搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

双极型晶体管总剂量效应的统计特性

李顺 宋宇 周航 代刚 张健

引用本文:
Citation:

双极型晶体管总剂量效应的统计特性

李顺, 宋宇, 周航, 代刚, 张健

Statistical characteristics of total ionizing dose effects of bipolar transistors

Li Shun, Song Yu, Zhou Hang, Dai Gang, Zhang Jian
PDF
HTML
导出引用
  • 双极型晶体管的总电离剂量辐照效应主要体现在基极电流(IB)的退化, 其作用机理是电离辐射在SiO2中及Si/SiO2界面作用导致的氧化物陷阱电荷面密度(Not)和界面陷阱电荷面密度(Nit)的增长. 本文基于定制设计的栅控横向PNP晶体管, 开展了大样本、多剂量点的电离总剂量效应实验, 获得了双极型晶体管IB, Not, Nit的分散性及其随总剂量变化的统计特性, 初步建立了晶体管损伤分散性与Not分散性的关联. 该研究成果可以有效支撑双极型电路辐射可靠性的机理研究与定量评估.
    The base current (IB) of silicon bipolar transistor degrades when it is subjected to total ionizing dose (TID) irradiation, which is due to the generation of oxide trapped charges (Not) in the oxide layer and interface traps (Nit) at the silica/silicon interface. In this work, we investigate the statistical characteristic of IB of bipolar transistors and its possible microscopic origin. Especially, we carry out TID irradiation experiments on a large sample size of gated lateral PNP (GLPNP) transistors. Forty GLPNP transistors are sequentially irradiated to the total doses of 0.6 krad (Si), 2.6 krad (Si), 4.0 krad (Si), 7.4 krad (Si), and 10.8 krad (Si). The statistical characteristics of their IB, Not, and Nit are obtained from the Gummel, gate sweep (GS), and sub-threshold sweep (DS) curves, respectively. It is found that no matter what the dose is, IB, Not, and Nit all follow a lognormal distribution. However, the distribution parameters change as the irradiation dose increases. Remarkably, the statistical median and standard deviation of IB as a function of dose show a strong correlation with those of Not, but essentially differ from those of Nit. This fact uncovers that for our research objects and dose rate, the sample-to-sample variability of IB mainly stems from the variation of Not. These interesting results should have potential applications in exploring the mechanism and evaluating the irradiation reliability of bipolar microcircuits.
      通信作者: 宋宇, kwungyusung@gmail.com ; 张健, jianzhang@uestc.edu.cn
    • 基金项目: 科学挑战计划项目(批准号: TZ2016003-1)资助的课题
      Corresponding author: Song Yu, kwungyusung@gmail.com ; Zhang Jian, jianzhang@uestc.edu.cn
    • Funds: Project supported by the Scientific Challenge Project, China (Grant No. TZ2016003-1)
    [1]

    Bernstein K, Frank D J, Gattiker A R 2006 IBM J. Res. Dev. 50 433Google Scholar

    [2]

    Blair R R 1963 IEEE Trans. Nucl. Sci. 10 35Google Scholar

    [3]

    Krieg J, Tuflinger T, Pease R 2001 NSREC Vancouver British Columbia, Canada, July 16–20, 2001 pp167–172

    [4]

    Pease R L, Combs W E, Johnston A, Carriere T, Poivey C, Gach A, Mc- Clure S 1996 IEEE REDW Indian Wells California, USA, July 19−23, 1996 pp28−34

    [5]

    Johnston A H, Lancaster C A 1979 IEEE Trans. Nucl. Sci. 26 4769Google Scholar

    [6]

    Kruckmeyer K, McGee L, Brown B, Hughart D 2008 IEEE REDW Tucson Arizon, USA, July 14–18, 2008 pp110–116

    [7]

    Kruckmeyer K, McGee L, Brown B, Miller L 2009 RADECS 2009 Brugge, Belgium, September 14–18, 2009 pp586–592

    [8]

    Gorelick J L, Ladbury R, Kanchawa L 2004 IEEE Trans. Nucl. Sci. 51 3679Google Scholar

    [9]

    Guillermin J, Sukhaseum N, Varotsou A, Privat A, Garcia P, VailléM, Thomas J C, Chatry N, Poivey C 2016 RADECS 2016 Bremen, Germany, September 19−23, 2016 pp1−7

    [10]

    Bozovich A N, Irom F 2017 IEEE REDW New Orleans, United States, July 17−21, 2017 pp1−8

    [11]

    Song Y, Zhou H, Cai X F 2020 ACS Appl. Mater. Interfaces 12 29993

    [12]

    Song Y, Wei S H 2020 ACS Appl. Electron. Mater. 2 3783Google Scholar

    [13]

    Dressendorfer P V 1998 Tech. Rep. (Sandia National Labs., Albuquerque, NM, United States) pp1–9

    [14]

    McLean F B, Oldham T R 1987 Tech. Rep. (DTIC Document) pp1−8

    [15]

    McWhorter P, Winokur P 1986 Appl. Phys. Lett. 48 133Google Scholar

    [16]

    Ortiz-Conde A, Sánchez F G, Liou J J, Cerdeira A, Estrada M, Yue Y 2002 Microelectron. Reliab. 42 583Google Scholar

    [17]

    Ball D R, Schrimpf R D, Barnaby H J 2002 IEEE Trans. Nucl. Sci. 49 3185Google Scholar

    [18]

    Li X J, Yang J, Chen H, Dong S, Lv G 2019 IEEE Trans. Nucl. Sci. 66 1612Google Scholar

    [19]

    Winokur P S, Boesch H E, McGarrity Jr J M, McLean F B 1979 J. Appl. Phys. 50 3492Google Scholar

    [20]

    Gaddum J H 1945 Nature 156 463Google Scholar

    [21]

    Barnaby H, Vermeire B, Campola M 2015 IEEE Trans. Nucl. Sci. 62 1658Google Scholar

    [22]

    Barnaby H, Smith S, Schrimpf R, Fleetwood D, Pease R 2002 IEEE Trans. Nucl. Sci. 49 2643Google Scholar

    [23]

    Tolleson B S, Adell P, Rax B, Barnaby H, Privat A, Han X, Mahmud A, Livingston I 2018 IEEE Trans. Nucl. Sci. 65 1488Google Scholar

    [24]

    Pierret R F, Neudeck G W 1987 Advanced Semiconductor Fundamentals (Vol. 6) (Massachusetts: Addison-Wesley Reading) pp123−235

    [25]

    McWhorter P, Winokur P 1986 Applied Physical Letters 48 133

    [26]

    Rowsey N L, Law M E, Schrimpf R D, Fleetwood D M, Tuttle B R, Pantelides S T 2011 IEEE Trans. Nucl. Sci. 58 2937Google Scholar

    [27]

    Song Y, Zhang G, Liu Y, Zhou H, Zhong L, Dai G, Zuo X, Wei S H 2020 arXiv preprint arXiv 2008 04486

  • 图 1  GLPNP器件的结构示意图

    Fig. 1.  Structure of the GLPNP transistor.

    图 2  不同总剂量条件下GLPNP基极电流的分布特性

    Fig. 2.  Statistical characteristics of the base current of GLPNP under different total doses as indicated in each subfigure.

    图 3  分布参数 (a) $ \mu $和 (b)$ \sigma $ 随总剂量的变化规律

    Fig. 3.  Statistical parameters (a) $ \mu $ and (b) $ \sigma $ as a function of the total dose.

    图 4  不同总剂量条件下Not的分布特性

    Fig. 4.  Statistical characteristics of Not under different total dose irradiations.

    图 5  不同总剂量条件下Nit分布特性

    Fig. 5.  Statistical characteristics of Nit under different total dose irradiations.

    表 1  GLPNP的结构尺寸参数

    Table 1.  Structure parameters of the GLPNP transistor.

    序号结构尺寸参数
    1发射极尺寸直径 = 9 μm
    2基区尺寸外内半径差12 μm
    空心圆环
    3集电极尺寸面积 = 1449.135 μm2
    4发射极与集电极距离
    (EC间距)
    L = 12 μm
    5集电极与基区距离
    (CB间距)
    L = 14 μm
    下载: 导出CSV
  • [1]

    Bernstein K, Frank D J, Gattiker A R 2006 IBM J. Res. Dev. 50 433Google Scholar

    [2]

    Blair R R 1963 IEEE Trans. Nucl. Sci. 10 35Google Scholar

    [3]

    Krieg J, Tuflinger T, Pease R 2001 NSREC Vancouver British Columbia, Canada, July 16–20, 2001 pp167–172

    [4]

    Pease R L, Combs W E, Johnston A, Carriere T, Poivey C, Gach A, Mc- Clure S 1996 IEEE REDW Indian Wells California, USA, July 19−23, 1996 pp28−34

    [5]

    Johnston A H, Lancaster C A 1979 IEEE Trans. Nucl. Sci. 26 4769Google Scholar

    [6]

    Kruckmeyer K, McGee L, Brown B, Hughart D 2008 IEEE REDW Tucson Arizon, USA, July 14–18, 2008 pp110–116

    [7]

    Kruckmeyer K, McGee L, Brown B, Miller L 2009 RADECS 2009 Brugge, Belgium, September 14–18, 2009 pp586–592

    [8]

    Gorelick J L, Ladbury R, Kanchawa L 2004 IEEE Trans. Nucl. Sci. 51 3679Google Scholar

    [9]

    Guillermin J, Sukhaseum N, Varotsou A, Privat A, Garcia P, VailléM, Thomas J C, Chatry N, Poivey C 2016 RADECS 2016 Bremen, Germany, September 19−23, 2016 pp1−7

    [10]

    Bozovich A N, Irom F 2017 IEEE REDW New Orleans, United States, July 17−21, 2017 pp1−8

    [11]

    Song Y, Zhou H, Cai X F 2020 ACS Appl. Mater. Interfaces 12 29993

    [12]

    Song Y, Wei S H 2020 ACS Appl. Electron. Mater. 2 3783Google Scholar

    [13]

    Dressendorfer P V 1998 Tech. Rep. (Sandia National Labs., Albuquerque, NM, United States) pp1–9

    [14]

    McLean F B, Oldham T R 1987 Tech. Rep. (DTIC Document) pp1−8

    [15]

    McWhorter P, Winokur P 1986 Appl. Phys. Lett. 48 133Google Scholar

    [16]

    Ortiz-Conde A, Sánchez F G, Liou J J, Cerdeira A, Estrada M, Yue Y 2002 Microelectron. Reliab. 42 583Google Scholar

    [17]

    Ball D R, Schrimpf R D, Barnaby H J 2002 IEEE Trans. Nucl. Sci. 49 3185Google Scholar

    [18]

    Li X J, Yang J, Chen H, Dong S, Lv G 2019 IEEE Trans. Nucl. Sci. 66 1612Google Scholar

    [19]

    Winokur P S, Boesch H E, McGarrity Jr J M, McLean F B 1979 J. Appl. Phys. 50 3492Google Scholar

    [20]

    Gaddum J H 1945 Nature 156 463Google Scholar

    [21]

    Barnaby H, Vermeire B, Campola M 2015 IEEE Trans. Nucl. Sci. 62 1658Google Scholar

    [22]

    Barnaby H, Smith S, Schrimpf R, Fleetwood D, Pease R 2002 IEEE Trans. Nucl. Sci. 49 2643Google Scholar

    [23]

    Tolleson B S, Adell P, Rax B, Barnaby H, Privat A, Han X, Mahmud A, Livingston I 2018 IEEE Trans. Nucl. Sci. 65 1488Google Scholar

    [24]

    Pierret R F, Neudeck G W 1987 Advanced Semiconductor Fundamentals (Vol. 6) (Massachusetts: Addison-Wesley Reading) pp123−235

    [25]

    McWhorter P, Winokur P 1986 Applied Physical Letters 48 133

    [26]

    Rowsey N L, Law M E, Schrimpf R D, Fleetwood D M, Tuttle B R, Pantelides S T 2011 IEEE Trans. Nucl. Sci. 58 2937Google Scholar

    [27]

    Song Y, Zhang G, Liu Y, Zhou H, Zhong L, Dai G, Zuo X, Wei S H 2020 arXiv preprint arXiv 2008 04486

  • [1] 李济芳, 郭红霞, 马武英, 宋宏甲, 钟向丽, 李洋帆, 白如雪, 卢小杰, 张凤祁. 石墨烯场效应晶体管的X射线总剂量效应. 物理学报, 2024, 73(5): 058501. doi: 10.7498/aps.73.20231829
    [2] 张晋新, 王信, 郭红霞, 冯娟, 吕玲, 李培, 闫允一, 吴宪祥, 王辉. 三维数值仿真研究锗硅异质结双极晶体管总剂量效应. 物理学报, 2022, 71(5): 058502. doi: 10.7498/aps.71.20211795
    [3] 张晋新, 王信, 郭红霞, 冯娟. 基于三维数值仿真的SiGe HBT总剂量效应关键影响因素机理研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211795
    [4] 陈睿, 梁亚楠, 韩建伟, 王璇, 杨涵, 陈钱, 袁润杰, 马英起, 上官士鹏. 氮化镓基高电子迁移率晶体管单粒子和总剂量效应的实验研究. 物理学报, 2021, 70(11): 116102. doi: 10.7498/aps.70.20202028
    [5] 董磊, 杨剑群, 甄兆丰, 李兴冀. 预加温处理对双极晶体管过剩基极电流理想因子的影响机制. 物理学报, 2020, 69(1): 018502. doi: 10.7498/aps.69.20191151
    [6] 杨剑群, 董磊, 刘超铭, 李兴冀, 徐鹏飞. Si3N4钝化层对横向PNP双极晶体管电离辐射损伤的影响机理. 物理学报, 2018, 67(16): 168501. doi: 10.7498/aps.67.20172215
    [7] 秦丽, 郭红霞, 张凤祁, 盛江坤, 欧阳晓平, 钟向丽, 丁李利, 罗尹虹, 张阳, 琚安安. 铁电存储器60Co γ射线及电子总剂量效应研究. 物理学报, 2018, 67(16): 166101. doi: 10.7498/aps.67.20180829
    [8] 彭超, 恩云飞, 李斌, 雷志锋, 张战刚, 何玉娟, 黄云. 绝缘体上硅金属氧化物半导体场效应晶体管中辐射导致的寄生效应研究. 物理学报, 2018, 67(21): 216102. doi: 10.7498/aps.67.20181372
    [9] 周航, 崔江维, 郑齐文, 郭旗, 任迪远, 余学峰. 电离辐射环境下的部分耗尽绝缘体上硅n型金属氧化物半导体场效应晶体管可靠性研究. 物理学报, 2015, 64(8): 086101. doi: 10.7498/aps.64.086101
    [10] 王信, 陆妩, 吴雪, 马武英, 崔江维, 刘默寒, 姜柯. 深亚微米金属氧化物场效应晶体管及寄生双极晶体管的总剂量效应研究. 物理学报, 2014, 63(22): 226101. doi: 10.7498/aps.63.226101
    [11] 李兴冀, 兰慕杰, 刘超铭, 杨剑群, 孙中亮, 肖立伊, 何世禹. 偏置条件对NPN及PNP双极晶体管电离辐射损伤的影响研究. 物理学报, 2013, 62(9): 098503. doi: 10.7498/aps.62.098503
    [12] 马振洋, 柴常春, 任兴荣, 杨银堂, 乔丽萍, 史春蕾. 不同样式的高功率微波对双极晶体管的损伤效应和机理. 物理学报, 2013, 62(12): 128501. doi: 10.7498/aps.62.128501
    [13] 任兴荣, 柴常春, 马振洋, 杨银堂, 乔丽萍, 史春蕾. 基极注入强电磁脉冲对双极晶体管的损伤效应和机理. 物理学报, 2013, 62(6): 068501. doi: 10.7498/aps.62.068501
    [14] 张丽丽, 黄心茹, 周恒为, 黄以能. 液体中静态介电常数随温度渡越行为及其关联特征研究. 物理学报, 2012, 61(7): 077701. doi: 10.7498/aps.61.077701
    [15] 马振洋, 柴常春, 任兴荣, 杨银堂, 陈斌. 双极晶体管微波损伤效应与机理. 物理学报, 2012, 61(7): 078501. doi: 10.7498/aps.61.078501
    [16] 王思浩, 鲁庆, 王文华, 安霞, 黄如. 超陡倒掺杂分布对超深亚微米金属-氧化物-半导体器件总剂量辐照特性的改善. 物理学报, 2010, 59(3): 1970-1976. doi: 10.7498/aps.59.1970
    [17] 柴常春, 席晓文, 任兴荣, 杨银堂, 马振洋. 双极晶体管在强电磁脉冲作用下的损伤效应与机理. 物理学报, 2010, 59(11): 8118-8124. doi: 10.7498/aps.59.8118
    [18] 盛利元, 曹莉凌, 孙克辉, 闻 姜. 基于TD-ERCS混沌系统的伪随机数发生器及其统计特性分析. 物理学报, 2005, 54(9): 4031-4037. doi: 10.7498/aps.54.4031
    [19] 贺朝会, 耿斌, 何宝平, 姚育娟, 李永宏, 彭宏论, 林东生, 周辉, 陈雨生. 大规模集成电路总剂量效应测试方法初探. 物理学报, 2004, 53(1): 194-199. doi: 10.7498/aps.53.194
    [20] 袁坚, 任勇, 刘锋, 山秀明. 复杂计算机网络中的相变和整体关联行为. 物理学报, 2001, 50(7): 1221-1225. doi: 10.7498/aps.50.1221
计量
  • 文章访问数:  4803
  • PDF下载量:  94
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-03
  • 修回日期:  2021-02-08
  • 上网日期:  2021-06-25
  • 刊出日期:  2021-07-05

/

返回文章
返回