 上网日期:  2021-04-24
  • 刊出日期:  2021-05-05

/

返回文章
返回