搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

闪电M分量光谱特征及通道温度和电子密度特性

王雪娟 许伟群 王海通 杨静 袁萍 张其林 化乐彦 张袁瞰

引用本文:
Citation:

闪电M分量光谱特征及通道温度和电子密度特性

王雪娟, 许伟群, 王海通, 杨静, 袁萍, 张其林, 化乐彦, 张袁瞰

Spectral features, temperature and electron density properties of lightning M-component

Wang Xue-Juan, Xu Wei-Qun, Wang Hai-Tong, Yang Jing, Yuan Ping, Zhang Qi-Lin, Hua Le-Yan, Zhang Yuan-Kan
PDF
HTML
导出引用
  • 利用无狭缝光栅摄谱仪记录的一次闪电首次回击后3个M分量的光谱资料, 分析了其光谱特征. 并结合等离子体理论, 首次计算了闪电M分量内部核心通道和周围电晕层通道的温度和电子密度. 研究了这两个物理量沿通道的变化特性, 并与相应回击放电进行了对比. 结果表明: 闪电M分量的光谱特征相比回击的光谱特征有明显差异, M分量通道的光辐射主要来自红外波段的光谱线. M分量放电过程中内部电流核心通道的温度可达40000 K, 电子密度数量级为1018 cm–3. 周围电晕层通道的温度为20000 K左右, 电子密度比核心通道的电子密度小一个数量级. M分量内部核心通道的温度随通道高度的增加而减小, 周围电晕层通道的温度随通道高度的增加而增大. 在内部核心通道, 电子密度随高度基本保持不变. 在周围电晕层通道, 通道顶端光强明显增大的两个M分量其电子密度随通道高度的增加而增大, 顶端光强增加较弱的一个M分量其电子密度随通道高度基本保持不变. 而相应的回击放电, 其内部电流核心通道和外围电晕层通道的温度均随通道高度的增加而增大, 电子密度均沿通道基本保持不变.
    Using the spectra of the three M-components following a first return stroke recorded by a slitless spectrograph, the spectral features of the M-components are analyzed. Combining with plasma theories, the temperatures and the electron densities of the M-components in the channel core and outer corona sheath are calculated. The variations along the channel of these two parameters are studied, and compared with the corresponding return stroke. The results show that the spectra of the M-components are different from the spectrum of the return stroke. The optical radiation of the M-component is primarily from the spectral lines in infrared waveband. The temperature of the M-component in the channel core can reach 40000 K. The electron density of the M-component in the channel core is on the order of 1018 cm–3. The temperature of the M-component in the external corona sheath is about 20000 K. The electron density of the M-component in the external corona sheath is on the order of 1017 cm–3. The temperature of the M-component in the channel core decreases with height increasing, while that in the external corona sheath increases with channel height increasing. The electron density of the M-component in the channel core basically does not change with channel height. Whereas, the electron densities in the external corona sheath for two M-components with hard light at the upper end of the channel increase with channel height increasing, and the electron density for one M-component with weak light at upper end of the channel basically does not change with the channel height. By comparison, the temperature in the core channel and in the external corona sheath of the corresponding return stroke both increase with channel height. The electron density in the core channel and in the external corona sheath of the corresponding return stroke both basically remain constant along the channel.
      通信作者: 王雪娟, wxj@nuist.edu.cn
    • 基金项目: 江苏省自然科学基金(批准号: BK20180805)、国家自然科学基金(批准号: 42005065)、南京信息工程大学人才启动基金(批准号: 2017r065)、中国科学院中层大气和全球环境探测重点实验室(LAGEO)开放课题(批准号: LAGEO-2019-07)、中国气象科学院灾害天气国家重点实验室开放课题(批准号: 2020LASW-B14)和南京信息工程大学大学生创新项目(批准号: 201910300133Y)资助的课题
      Corresponding author: Wang Xue-Juan, wxj@nuist.edu.cn
    • Funds: Project supported by the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20180805), the National Natural Science Foundation of China (Grant No. 42005065), the Startup Foundation for Introducing Talent of Nanjing University of Information Science & Technology, China (Grant No. 2017r065), the Open Grants of the Key Laboratory of Middle Atmosphere and Global Environment Observation, Chinese Academy of Sciences (Grant No. LAGEO-2019-07), the Open Grants of the State Key Laboratory of Severe Weather, China Academy of Meteorological Sciences (Grant No.2020LASW-B14), and the Undergraduate Innovation Project of Nanjing University of Information Science & Technology, China (Grant No. 201910300133Y)
    [1]

    Malan D J, Collens H 1937 J. Proc. R. Soc. Lond, A, Math. Phys. Sci. 162 175Google Scholar

    [2]

    Fisher R J, Schnetzer G H 1993 J. Geophys. Res. 98 22887Google Scholar

    [3]

    Thottappillil R, Goldberg J D, Rakov V A, Uman M A, Fisher R J, George H S 1995 J. Geophys. Res. 100 25711Google Scholar

    [4]

    Jordan D M, Idone V P, Orville R E, Rakov V A, Uman M A 1995 J. Geophys. Res. 100 25695Google Scholar

    [5]

    Rakov V A, Crawford D E, Rambo K J, Schnetzer G H, Uman M A 2001 J. Geophys. Res. 106 22817Google Scholar

    [6]

    Qie X, Jiang R, Wang C, Yang J, Wang J, Liu D 2011 J. Geophys. Res. 116 D10102Google Scholar

    [7]

    肖桐, 张阳, 吕伟涛, 郑栋, 张义军 2013 应用气象学报 24 446Google Scholar

    Xiao T, Zhang Y, Lu W T, Zheng D, Zhang Y J 2013 J. Appl. Meteorolog. Sci. 24 446Google Scholar

    [8]

    吕伟涛, 张义军, 周秀骥, 孟青, 郑栋, 马明, 王飞, 陈邵东, 郄秀书 2007 应用气象学报 65 983Google Scholar

    Lu W T, Zhang Y J, Zhou X J, Meng Q, Zheng D, Ma M, Wang F, Chen S D, Qie X S 2007 J. Appl. Meteorolog. Sci. 65 983Google Scholar

    [9]

    孔祥贞, 郄秀书, 王才伟, 张义军, 王怀斌, 张翠华 2003 高原气象 22 259Google Scholar

    Kong X Z, Qie X S, Wang C W, Zhang Y J, Wang H B, Zhang C H 2003 Plateau Meteorol. 22 259Google Scholar

    [10]

    蒋如斌, 郄秀书, 王彩霞, 杨静, 张其林, 刘明元, 王俊芳, 刘冬霞, 潘伦湘 2011 物理学报 60 079201Google Scholar

    Jang R B, Qie X S, Wang C X, Yang J, Zhang Q L, Liu M Y, Wang J F, Liu D X, Pan L X 2011 Acta Phys. Sin. 60 079201Google Scholar

    [11]

    王雪娟, 袁萍, 岑建勇, 张廷龙, 薛思敏, 赵金翠, 许鹤 2013 物理学报 62 109201Google Scholar

    Wang X J, Yuan P, Cen J Y, Zhang T L, Xue S M, Zhao J C, Xu H 2013 Acta Phys. Sin. 62 109201Google Scholar

    [12]

    Uman M A, Orville R E 1965 J. Geophys. Res. 70 5491Google Scholar

    [13]

    Uman M A 1969 J. Geophys. Res. 74 949Google Scholar

    [14]

    穆亚利, 袁萍, 王雪娟, 董彩霞 2016 光学学报 36 0630001Google Scholar

    Mu Y L, Yuan P, Wang X J, Dong C X 2016 Acta Optica Sinica 36 0630001Google Scholar

    [15]

    Xue S, Yuan P, Cen J, Li Y, Wang X 2015 Wang J. Geophys. Res. Atmos. 120 1972Google Scholar

    [16]

    Wang X, Yuan P, Cen J, Xue S 2016 J. Geophys. Res. Atmos. 121 8615Google Scholar

    [17]

    郄秀书, 张其林, 袁铁, 张廷龙 2013 雷电物理 (北京: 科学出版社)

    Qie X H, Zhang Q L, Yuan T, Zhang T L 2013 Thunder Physics (Beijing: Science Press) (in Chinese)

    [18]

    Maslowski G, Rakov V A 2013 Atmos. Res. 129 117Google Scholar

    [19]

    Maslowski G, Rakov V A 2006 J. Geophys. Res. 111 D14110Google Scholar

    [20]

    Cvetic J, Heidler F, Markovic S, Radosavljevic R, Osmokrovic P 2012 Atmos. Res. 117 122Google Scholar

    [21]

    Orville R E 1968 J. Geophys. Res. 73 6999Google Scholar

    [22]

    Thottappillil R, Rakov V A, Uman M A 1997 J. Geophys. Res. 102 6987Google Scholar

    [23]

    Wang X, Yuan P, Cen J, Liu G 2017 J. Geophys. Res. Atmos. 122 4993Google Scholar

    [24]

    Liu G, Yuan P, An T, Cen J, Wang X 2019 Appl. Phys. Lett. 115 064103Google Scholar

    [25]

    Liu G, Yuan P, An T, Sun D, Cen J, Wang X 2019 J. Geophys. Res. Atmos. 124 4689Google Scholar

    [26]

    Zhao J, Yuan P, Cen J, Liu J, Wang J, Zhang G 2013 J. Appl. Phys. 114 163303Google Scholar

    [27]

    袁萍, 欧阳玉花, 吕世华, 郄秀书, 贾向东, 张华明 2006 高原气象 25 503Google Scholar

    Yuan P, Ouyang Y H, Lu S H, Qie X S, Jia X D, Zhang H M 2006 Plateau Meteorol. 25 503Google Scholar

    [28]

    张华明, 袁萍, 吕世华, 欧阳玉花 2007 高原气象 26 264Google Scholar

    Zhang H M, Yuan P, Lu S H, Ouyang Y H 2007 Plateau Meteorol. 26 264Google Scholar

    [29]

    Orville R E, Henderson R 1984 J. Atmos. Sci. 41 3180Google Scholar

    [30]

    Weidman C, Boye A, Crowell L 1989 J. Geophys. Res. 94 13249Google Scholar

    [31]

    Hegazy H 2010 J. Appl. Phys. B 98 601Google Scholar

  • 图 1  回击和M分量的原始发光通道

    Fig. 1.  Original channels of lightning return stroke and M-components.

    图 2  回击R和M1, M2, M3的原始光谱

    Fig. 2.  Original spectrum of R, M1, M2 and M3

    图 3  回击R和M1, M2, M3对应通道某一高度处的谱线图

    Fig. 3.  Spectrum of R, M1, M2 and M3 at a given height of the channels

    图 4  R, M1, M2, M3核心通道的温度沿通道的变化

    Fig. 4.  Variations of the temperatures along the core channel for R, M1, M2 and M3

    图 5  R, M1, M2, M3核心电流通道的电子密度随通道的变化

    Fig. 5.  Variations of the electron densities along the core channel for R, M1, M2 and M3

    图 6  R, M1, M2, M3电晕层通道的温度随通道高度的变化

    Fig. 6.  Variations of the temperatures along the outer corona channel for R, M1, M2 and M3

    图 7  R, M1, M2, M3电晕层通道的电子密度随通道高度的变化

    Fig. 7.  Variations of the electron densities along the outer corona channel for R, M1, M2 and M3

  • [1]

    Malan D J, Collens H 1937 J. Proc. R. Soc. Lond, A, Math. Phys. Sci. 162 175Google Scholar

    [2]

    Fisher R J, Schnetzer G H 1993 J. Geophys. Res. 98 22887Google Scholar

    [3]

    Thottappillil R, Goldberg J D, Rakov V A, Uman M A, Fisher R J, George H S 1995 J. Geophys. Res. 100 25711Google Scholar

    [4]

    Jordan D M, Idone V P, Orville R E, Rakov V A, Uman M A 1995 J. Geophys. Res. 100 25695Google Scholar

    [5]

    Rakov V A, Crawford D E, Rambo K J, Schnetzer G H, Uman M A 2001 J. Geophys. Res. 106 22817Google Scholar

    [6]

    Qie X, Jiang R, Wang C, Yang J, Wang J, Liu D 2011 J. Geophys. Res. 116 D10102Google Scholar

    [7]

    肖桐, 张阳, 吕伟涛, 郑栋, 张义军 2013 应用气象学报 24 446Google Scholar

    Xiao T, Zhang Y, Lu W T, Zheng D, Zhang Y J 2013 J. Appl. Meteorolog. Sci. 24 446Google Scholar

    [8]

    吕伟涛, 张义军, 周秀骥, 孟青, 郑栋, 马明, 王飞, 陈邵东, 郄秀书 2007 应用气象学报 65 983Google Scholar

    Lu W T, Zhang Y J, Zhou X J, Meng Q, Zheng D, Ma M, Wang F, Chen S D, Qie X S 2007 J. Appl. Meteorolog. Sci. 65 983Google Scholar

    [9]

    孔祥贞, 郄秀书, 王才伟, 张义军, 王怀斌, 张翠华 2003 高原气象 22 259Google Scholar

    Kong X Z, Qie X S, Wang C W, Zhang Y J, Wang H B, Zhang C H 2003 Plateau Meteorol. 22 259Google Scholar

    [10]

    蒋如斌, 郄秀书, 王彩霞, 杨静, 张其林, 刘明元, 王俊芳, 刘冬霞, 潘伦湘 2011 物理学报 60 079201Google Scholar

    Jang R B, Qie X S, Wang C X, Yang J, Zhang Q L, Liu M Y, Wang J F, Liu D X, Pan L X 2011 Acta Phys. Sin. 60 079201Google Scholar

    [11]

    王雪娟, 袁萍, 岑建勇, 张廷龙, 薛思敏, 赵金翠, 许鹤 2013 物理学报 62 109201Google Scholar

    Wang X J, Yuan P, Cen J Y, Zhang T L, Xue S M, Zhao J C, Xu H 2013 Acta Phys. Sin. 62 109201Google Scholar

    [12]

    Uman M A, Orville R E 1965 J. Geophys. Res. 70 5491Google Scholar

    [13]

    Uman M A 1969 J. Geophys. Res. 74 949Google Scholar

    [14]

    穆亚利, 袁萍, 王雪娟, 董彩霞 2016 光学学报 36 0630001Google Scholar

    Mu Y L, Yuan P, Wang X J, Dong C X 2016 Acta Optica Sinica 36 0630001Google Scholar

    [15]

    Xue S, Yuan P, Cen J, Li Y, Wang X 2015 Wang J. Geophys. Res. Atmos. 120 1972Google Scholar

    [16]

    Wang X, Yuan P, Cen J, Xue S 2016 J. Geophys. Res. Atmos. 121 8615Google Scholar

    [17]

    郄秀书, 张其林, 袁铁, 张廷龙 2013 雷电物理 (北京: 科学出版社)

    Qie X H, Zhang Q L, Yuan T, Zhang T L 2013 Thunder Physics (Beijing: Science Press) (in Chinese)

    [18]

    Maslowski G, Rakov V A 2013 Atmos. Res. 129 117Google Scholar

    [19]

    Maslowski G, Rakov V A 2006 J. Geophys. Res. 111 D14110Google Scholar

    [20]

    Cvetic J, Heidler F, Markovic S, Radosavljevic R, Osmokrovic P 2012 Atmos. Res. 117 122Google Scholar

    [21]

    Orville R E 1968 J. Geophys. Res. 73 6999Google Scholar

    [22]

    Thottappillil R, Rakov V A, Uman M A 1997 J. Geophys. Res. 102 6987Google Scholar

    [23]

    Wang X, Yuan P, Cen J, Liu G 2017 J. Geophys. Res. Atmos. 122 4993Google Scholar

    [24]

    Liu G, Yuan P, An T, Cen J, Wang X 2019 Appl. Phys. Lett. 115 064103Google Scholar

    [25]

    Liu G, Yuan P, An T, Sun D, Cen J, Wang X 2019 J. Geophys. Res. Atmos. 124 4689Google Scholar

    [26]

    Zhao J, Yuan P, Cen J, Liu J, Wang J, Zhang G 2013 J. Appl. Phys. 114 163303Google Scholar

    [27]

    袁萍, 欧阳玉花, 吕世华, 郄秀书, 贾向东, 张华明 2006 高原气象 25 503Google Scholar

    Yuan P, Ouyang Y H, Lu S H, Qie X S, Jia X D, Zhang H M 2006 Plateau Meteorol. 25 503Google Scholar

    [28]

    张华明, 袁萍, 吕世华, 欧阳玉花 2007 高原气象 26 264Google Scholar

    Zhang H M, Yuan P, Lu S H, Ouyang Y H 2007 Plateau Meteorol. 26 264Google Scholar

    [29]

    Orville R E, Henderson R 1984 J. Atmos. Sci. 41 3180Google Scholar

    [30]

    Weidman C, Boye A, Crowell L 1989 J. Geophys. Res. 94 13249Google Scholar

    [31]

    Hegazy H 2010 J. Appl. Phys. B 98 601Google Scholar

  • [1] 马平, 田径, 田得阳, 张宁, 吴明兴, 唐璞. 应用于超高速流场电子密度分布测量的七通道微波干涉仪测量系统. 物理学报, 2024, 73(17): 172401. doi: 10.7498/aps.73.20240656
    [2] 刘国荣, 朱维君, 褚润通, 王伟, 袁萍, 安婷婷, 万瑞斌, 孙对兄, 马云云, 郭志艳. 依据不同波段光谱诊断闪电回击通道温度. 物理学报, 2022, 71(10): 109201. doi: 10.7498/aps.71.20211673
    [3] 王浩若, 张冲, 张宏超, 沈中华, 倪晓武, 陆健. 超短脉冲激光与微小水滴相互作用中电子密度和光场的时空分布. 物理学报, 2017, 66(12): 127801. doi: 10.7498/aps.66.127801
    [4] 杨文斌, 周江宁, 李斌成, 邢廷文. 激光诱导氮气等离子体时间分辨光谱研究及温度和电子密度测量. 物理学报, 2017, 66(9): 095201. doi: 10.7498/aps.66.095201
    [5] 杨大鹏, 李苏宇, 姜远飞, 陈安民, 金明星. 飞秒激光成丝诱导Cu等离子体的温度和电子密度. 物理学报, 2017, 66(11): 115201. doi: 10.7498/aps.66.115201
    [6] 王瑞燕, 袁萍, 岑建勇, 王雪娟, 王杰. 闪电通道温度诊断中观测距离的影响. 物理学报, 2014, 63(9): 099203. doi: 10.7498/aps.63.099203
    [7] 武斌, 张广庶, 王彦辉, 李亚珺, 范祥鹏, 余海, 张荣. 青藏高原东北部闪电M变化多参量观测. 物理学报, 2013, 62(18): 189202. doi: 10.7498/aps.62.189202
    [8] 王雪娟, 袁萍, 岑建勇, 张廷龙, 薛思敏, 赵金翠, 许鹤. 依据光谱研究闪电放电通道的半径及能量传输特性. 物理学报, 2013, 62(10): 109201. doi: 10.7498/aps.62.109201
    [9] 蒋如斌, 郄秀书, 王彩霞, 杨静, 张其林, 刘明远, 王俊芳, 刘冬霞, 潘伦湘. 峰值电流达几千安量级的闪电M分量放电特征及机理探讨. 物理学报, 2011, 60(7): 079201. doi: 10.7498/aps.60.079201
    [10] 曹青松, 邓开明, 陈宣, 唐春梅, 黄德财. MC20F20(M=Li,Na,Be和Mg)几何结构和电子性质的密度泛函计算研究. 物理学报, 2009, 58(3): 1863-1869. doi: 10.7498/aps.58.1863
    [11] 姜本学, 徐 军, 李红军, 王静雅, 赵广军, 赵志伟. 温度梯度法生长Nd:YAG激光晶体的核心分布. 物理学报, 2007, 56(2): 1014-1019. doi: 10.7498/aps.56.1014
    [12] 郑无敌, 张国平, 王 琛, 孙今人, 方智恒, 顾 援, 傅思祖. 用X射线激光M-Z干涉仪诊断点聚焦CH等离子体电子密度. 物理学报, 2007, 56(7): 3984-3989. doi: 10.7498/aps.56.3984
    [13] 王 琛, 王 伟, 孙今人, 方智恒, 吴 江, 傅思祖, 马伟新, 顾 援, 王世绩, 张国平, 郑无敌, 张覃鑫, 彭惠民, 邵 平, 易 葵, 林尊琪, 王占山, 王洪昌, 周 斌, 陈玲燕. 利用x射线激光干涉诊断等离子体电子密度. 物理学报, 2005, 54(1): 202-205. doi: 10.7498/aps.54.202
    [14] 郝作强, 俞 进, 张 杰, 远晓辉, 郑志远, 杨 辉, 王兆华, 令维军, 魏志义. 用声学诊断方法测量激光等离子体通道的长度与电子密度. 物理学报, 2005, 54(3): 1290-1294. doi: 10.7498/aps.54.1290
    [15] 何 峰, 余 玮, 陆培祥. 飞秒强激光作用下线性等离子体层中光场和电子密度的自洽分布. 物理学报, 2003, 52(8): 1965-1969. doi: 10.7498/aps.52.1965
    [16] 陆培祥, 张正泉, 徐至展, 范品忠, 沈百飞, 陈时胜. 类锂硅离子X射线激光谱线宽度和电子密度的空间分布. 物理学报, 1993, 42(2): 273-276. doi: 10.7498/aps.42.273
    [17] 夏钟福, 王毓德, 丁亥, 杨国茂, 时东兵, 孙熙民. 聚酯的高温电晕充电和电荷在体内的输运. 物理学报, 1991, 40(12): 1986-1991. doi: 10.7498/aps.40.1986
    [18] 于宜君. 热锂束荧光探测电子密度. 物理学报, 1990, 39(12): 1921-1927. doi: 10.7498/aps.39.1921
    [19] 程成, 孙威, 唐传舜. 脉冲激光等离子体中时间分辨的电子温度和电子密度. 物理学报, 1988, 37(7): 1150-1156. doi: 10.7498/aps.37.1150
    [20] 李家明, 赵中新. 变价稀土元素L,M,N内壳层电子束缚能量的变化. 物理学报, 1982, 31(1): 97-103. doi: 10.7498/aps.31.97
计量
  • 文章访问数:  5350
  • PDF下载量:  66
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-07
  • 修回日期:  2020-12-28
  • 上网日期:  2021-04-24
  • 刊出日期:  2021-05-05

/

返回文章
返回