搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

热峰作用下单斜ZrO2相变过程的分子动力学模拟

赵中华 渠广昊 姚佳池 闵道敏 翟鹏飞 刘杰 李盛涛

引用本文:
Citation:

热峰作用下单斜ZrO2相变过程的分子动力学模拟

赵中华, 渠广昊, 姚佳池, 闵道敏, 翟鹏飞, 刘杰, 李盛涛

Molecular dynamics simulation of phase transition by thermal spikes in monoclinic ZrO2

Zhao Zhong-Hua, Qu Guang-Hao, Yao Jia-Chi, Min Dao-Min, Zhai Peng-Fei, Liu Jie, Li Sheng-Tao
PDF
HTML
导出引用
  • ZrO2陶瓷耐高温、耐腐蚀、抗辐照性能强, 是极具前景的反应堆惰性基质燃料和锕系元素固化材料. 本文联合使用热峰模型和分子动力学方法, 模拟了核辐射环境下ZrO2的相变过程: 基于热峰模型, 从快速重离子注入后能量沉积和传导的多物理过程出发, 建立热扩散方程, 求得ZrO2晶格温度时空演变特性; 然后运用分子动力学方法模拟了该热峰作用下, 单斜ZrO2相变的微观物理过程. 研究发现, 电子能损为30 keV·nm–1的单一快速重离子注入后, ZrO2中心产生一个半径为7 nm的柱形径迹, 径迹中心晶格迅速熔融, Zr原子配位数由7降至4—6, 2 ps时开始结晶并形成空洞, 空洞周围为非晶区, 非晶区外Zr原子配位数变为8, 同时X射线衍射(X-ray diffraction, XRD)计算和分析结果确认发生了单斜相向四方相的转变. 随着热峰能量向周围传递, 相变区逐渐扩大. 经热峰计算和分子动力学模拟, 辐照诱导ZrO2由单斜相转为四方相的快速重离子的电子能损阈值为21 keV·nm–1.
    Owing to its excellent corrosion, radiation and high temperature resistance, ZrO2 has been considered as a strong candidate material for inert fuel for the incineration of actinides. In this paper, a combination of thermal spike model and molecular dynamics is used to simulate the phase transition process of ZrO2 in the nuclear radiation environment. Based on the thermal spike model, two coupled diffusion equations are established with considering the multiple physical process of energy deposition and transmission after the implantation of swift heavy ions into target material. The space-time evolution characteristics of ZrO2 lattice temperature are obtained by solving the coupled diffusion equations numerically. Then the phase transformation of ZrO2 form monoclinic phase to tetragonal phase under the thermal spike is investigated on an atomic scale by means of molecular dynamics. It is found that a cylindrical track with a radius of 7 nm is generated in the center of ZrO2 after the implantation of swift heavy ion with an electronic energy loss of 30 keV·nm–1. The lattice melts immediately in the center of track, accompanied with the coordination number of Zr decreasing from 7 to 4–6. Then at about 2 ps, the melting zone gradually turns cool and recrystallized. And in the center of the melting zone, voids begin to form and are surrounded by a highly disordered amorphous region. Meanwhile, tetragonal phase of ZrO2, whose coordination number of Zr is 8, is formed at the periphery of the amorphous region, which is also confirmed by the XRD calculation results. As energy transfers from track center to the surround, the tetragonal region gradually develops into the whole system, accompanied with the increase of voids size. The simulation results indicate that the irradiation of ZrO2 with swift heavy ions can lead to a transformation from the monoclinic to the tetragonal phase when the deposited electronic energy loss exceeds an effective threshold ~21 keV·nm–1, greater than the experimental value (12 keV·nm–1), which was mainly due to the large difference between the simulated and measured incident ion fluences and the accuracy of the force field used in the molecular dynamics.
      通信作者: 李盛涛, sli@mail.xjtu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11690040, 11690041)和强脉冲辐射环境模拟与效应国家重点实验室(西北核技术研究院)(批准号: SKLIPR1709)资助的课题
      Corresponding author: Li Sheng-Tao, sli@mail.xjtu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11690040, 11690041), and the State Key Laboratory of Intense Pulsed Radiation Simulation and Effect, Northwest Institute of Nuclear Technology, China (Grant No. SKLIPR1709)
    [1]

    Lee Y W, Joung C Y, Kim S H, Lee S C 2001 Met. Mater. Int. 7 159Google Scholar

    [2]

    Aoki T, Sagara H, Han C Y 2019 Ann. Nucl. Energy 126 427Google Scholar

    [3]

    Guo T, Wang C, Lü J, Liang T X 2016 J. Nucl. Mater. 481 66Google Scholar

    [4]

    Nandi C, Grover V, Bhandari K, Bhattacharya S, Mishra S, Banerjee J, Prakash A, Tyagi A K 2018 J. Nucl. Mater. 508 82Google Scholar

    [5]

    Kelly P M, Rose L R F 2002 Prog. Mater. Sci. 47 463Google Scholar

    [6]

    Gong X, Ding S R, Zhao Y M, Huo Y Z, Zhang L, LI Y M 2013 Mech. Mater. 65 110Google Scholar

    [7]

    Benyagoub A, Levesque F, Couvreur F, Gibert-Mougel C, Dufour C, Paumier E 2000 Appl. Phys. Lett. 77 3197Google Scholar

    [8]

    Benyagoub A 2006 Nucl. Instrum. Methods Phys. Res., Sect. B 245 225Google Scholar

    [9]

    Benyagoub A 2010 Nucl. Instrum. Methods Phys. Res., Sect. B 268 2968Google Scholar

    [10]

    Schuster B, Fujara F, Merk B, Neumann R, Seidl T, Trautmann C 2012 Nucl. Instrum. Methods Phys. Res., Sect. B 277 45Google Scholar

    [11]

    Manzini A M, Alurralde M A, Giménez G, Luca V 2016 J. Nucl. Mater. 482 175Google Scholar

    [12]

    O'Connell J H, Lee M E, Skuratov V A, Rymzhanov R A 2020 Nucl. Instrum. Methods Phys. Res., Sect. B 473 1Google Scholar

    [13]

    Benyagoub A 2005 Phys. Rev. B 72 094114Google Scholar

    [14]

    Lu F Y, Wang J W, Lang M, Toulemonde M, Namavar F, Trautmann C, Zhang J M, Ewing R C, Lian J 2012 Phys. Chem. Chem. Phys. 14 12295Google Scholar

    [15]

    Sharma A, Varshney M, Shin H J, Kumar Y, Gautam S, Chae K H 2014 Chem. Phys. Lett. 592 85Google Scholar

    [16]

    Wang J W, Lang M, Ewing R C, Becker U 2013 J. Phys. Condens. Matter 25 135001Google Scholar

    [17]

    王成龙, 王庆宇, 张跃, 李忠宇, 洪兵, 苏折, 董良 2014 物理学报 63 153402Google Scholar

    Wang C L, Wang Q Y, Zhang Y, Li Z Y, Hong B, Su Z, Dong L 2014 Acta Phys. Sin. 63 153402Google Scholar

    [18]

    袁伟, 彭海波, 杜鑫, 律鹏, 沈扬皓, 赵彦, 陈亮, 王铁山 2017 物理学报 66 106102Google Scholar

    Yuan W, Peng H B, Du X, Lv P, Shen Y H, Zhao Y, Chen L, Wang T S 2017 Acta Phys. Sin. 66 106102Google Scholar

    [19]

    Toulemonde M, Trautmann C, Balanzat E, Hjort K, Weidinger A 2004 Nucl. Instrum. Methods Phys. Res., Sect. B 216 1Google Scholar

    [20]

    Meftah A, Costantini J M, Khalfaoui N, Boudjadar S, Stoquert J P, Studer F, Toulemonde M 2005 Nucl. Instrum. Methods Phys. Res., Sect. B 237 563Google Scholar

    [21]

    Stodel C, Toulemonde M, Fransen C, Jacquot B, Clément C, Frémont G, Michel M, Dufour C 2018 29th International Conference of the International Nuclear Target Development Society East Lansing, Michigan, United States of America, October 7–12, 2018 p05001

    [22]

    Toulemonde M, Dufour Ch, Meftah A, Paumier E 2000 Nucl. Instrum. Methods Phys. Res., Sect. B 166 903Google Scholar

    [23]

    Coughlin J P, King E G 1950 J. Am. Chem. Soc. 72 2262Google Scholar

    [24]

    Kim W K, Shim J H, Kaviany M 2016 J. Nucl. Mater. 491 126Google Scholar

    [25]

    Sobolev V, Lemehov S 2006 J. Nucl. Mater. 352 300Google Scholar

    [26]

    Mévrel R, Laizet J C, Azzopardi A, Leclercq B, Poulain M, Lavigne O, Demange D 2004 J. Eur. Ceram. Soc. 24 3081Google Scholar

    [27]

    Ziegler J F, Ziegler M D, Biersack J P 2008 Nucl. Instrum. Methods Phys. Res., Sect. B 268 1818Google Scholar

    [28]

    Plimpton S 1995 J. Comput. Phys. 117 1Google Scholar

    [29]

    Buckingham R A 1938 Proc. R. Soc. London, Ser. A 168 264Google Scholar

    [30]

    Houska J 2016 Comput. Mater. Sci. 111 209Google Scholar

    [31]

    López P, Pelaz L, Santos I, Marqués L A, Aboy M 2012 J. Appl. Phys. 111 033519Google Scholar

    [32]

    Nordlund K 1995 Comput. Mater. Sci. 3 448Google Scholar

    [33]

    Coleman S P, Sichani M M, Spearot D E 2014 JOM 66 408Google Scholar

    [34]

    杨辉, 冯泽华, 王贺然, 张云鹏, 陈铮, 信天缘, 宋小蓉, 吴璐, 张静 2021 物理学报 70 054601Google Scholar

    Yang H, Feng Z H, Wang H R, Zhang Y P, Chen Z, Xin T Y, Song X R, Wu L, Zhang J 2021 Acta Phys. Sin. 70 054601Google Scholar

    [35]

    Szenes G 1995 Phys. Rev. B 51 8026Google Scholar

  • 图 1  单斜ZrO2原胞结构模型

    Fig. 1.  The crystal structure of monoclinic ZrO2.

    图 2  热峰注入靶材料示意图(Se = 30 keV·nm–1)

    Fig. 2.  Diagram of thermal spike injection into target material (Se = 30 keV·nm–1).

    图 3  晶格温度分布曲线 (a) 不同位置晶格温度随时间演化; (b) 不同时刻晶格温度的径向分布

    Fig. 3.  Distributions of lattice temperature: (a) Evolution of lattice temperature at different radial distances; (b) radial distribution of lattice temperature at different times.

    图 4  不同时刻ZrO2原子结构变化. 所有原子沿热峰注入方向投影在(010)平面上

    Fig. 4.  Atomic structure of ZrO2 at different times. All the atoms are projected on (010) plane along the injection direction of thermal spike.

    图 5  辐照前后以及标准ZrO2 XRD图谱

    Fig. 5.  XRD patterns of pristine, ion-irradiated and standard ZrO2.

    图 6  不同时刻不同配位数Zr原子空间分布. 所有原子沿离子入射方向投影在(010)平面上, 颜色不同代表配位数不同

    Fig. 6.  Spatial distribution of Zr atoms with different coordination number at various times. All the atoms are projected on (010) plane along the injection direction of thermal spike. Different coordination numbers are distinguished by the atomic color.

    图 7  配位数随电子能损值变化

    Fig. 7.  The change of coordination number with electronic energy loss.

    图 8  不同配位数Zr原子空间分布 (a) 电子能损值为20 keV·nm–1; (b)电子能损值为21 keV·nm–1. 所有原子沿离子入射方向投影在(010)平面上, 颜色不同代表配位数不同

    Fig. 8.  Spatial distribution of Zr atoms with different coordination number: (a) Se = 20 keV nm–1; (b) Se = 21 keV nm–1. All the atoms are projected on (010) plane along the injection direction of thermal spike. Different coordination numbers are distinguished by the atomic color.

  • [1]

    Lee Y W, Joung C Y, Kim S H, Lee S C 2001 Met. Mater. Int. 7 159Google Scholar

    [2]

    Aoki T, Sagara H, Han C Y 2019 Ann. Nucl. Energy 126 427Google Scholar

    [3]

    Guo T, Wang C, Lü J, Liang T X 2016 J. Nucl. Mater. 481 66Google Scholar

    [4]

    Nandi C, Grover V, Bhandari K, Bhattacharya S, Mishra S, Banerjee J, Prakash A, Tyagi A K 2018 J. Nucl. Mater. 508 82Google Scholar

    [5]

    Kelly P M, Rose L R F 2002 Prog. Mater. Sci. 47 463Google Scholar

    [6]

    Gong X, Ding S R, Zhao Y M, Huo Y Z, Zhang L, LI Y M 2013 Mech. Mater. 65 110Google Scholar

    [7]

    Benyagoub A, Levesque F, Couvreur F, Gibert-Mougel C, Dufour C, Paumier E 2000 Appl. Phys. Lett. 77 3197Google Scholar

    [8]

    Benyagoub A 2006 Nucl. Instrum. Methods Phys. Res., Sect. B 245 225Google Scholar

    [9]

    Benyagoub A 2010 Nucl. Instrum. Methods Phys. Res., Sect. B 268 2968Google Scholar

    [10]

    Schuster B, Fujara F, Merk B, Neumann R, Seidl T, Trautmann C 2012 Nucl. Instrum. Methods Phys. Res., Sect. B 277 45Google Scholar

    [11]

    Manzini A M, Alurralde M A, Giménez G, Luca V 2016 J. Nucl. Mater. 482 175Google Scholar

    [12]

    O'Connell J H, Lee M E, Skuratov V A, Rymzhanov R A 2020 Nucl. Instrum. Methods Phys. Res., Sect. B 473 1Google Scholar

    [13]

    Benyagoub A 2005 Phys. Rev. B 72 094114Google Scholar

    [14]

    Lu F Y, Wang J W, Lang M, Toulemonde M, Namavar F, Trautmann C, Zhang J M, Ewing R C, Lian J 2012 Phys. Chem. Chem. Phys. 14 12295Google Scholar

    [15]

    Sharma A, Varshney M, Shin H J, Kumar Y, Gautam S, Chae K H 2014 Chem. Phys. Lett. 592 85Google Scholar

    [16]

    Wang J W, Lang M, Ewing R C, Becker U 2013 J. Phys. Condens. Matter 25 135001Google Scholar

    [17]

    王成龙, 王庆宇, 张跃, 李忠宇, 洪兵, 苏折, 董良 2014 物理学报 63 153402Google Scholar

    Wang C L, Wang Q Y, Zhang Y, Li Z Y, Hong B, Su Z, Dong L 2014 Acta Phys. Sin. 63 153402Google Scholar

    [18]

    袁伟, 彭海波, 杜鑫, 律鹏, 沈扬皓, 赵彦, 陈亮, 王铁山 2017 物理学报 66 106102Google Scholar

    Yuan W, Peng H B, Du X, Lv P, Shen Y H, Zhao Y, Chen L, Wang T S 2017 Acta Phys. Sin. 66 106102Google Scholar

    [19]

    Toulemonde M, Trautmann C, Balanzat E, Hjort K, Weidinger A 2004 Nucl. Instrum. Methods Phys. Res., Sect. B 216 1Google Scholar

    [20]

    Meftah A, Costantini J M, Khalfaoui N, Boudjadar S, Stoquert J P, Studer F, Toulemonde M 2005 Nucl. Instrum. Methods Phys. Res., Sect. B 237 563Google Scholar

    [21]

    Stodel C, Toulemonde M, Fransen C, Jacquot B, Clément C, Frémont G, Michel M, Dufour C 2018 29th International Conference of the International Nuclear Target Development Society East Lansing, Michigan, United States of America, October 7–12, 2018 p05001

    [22]

    Toulemonde M, Dufour Ch, Meftah A, Paumier E 2000 Nucl. Instrum. Methods Phys. Res., Sect. B 166 903Google Scholar

    [23]

    Coughlin J P, King E G 1950 J. Am. Chem. Soc. 72 2262Google Scholar

    [24]

    Kim W K, Shim J H, Kaviany M 2016 J. Nucl. Mater. 491 126Google Scholar

    [25]

    Sobolev V, Lemehov S 2006 J. Nucl. Mater. 352 300Google Scholar

    [26]

    Mévrel R, Laizet J C, Azzopardi A, Leclercq B, Poulain M, Lavigne O, Demange D 2004 J. Eur. Ceram. Soc. 24 3081Google Scholar

    [27]

    Ziegler J F, Ziegler M D, Biersack J P 2008 Nucl. Instrum. Methods Phys. Res., Sect. B 268 1818Google Scholar

    [28]

    Plimpton S 1995 J. Comput. Phys. 117 1Google Scholar

    [29]

    Buckingham R A 1938 Proc. R. Soc. London, Ser. A 168 264Google Scholar

    [30]

    Houska J 2016 Comput. Mater. Sci. 111 209Google Scholar

    [31]

    López P, Pelaz L, Santos I, Marqués L A, Aboy M 2012 J. Appl. Phys. 111 033519Google Scholar

    [32]

    Nordlund K 1995 Comput. Mater. Sci. 3 448Google Scholar

    [33]

    Coleman S P, Sichani M M, Spearot D E 2014 JOM 66 408Google Scholar

    [34]

    杨辉, 冯泽华, 王贺然, 张云鹏, 陈铮, 信天缘, 宋小蓉, 吴璐, 张静 2021 物理学报 70 054601Google Scholar

    Yang H, Feng Z H, Wang H R, Zhang Y P, Chen Z, Xin T Y, Song X R, Wu L, Zhang J 2021 Acta Phys. Sin. 70 054601Google Scholar

    [35]

    Szenes G 1995 Phys. Rev. B 51 8026Google Scholar

  • [1] 桑丽霞, 李志康. Au-TiO2光电极界面声子热输运特性的分子动力学模拟. 物理学报, 2024, 73(10): 103105. doi: 10.7498/aps.73.20240026
    [2] 冯妍卉, 冯黛丽, 褚福强, 邱琳, 孙方远, 林林, 张欣欣. 纳米组装相变储热材料的热设计前沿. 物理学报, 2022, 71(1): 016501. doi: 10.7498/aps.71.20211776
    [3] 梅涛, 陈占秀, 杨历, 朱洪漫, 苗瑞灿. 非对称纳米通道内界面热阻的分子动力学研究. 物理学报, 2020, 69(22): 224701. doi: 10.7498/aps.69.20200491
    [4] 第伍旻杰, 胡晓棉. 单晶Ce冲击相变的分子动力学模拟. 物理学报, 2020, 69(11): 116202. doi: 10.7498/aps.69.20200323
    [5] 种涛, 王桂吉, 谭福利, 赵剑衡, 唐志平. 窗口声阻抗对锆相变动力学的影响. 物理学报, 2018, 67(7): 070204. doi: 10.7498/aps.67.20172198
    [6] 林长鹏, 刘新健, 饶中浩. 铝纳米颗粒的热物性及相变行为的分子动力学模拟. 物理学报, 2015, 64(8): 083601. doi: 10.7498/aps.64.083601
    [7] 张宝玲, 宋小勇, 侯氢, 汪俊. 高密度氦相变的分子动力学研究. 物理学报, 2015, 64(1): 016202. doi: 10.7498/aps.64.016202
    [8] 张金平, 张洋洋, 李慧, 高景霞, 程新路. 纳米铝热剂Al/SiO2层状结构铝热反应的分子动力学模拟. 物理学报, 2014, 63(8): 086401. doi: 10.7498/aps.63.086401
    [9] 饶中浩, 汪双凤, 张艳来, 彭飞飞, 蔡颂恒. 相变材料热物理性质的分子动力学模拟. 物理学报, 2013, 62(5): 056601. doi: 10.7498/aps.62.056601
    [10] 唐翠明, 赵锋, 陈晓旭, 陈华君, 程新路. Al与α-Fe2O3纳米界面铝热反应的从头计算分子动力学研究. 物理学报, 2013, 62(24): 247101. doi: 10.7498/aps.62.247101
    [11] 周婷婷, 黄风雷. HMX不同晶型热膨胀特性及相变的ReaxFF分子动力学模拟. 物理学报, 2012, 61(24): 246501. doi: 10.7498/aps.61.246501
    [12] 杨平, 吴勇胜, 许海锋, 许鲜欣, 张立强, 李培. TiO2/ZnO纳米薄膜界面热导率的分子动力学模拟. 物理学报, 2011, 60(6): 066601. doi: 10.7498/aps.60.066601
    [13] 汪志刚, 吴亮, 张杨, 文玉华. 面心立方铁纳米粒子的相变与并合行为的分子动力学研究. 物理学报, 2011, 60(9): 096105. doi: 10.7498/aps.60.096105
    [14] 陈斌, 彭向和, 范镜泓, 孙士涛, 罗吉. 考虑相变的热弹塑性本构方程及其应用. 物理学报, 2009, 58(13): 29-S34. doi: 10.7498/aps.58.29
    [15] 王海燕, 崔红保, 历长云, 李旭升, 王狂飞. AlAs相变及热动力学性质的第一性原理研究. 物理学报, 2009, 58(8): 5598-5603. doi: 10.7498/aps.58.5598
    [16] 陈贺胜. 带有2+1味道Wilson费米子的格点量子色动力学在有限温度、有限密度下的相变. 物理学报, 2009, 58(10): 6791-6797. doi: 10.7498/aps.58.6791
    [17] 邵建立, 秦承森, 王裴. 动态压缩下马氏体相变力学性质的微观研究. 物理学报, 2009, 58(3): 1936-1941. doi: 10.7498/aps.58.1936
    [18] 邵建立, 王 裴, 秦承森, 周洪强. 冲击加载下孔洞诱导相变形核分析. 物理学报, 2008, 57(2): 1254-1258. doi: 10.7498/aps.57.1254
    [19] 邵建立, 王 裴, 秦承森, 周洪强. 铁冲击相变的分子动力学研究. 物理学报, 2007, 56(9): 5389-5393. doi: 10.7498/aps.56.5389
    [20] 崔新林, 祝文军, 邓小良, 李英骏, 贺红亮. 冲击波压缩下含纳米孔洞单晶铁的结构相变研究. 物理学报, 2006, 55(10): 5545-5550. doi: 10.7498/aps.55.5545
计量
  • 文章访问数:  6226
  • PDF下载量:  194
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-06
  • 修回日期:  2021-02-23
  • 上网日期:  2021-06-25
  • 刊出日期:  2021-07-05

/

返回文章
返回