搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

强散射过程与双随机相位加密过程的等价性分析

陈洁 周昕 白星 李聪 徐昭 倪洋

引用本文:
Citation:

强散射过程与双随机相位加密过程的等价性分析

陈洁, 周昕, 白星, 李聪, 徐昭, 倪洋

Equivalence analysis of highly scattering process and double random phase encryption process

Chen Jie, Zhou Xin, Bai Xing, Li Cong, Xu Zhao, Ni Yang
科大讯飞全文翻译 (iFLYTEK Translation)
PDF
HTML
导出引用
  • 薄层强散射介质的散射系统只会引起入射光波的振幅和相位分布变化, 但不会导致总能量的衰减. 这一过程可以看成光波被散射系统编码的过程, 与双随机加密系统极为相似. 本文首先证明了载有目标信息的光波在通过薄层强散射介质的散射系统时所产生散斑的分布特性, 与双随机加密系统加密同一明文目标所得到的密文分布特性具有高度的相似性. 然后, 本文将该散射系统视为一个双随机加密系统, 并利用相位恢复算法精确地计算出该散射系统所对应的两块随机相位密钥, 同时证明了这两块密钥板还可以成功地从该散射系统所得到的其他任何散斑中恢复出对应的原始图像. 最后, 为了进一步证明二者的等价性, 本文使用一种适用于双随机加密系统的唯密文攻击方法, 成功地破解了薄层强散射介质的散射系统, 得到了较好结果.
    The scattering system through a highly scattering thin layer only affects the amplitude and phase distribution of incident light wave, but does not lead the total energy to be attenuated. This process can be regarded as a process that light wave is encoded by the scattering medium, which is similar to a double random phase encryption system. In this paper, firstly, it is proved that the distribution characteristics of speckle generated by the light wave carrying the target information through a strongly scattering thin layer are highly similar to the distribution characteristics of cyphertext obtained by the double random phase encryption system encrypting the same plaintext target. Therefore, the scattering system is seen as a double random phase encryption system, and the two random phase keys corresponding to the scattering system are calculated accurately by using the phase recovery algorithm. At the same time, it is proved that these two key boards can successfully reconstruct the original images corresponding to any other speckles obtained by the scattering system. Finally, a cyphertext-only attack method to attack a scattering system through a highly scattering thin layer is used to further prove the equivalence of two key boards and the good results are obtained. Since imaging through a scattering medium is an extremely complicated process, we actually simplify the corresponding process ideally. It should be noted that the equivalent system means that the incident-surface-to-exit-surface of scattering medium is equivalent to the incident-surface-to-exit-surface of DRPE system. However, in the actual process, there are still two diffraction processes: one is the diffraction process from the object to the incident surface and the other is the diffraction process from the output surface to the receiving surface. These two diffraction processes will cause the incident image and the output image of scattering medium to have a certain diffraction effect. We believe that under ideal conditions, due to the equivalence between the thin-layer strong scattering system and the DRPE system, theoretically all pure ciphertext attack methods applicable to the DRPE system can be applied to the speckle recovery of the thin-layer strong scattering system. In the future, it is possible to develop more methods of using system equivalence to crack the scattered light field. We hope this article can provide a new idea for scattering imaging.
      通信作者: 周昕, zhoxn@21cn.com
    • 基金项目: 国家自然科学基金(批准号: 61475104, 61177009)资助的课题
      Corresponding author: Zhou Xin, zhoxn@21cn.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 61475104, 61177009)
    [1]

    Mujumdar S, Ramachandran H 2004 Opt. Commun. 241 1Google Scholar

    [2]

    Wu P F, Liang Z, Zhao X, Su L, Song L P 2017 Appl. Optics. 56 3335Google Scholar

    [3]

    Nagar H, Dekel E, Kasimov D, Roichman Y 2018 Opt. Lett. 43 190Google Scholar

    [4]

    Katz O, Small E, Silberberg Y 2012 Nat. Photonics. 6 549Google Scholar

    [5]

    Wu T F, Dong J, Shao X P, Gigan S 2017 Opt. Express. 25 27182Google Scholar

    [6]

    Wu T F, Katz O, Shao X P, Gigan S 2016 Opt. Lett. 41 5003Google Scholar

    [7]

    Shao X P, Wu T F, Gong C M 2013 Opt. Eng. 52 113

    [8]

    Cui M 2011 Opt. Lett. 36 870Google Scholar

    [9]

    Conkey D B, Caravaca-Aguirre A M, Piestun R 2012 Opt. Express. 20 1733Google Scholar

    [10]

    Liu J T, Wang J N, Li W, Sun X Y, Zhu L, Guo C F, Shao X P 2018 IEEE Photonics J. 10 1

    [11]

    Chaigne T, Katz O, Boccara A C, Fink M, Bossy E, Gigan S 2013 Nat. Photonics 8 58

    [12]

    龚昌妹 2017 博士学位论文(西安: 西安电子科技大学)

    Gong C M 2017 Ph .D. Dissertation (Xi’an: Xidian University) (in Chinese)

    [13]

    Katz O, Heidmann P, Fink M, Gigan S 2014 Nat. Photonics. 8 784

    [14]

    宋洪胜, 程传福, 张宁玉, 任晓荣滕树云徐至展 2005 物理学报 54 669Google Scholar

    Song H S, Cheng C F, Zhang N Y, Ren X R, Ten S Y, Xu Z Z 2005 Acta Phys. Sin. 54 669Google Scholar

    [15]

    Idell P S, Fienup J R, Goodman R S 1987 Opt. Lett. 12 858Google Scholar

    [16]

    Li G W, Yang W Q, Li D Y, Situ G H 2017 Opt. Express 25 8690Google Scholar

    [17]

    Guo C L, Liu S, Sheridan J T 2015 Appl. Optics. 54 4698Google Scholar

    [18]

    Lowenthal S, Arsenault H 1970 J. Opt. Soc. Am. 60 1478Google Scholar

    [19]

    Goodman J W 2000 Statistical Optics (New York: Wiley) pp320—390

    [20]

    Refregier P, Javidi B 1995 Opt. Lett. 20 767Google Scholar

    [21]

    吴腾飞 2018 博士学位论文 (西安: 西安电子科技大学)

    Wu T F 2018 Ph. D. Dissertation (Xi’an: Xidian University) (in Chinese)

    [22]

    彭翔, 张鹏, 位恒政, 于斌 2006 物理学报 55 1130Google Scholar

    Peng X, Zhang P, Wei H Z, Yu B 2006 Acta Phys. Sin. 55 1130Google Scholar

  • 图 1  散射过程

    Fig. 1.  Scattering process.

    图 2  双随机相位加密系统

    Fig. 2.  Double random phase encryption system.

    图 3  散斑和密文的统计直方图 (a)实部; (b)虚部; (c)振幅; (d)强度

    Fig. 3.  Statistical distribution histogram of speckle and cyphertext: (a) Real part; (b) imaginary part; (c) amplitude (d) intensity.

    图 4  (a)原始图像; (b) 经过强散射薄层后的散斑; (c)第一块密钥板; (d)第二块密钥板;(e)另一原始图像; (f)利用两块密钥板解密出的图像

    Fig. 4.  (a) Original image;(b) speckle suffered highly thin scatter layer; (c) first encryption key; (d) second encryption key; (e) another original image; (f) decrypted image by two keys.

    图 5  (a)第一块随机相位板统计分布直方图;(b)第二块随机相位板统计分布直方图

    Fig. 5.  (a) The histogram of first random phase key; (b) the histogram of second random phase key.

    图 6  散射成像系统示意图

    Fig. 6.  Schematic diagram of scattering imaging system.

    图 7  (a)目标物体; (b)傅里叶域散斑强度; (c)ESD的估计值; (d)恢复出的目标图像

    Fig. 7.  (a) Original plaintext image; (b) Fourier-domain speckle intensity;(c) estimated ESD; (d) recovered plaintext image.

  • [1]

    Mujumdar S, Ramachandran H 2004 Opt. Commun. 241 1Google Scholar

    [2]

    Wu P F, Liang Z, Zhao X, Su L, Song L P 2017 Appl. Optics. 56 3335Google Scholar

    [3]

    Nagar H, Dekel E, Kasimov D, Roichman Y 2018 Opt. Lett. 43 190Google Scholar

    [4]

    Katz O, Small E, Silberberg Y 2012 Nat. Photonics. 6 549Google Scholar

    [5]

    Wu T F, Dong J, Shao X P, Gigan S 2017 Opt. Express. 25 27182Google Scholar

    [6]

    Wu T F, Katz O, Shao X P, Gigan S 2016 Opt. Lett. 41 5003Google Scholar

    [7]

    Shao X P, Wu T F, Gong C M 2013 Opt. Eng. 52 113

    [8]

    Cui M 2011 Opt. Lett. 36 870Google Scholar

    [9]

    Conkey D B, Caravaca-Aguirre A M, Piestun R 2012 Opt. Express. 20 1733Google Scholar

    [10]

    Liu J T, Wang J N, Li W, Sun X Y, Zhu L, Guo C F, Shao X P 2018 IEEE Photonics J. 10 1

    [11]

    Chaigne T, Katz O, Boccara A C, Fink M, Bossy E, Gigan S 2013 Nat. Photonics 8 58

    [12]

    龚昌妹 2017 博士学位论文(西安: 西安电子科技大学)

    Gong C M 2017 Ph .D. Dissertation (Xi’an: Xidian University) (in Chinese)

    [13]

    Katz O, Heidmann P, Fink M, Gigan S 2014 Nat. Photonics. 8 784

    [14]

    宋洪胜, 程传福, 张宁玉, 任晓荣滕树云徐至展 2005 物理学报 54 669Google Scholar

    Song H S, Cheng C F, Zhang N Y, Ren X R, Ten S Y, Xu Z Z 2005 Acta Phys. Sin. 54 669Google Scholar

    [15]

    Idell P S, Fienup J R, Goodman R S 1987 Opt. Lett. 12 858Google Scholar

    [16]

    Li G W, Yang W Q, Li D Y, Situ G H 2017 Opt. Express 25 8690Google Scholar

    [17]

    Guo C L, Liu S, Sheridan J T 2015 Appl. Optics. 54 4698Google Scholar

    [18]

    Lowenthal S, Arsenault H 1970 J. Opt. Soc. Am. 60 1478Google Scholar

    [19]

    Goodman J W 2000 Statistical Optics (New York: Wiley) pp320—390

    [20]

    Refregier P, Javidi B 1995 Opt. Lett. 20 767Google Scholar

    [21]

    吴腾飞 2018 博士学位论文 (西安: 西安电子科技大学)

    Wu T F 2018 Ph. D. Dissertation (Xi’an: Xidian University) (in Chinese)

    [22]

    彭翔, 张鹏, 位恒政, 于斌 2006 物理学报 55 1130Google Scholar

    Peng X, Zhang P, Wei H Z, Yu B 2006 Acta Phys. Sin. 55 1130Google Scholar

  • [1] 刘睿泽, 祝玉鹏, 周新隆, 米沼锞, 吴承哲, 秦俏华, 柯常军, 史祎诗. 基于像素不扩展视觉密码的光学彩色脆弱水印. 物理学报, 2024, 73(13): 134202. doi: 10.7498/aps.73.20231652
    [2] 陈松懋, 苏秀琴, 郝伟, 张振扬, 汪书潮, 朱文华, 王杰. 基于光子计数激光雷达的自适应门控抑噪及三维重建算法. 物理学报, 2022, 71(10): 104202. doi: 10.7498/aps.71.20211697
    [3] 许祥馨, 常军, 武楚晗, 宋大林. 基于双随机相位编码的局部混合光学加密系统. 物理学报, 2020, 69(20): 204201. doi: 10.7498/aps.69.20200478
    [4] 孙世峰. 基于可分离编码的高分辨X射线荧光成像技术研究. 物理学报, 2020, 69(19): 198701. doi: 10.7498/aps.69.20200674
    [5] 王雪光, 李明, 于娜娜, 席思星, 王晓雷, 郎利影. 基于空间角度复用和双随机相位的多图像光学加密方法. 物理学报, 2019, 68(24): 240503. doi: 10.7498/aps.68.20191362
    [6] 肖晓, 杜舒曼, 赵富, 王晶, 刘军, 李儒新. 基于赝热光照明的单发光学散斑成像. 物理学报, 2019, 68(3): 034201. doi: 10.7498/aps.68.20181723
    [7] 乔志伟. 总变差约束的数据分离最小图像重建模型及其Chambolle-Pock求解算法. 物理学报, 2018, 67(19): 198701. doi: 10.7498/aps.67.20180839
    [8] 张雷雷, 唐立金, 张慕阳, 梁艳梅. 对称照明在傅里叶叠层成像中的应用. 物理学报, 2017, 66(22): 224201. doi: 10.7498/aps.66.224201
    [9] 杜劲松, 高扬, 毕欣, 齐伟智, 黄林, 荣健. S波段微波热致超声成像系统研究. 物理学报, 2015, 64(3): 034301. doi: 10.7498/aps.64.034301
    [10] 韩玉, 李磊, 闫镔, 席晓琦, 胡国恩. 一种基于Radon逆变换的半覆盖螺旋锥束CT重建算法. 物理学报, 2015, 64(5): 058704. doi: 10.7498/aps.64.058704
    [11] 何林阳, 刘晶红, 李刚. 基于多相组重建的航空图像超分辨率算法. 物理学报, 2015, 64(11): 114208. doi: 10.7498/aps.64.114208
    [12] 王胜, 邹宇斌, 温伟伟, 李航, 刘树全, 王浒, 陆元荣, 唐国有, 郭之虞. 基于小型加速器的编码中子源成像研究. 物理学报, 2013, 62(12): 122801. doi: 10.7498/aps.62.122801
    [13] 杨昆, 刘新新, 李晓苇. 数据插值对正电子发射断层成像设备的图像重建影响的研究. 物理学报, 2013, 62(14): 147802. doi: 10.7498/aps.62.147802
    [14] 汪先超, 闫镔, 刘宏奎, 李磊, 魏星, 胡国恩. 一种圆轨迹锥束CT中截断投影数据的高效重建算法. 物理学报, 2013, 62(9): 098702. doi: 10.7498/aps.62.098702
    [15] 宁方立, 何碧静, 韦娟. 基于lp范数的压缩感知图像重建算法研究. 物理学报, 2013, 62(17): 174212. doi: 10.7498/aps.62.174212
    [16] 周树波, 袁艳, 苏丽娟. 基于双阈值Huber范数估计的图像正则化超分辨率算法. 物理学报, 2013, 62(20): 200701. doi: 10.7498/aps.62.200701
    [17] 彭 翔, 汤红乔, 田劲东. 双随机相位编码光学加密系统的唯密文攻击. 物理学报, 2007, 56(5): 2629-2636. doi: 10.7498/aps.56.2629
    [18] 彭 翔, 张 鹏, 位恒政, 于 斌. 双随机相位加密系统的已知明文攻击. 物理学报, 2006, 55(3): 1130-1136. doi: 10.7498/aps.55.1130
    [19] 万 雄, 于盛林, 王长坤, 乐淑萍, 李冰颖, 何兴道. 多目标优化发射层析算法在等离子体场光谱诊断中的应用. 物理学报, 2004, 53(9): 3104-3113. doi: 10.7498/aps.53.3104
    [20] 刘福民, 翟宏琛, 杨晓苹. 基于相息图迭代的随机相位加密. 物理学报, 2003, 52(10): 2462-2465. doi: 10.7498/aps.52.2462
计量
  • 文章访问数:  4188
  • PDF下载量:  49
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-11-12
  • 修回日期:  2021-03-15
  • 上网日期:  2021-06-25
  • 刊出日期:  2021-07-05

/

返回文章
返回