搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

准二维湿颗粒体系融化过程中的结构与缺陷

王蓬 孔平 李然 华云松 厚美瑛 孙其诚

引用本文:
Citation:

准二维湿颗粒体系融化过程中的结构与缺陷

王蓬, 孔平, 李然, 华云松, 厚美瑛, 孙其诚

Structure and defects in melting process of quasi-two-dimensional wet particle system

Wang Peng, Kong Ping, Li Ran, Hua Yun-Song, Hou Mei-Ying, Sun Qi-Cheng
PDF
HTML
导出引用
  • 研究颗粒体系中的结构与缺陷对于研究固-液融化的物理机制具有重要的价值. 本文实验研究了垂直振动下单层湿颗粒在固-液融化过程中的结构与缺陷. 根据实验及理论分析构建了湿颗粒体系的接触模型, 量化了准二维湿颗粒体系融化过程中颗粒的结构变化. 然后以颗粒为点建立Voronoi图对颗粒体系的“相”转变进行研究, 并引入了局部体积分数来确定融化过程中缺陷变化的临界状态. 实验结果表明, 颗粒系统在团簇的边缘开始发生缺陷, 并呈现链状的缺陷对向中心蔓延的现象. 并且, 颗粒发生缺陷时七相缺陷颗粒的局部体积分数显著减小, 明显小于五相缺陷和六角相颗粒的局部体积分数. 对局部体积分数的分析表明, 当最小局部体积分数$\phi \leqslant 0.6652$时发生缺陷, 当$\phi \leqslant 0.4872$时颗粒系统发生从固体到液体的转变.
    The study of structural defects in particle systems is of great value for studying solid-liquid melting. The volume fraction is a key parameter that can be used to accurately quantify the phase-transition process. The collective behavior and interaction form in a wet particle system are much more complex than that of a dry particle material because of the existence of liquid bridge force between the wet particles. In this paper, the structural defects and the critical value of solid-liquid transformation in the monolayer wet particles during solid-liquid melting under vertical vibration are experimentally studied. The contact model of the wet particle system is constructed according to experimental and theoretical analysis, and the structural changes of the particles in the melting process of the quasi-two-dimensional wet particle system are quantified. The Voronoi tessellation is established to study the phase transition of the particle system, and the local volume fraction is adopted to determine the state of structural defect change during melting. The experimental results indicate that the phase-transition process is caused by structural defects in the solid. The defects appear from the edge of the particle system, and the chain defect pairs spread to the center. The reason for structural defects at the edge of the cluster is that the particles at the edge of the cluster are subjected to less liquid bridge force, and the kinetic energy brought by the collision between the particles and the bottom wall makes the particles become active and begin to explore the available space. The chain defects are caused by the force chain generated by the fluid bridge force, which makes the particles tend to move together in rows. In addition, the local volume fraction of seven-phase defective particles decreases significantly and is much smaller than that of five-phase defective particles and six-phase defective particles when defects occur. Therefore, the evolution and the critical state of the structural defects can be quantified by measuring the change in the minimum local volume fraction (the local volume fraction of particles with 7-fold defects) in the particle system. The local volume fraction of the analysis shows that when the minimum local volume fraction ϕ ≤ 0.6652 defects occur, and when ϕ ≤ 0.4872 particle system transforms from solid to liquid.
      通信作者: 孔平, kongp@sumhs.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11902190, 91634202, 12072200, 12002213)、上海市自然科学基金(批准号: 20ZR1438800)、上海市分子影像学重点实验室建设项目(批准号: 18DZ2260400)和上海市教育委员会高峰高原学科建设计划(SUMHS医学技术II类高原学科建设计划, 2018—2020年)资助的课题
      Corresponding author: Kong Ping, kongp@sumhs.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11902190, 91634202, 12072200, 12002213), the Natural Science Foundation of Shanghai, China (Grant No. 20ZR1438800), the Construction Project of Shanghai Key Laboratory of Molecular Imaging, China (Grant No. 18DZ2260400), and the Fund from the Shanghai Municipal Education Commission, China (Class II Plateau Disciplinary Construction Program of Medical Technology of SUMHS, 2018–2020)
    [1]

    Herminghaus S 2013 Wet Granular Matter: A Truly Complex Fluid (Vol. 5) (New York: World Scientific) pp1−14

    [2]

    May C, Wild M, Rehberg I, Huang K 2013 Phys. Rev. E 6 062201Google Scholar

    [3]

    Gao Y, Yan W, Gao T, Chen Q, Li L 2020 Mat. Sci. Semicon. Proc. 116 105155Google Scholar

    [4]

    李洋 2013 硕士毕业论文 (江苏: 苏州大学)

    Li Y 2013 M. S. Dissertation (Jiangshu: Soochow University) (in Chinese)

    [5]

    Ros V, Müller M, Scardicchio A 2015 Nucl. Phys. B 891 420Google Scholar

    [6]

    Andrea F, Kai H 2015 Phys. Rev. E 91 032206Google Scholar

    [7]

    Eisenmann C, Gasser U, Keim P, Maret G 2004 Phys. Rev. Lett. 93 105702Google Scholar

    [8]

    Sun X, Sakai M 2018 Chem. Eng. Sci. 182 28Google Scholar

    [9]

    Chen J, Williams K, Guo J 2019 13th International Conference on Bulk Materials Storage Gold Coast, Australia, July 17, 2019 pp716−720

    [10]

    Bossler F, Koos E 2016 Langmuir. 32 1489Google Scholar

    [11]

    Ramming P, Huang K 2017 Cond-mat. Soft. 10 1051Google Scholar

    [12]

    Kosterlitz J M, Thouless D J 1973 J. Phys. C 6 1181Google Scholar

    [13]

    Nelson D R, Halperin B I 1979 Phys. Rev. B 19 2457Google Scholar

    [14]

    席航波 2014 硕士毕业论文 (江苏: 苏州大学)

    Xi H B 2014 M. S. Dissertation (Jiangshu: Soochow University) (in Chinese)

    [15]

    Rafael, Jungmann, Paulo, Cesar, Nascimento 2018 J. Phys-Condens. Mat. 30 465402Google Scholar

    [16]

    Strauch S, Herminghaus S 2012 Soft Matter 8 8271Google Scholar

    [17]

    Schindler T, Kapfer S C 2019 Phys. Rev. E 99 022902Google Scholar

    [18]

    Olafsen J S, Urbach J S 2005 Phys. Rev. Lett. 95 098002Google Scholar

    [19]

    孙晓燕 2014 博士毕业论文 (江苏: 苏州大学)

    Sun X Y 2014 Ph. D. Dissertation (Jiangshu: Soochow University) (in Chinese)

    [20]

    Levashov V A, Ryltsev R, Chtchelkatchev N 2019 Soft Matter 15 8840Google Scholar

    [21]

    Lei C, Ruan J 2010 Biodata. Min. 3 9Google Scholar

    [22]

    Scheel M, Seemann R, Brinkmann M 2008 Nat. Mater. 7 189Google Scholar

    [23]

    Huang K 2015 J. Mater. Sci. Lett. 12 p1690Google Scholar

    [24]

    Agosta L, Metere A, Dzugutov M 2018 Phys. Rev. E 97 052702Google Scholar

    [25]

    Bertola V, Haw M D 2015 Powder Technol. 270 412Google Scholar

    [26]

    Dino R, Rodrigo S, Guzmán Marcelo 2018 Phys. Rev. E 98 022901Google Scholar

    [27]

    Luu L H, Castillo G, Mujica N, Rodrigo S 2013 Phys. Rev. E 87 040202Google Scholar

    [28]

    Du D, Doxastakis M, Hilou E, Biswal L 2017 Soft Matter 13 1548Google Scholar

    [29]

    Devroye L, László Györfi, Gábor Lugosi 2015 J. Appl. Probab. 54 2Google Scholar

    [30]

    Williamson J J, Evans R M L 2014 J. Chem. Phys. 141 148101Google Scholar

  • 图 1  实验装置示意图

    Fig. 1.  Schematic of experimental setup.

    图 2  (a)原始图像; (b)颗粒的定位

    Fig. 2.  (a) The original image; (b) particle localization.

    图 3  颗粒的局部结构识别示意图

    Fig. 3.  Schematic diagram of local structure identification of particles.

    图 4  接触模型的结构形式图, 蓝色表示自由颗粒, 在颗粒系统中没有接触颗粒; 红色表示具有六个接触颗粒的六角相颗粒.

    Fig. 4.  Diagram of the structure of the contact model. The blue color represents free particles, and there are no particles in contact with the particle system. Hexagonal phase particles with six contact particles in red.

    图 5  不同加速度下单层湿颗粒在团聚后颗粒系统的结构变化图. 颗粒的结构是采用BOO参数识别并颜色表征后的结果, 曲线图表示了随着加速度的增加, 六角相和自由颗粒所占全局颗粒的百分比$ \xi $的变化.

    Fig. 5.  The structure change diagram of single layer wet particle system after agglomeration under different accelerations. The particle structure is the result of BOO parameter identification and color characterization. The curve shows the change of the proportion of hexagonal phase and free particles in the system.

    图 6  (a), (b), (c)分别为在$ \varGamma =14, 14.4, 15 $时颗粒在Voronoi cell中的结构形式; (d), (e), (f) 的柱状图分别展示了图6(a), (b), (c)加速度下颗粒的局部体积分数, 红色柱子表示结构为7-fold颗粒的局部体积分数, 蓝色柱子表示结构为5-fold颗粒的局部体积分数, 黑色柱子为发生缺陷前结构为六角相颗粒的局部体积分数

    Fig. 6.  (a), (b), (c), respectively in when Γ = 14, 14.4, 15 particles in the Voronoi cell structure of the form; the histograms of (d), (e), (f) respectively show the local volume fraction of particles under the acceleration of Figs. 6 (a), (b) and (c). The red column represents the local volume fraction of 7-fold particles, the blue column represents the local volume fraction of 5-fold particles, and the black column represents the local volume fraction of hexagonal phase particles before the occurrence of defects.

    图 7  不同振动强度下颗粒系统中局部体积分数的变化曲线. 其中红色曲线表示系统中最小的局部体积分数变化, 蓝色表示系统中所有颗粒的平均局部体积分数变化. 图中Voronoi cell表示在该加速度下颗粒系统的“相”位图, 其中Voronoi cell右边缘处于颗粒系统中团簇的边缘位置

    Fig. 7.  The change curve of local volume fraction in particle system under different vibration intensity. The red curve represents the minimum local volume fraction change in the system, while the blue curve represents the average local volume fraction change of all particles in the system. Voronoi cell in the figure represents the phase diagram of the particle system under this acceleration, where the right edge of Voronoi cell is located at the edge of the cluster in the particle system.

    图 8  最小局部体积分数$ \varphi $的增减变化趋势, 红色曲线表示加速度$ \varGamma $从0依次增加到44时颗粒系统中最小局部体积分数的变化, 黑色曲线表示加速度$ \varGamma $从44依次减小到0时颗粒系统中最小局部体积分数的变化

    Fig. 8.  The trend of the increase and decrease of the minimum local volume fraction$ \varphi $. The red curve shows the change of the minimum local volume fraction in the particle system as the acceleration gradually increases from 0 to 44, and the black curve shows the change of the minimum local volume fraction in the particle system as the acceleration decreases from 44 to 0.

    表 1  颗粒参数

    Table 1.  Particle parameters.

    参数
    颗粒直径d/mm$ 2.0\pm 0.02 $
    初始含水量W/%$ 3{\%} $
    颗粒数N$ 2355 $
    颗粒粗糙度${C}_{\rm{d} }/$μm$ 5 $
    弹性模数/GPa$ 63 $
    全局颗粒面积分数$ \varphi $/%$ 55.7 $
    下载: 导出CSV
  • [1]

    Herminghaus S 2013 Wet Granular Matter: A Truly Complex Fluid (Vol. 5) (New York: World Scientific) pp1−14

    [2]

    May C, Wild M, Rehberg I, Huang K 2013 Phys. Rev. E 6 062201Google Scholar

    [3]

    Gao Y, Yan W, Gao T, Chen Q, Li L 2020 Mat. Sci. Semicon. Proc. 116 105155Google Scholar

    [4]

    李洋 2013 硕士毕业论文 (江苏: 苏州大学)

    Li Y 2013 M. S. Dissertation (Jiangshu: Soochow University) (in Chinese)

    [5]

    Ros V, Müller M, Scardicchio A 2015 Nucl. Phys. B 891 420Google Scholar

    [6]

    Andrea F, Kai H 2015 Phys. Rev. E 91 032206Google Scholar

    [7]

    Eisenmann C, Gasser U, Keim P, Maret G 2004 Phys. Rev. Lett. 93 105702Google Scholar

    [8]

    Sun X, Sakai M 2018 Chem. Eng. Sci. 182 28Google Scholar

    [9]

    Chen J, Williams K, Guo J 2019 13th International Conference on Bulk Materials Storage Gold Coast, Australia, July 17, 2019 pp716−720

    [10]

    Bossler F, Koos E 2016 Langmuir. 32 1489Google Scholar

    [11]

    Ramming P, Huang K 2017 Cond-mat. Soft. 10 1051Google Scholar

    [12]

    Kosterlitz J M, Thouless D J 1973 J. Phys. C 6 1181Google Scholar

    [13]

    Nelson D R, Halperin B I 1979 Phys. Rev. B 19 2457Google Scholar

    [14]

    席航波 2014 硕士毕业论文 (江苏: 苏州大学)

    Xi H B 2014 M. S. Dissertation (Jiangshu: Soochow University) (in Chinese)

    [15]

    Rafael, Jungmann, Paulo, Cesar, Nascimento 2018 J. Phys-Condens. Mat. 30 465402Google Scholar

    [16]

    Strauch S, Herminghaus S 2012 Soft Matter 8 8271Google Scholar

    [17]

    Schindler T, Kapfer S C 2019 Phys. Rev. E 99 022902Google Scholar

    [18]

    Olafsen J S, Urbach J S 2005 Phys. Rev. Lett. 95 098002Google Scholar

    [19]

    孙晓燕 2014 博士毕业论文 (江苏: 苏州大学)

    Sun X Y 2014 Ph. D. Dissertation (Jiangshu: Soochow University) (in Chinese)

    [20]

    Levashov V A, Ryltsev R, Chtchelkatchev N 2019 Soft Matter 15 8840Google Scholar

    [21]

    Lei C, Ruan J 2010 Biodata. Min. 3 9Google Scholar

    [22]

    Scheel M, Seemann R, Brinkmann M 2008 Nat. Mater. 7 189Google Scholar

    [23]

    Huang K 2015 J. Mater. Sci. Lett. 12 p1690Google Scholar

    [24]

    Agosta L, Metere A, Dzugutov M 2018 Phys. Rev. E 97 052702Google Scholar

    [25]

    Bertola V, Haw M D 2015 Powder Technol. 270 412Google Scholar

    [26]

    Dino R, Rodrigo S, Guzmán Marcelo 2018 Phys. Rev. E 98 022901Google Scholar

    [27]

    Luu L H, Castillo G, Mujica N, Rodrigo S 2013 Phys. Rev. E 87 040202Google Scholar

    [28]

    Du D, Doxastakis M, Hilou E, Biswal L 2017 Soft Matter 13 1548Google Scholar

    [29]

    Devroye L, László Györfi, Gábor Lugosi 2015 J. Appl. Probab. 54 2Google Scholar

    [30]

    Williamson J J, Evans R M L 2014 J. Chem. Phys. 141 148101Google Scholar

  • [1] 张硕, 龙连春, 刘静毅, 杨洋. 分子动力学方法研究缺陷对铁单质薄膜磁致伸缩的影响. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211177
    [2] 曹振, 郝大鹏, 唐刚, 寻之朋, 夏辉. 团簇状缺陷对纤维束断裂过程的影响. 物理学报, 2021, 70(20): 204602. doi: 10.7498/aps.70.20210310
    [3] 王磊, 张冉冉, 方炜. 含缺陷碳纳米管及碳纳米豆荚静动力特性模拟研究. 物理学报, 2019, 68(16): 166101. doi: 10.7498/aps.68.20190594
    [4] 刘昊华, 王少华, 李波波, 李桦林. 缺陷致非线性电路孤子非对称传输. 物理学报, 2017, 66(10): 100502. doi: 10.7498/aps.66.100502
    [5] 张秀芝, 王凯悦, 李志宏, 朱玉梅, 田玉明, 柴跃生. 氮对金刚石缺陷发光的影响. 物理学报, 2015, 64(24): 247802. doi: 10.7498/aps.64.247802
    [6] 焦杨, 章新喜, 孔凡成, 刘海顺. 湿颗粒聚团碰撞解聚过程的离散元法模拟. 物理学报, 2015, 64(15): 154501. doi: 10.7498/aps.64.154501
    [7] 张明兰, 杨瑞霞, 李卓昕, 曹兴忠, 王宝义, 王晓晖. GaN厚膜中的质子辐照诱生缺陷研究. 物理学报, 2013, 62(11): 117103. doi: 10.7498/aps.62.117103
    [8] 李威, 冯妍卉, 陈阳, 张欣欣. 碳纳米管中点缺陷对热导率影响的正交试验模拟分析. 物理学报, 2012, 61(13): 136102. doi: 10.7498/aps.61.136102
    [9] 李建华, 曾祥华, 季正华, 胡益培, 陈宝, 范玉佩. ZnS掺Ag与Zn空位缺陷的电子结构和光学性质. 物理学报, 2011, 60(5): 057101. doi: 10.7498/aps.60.057101
    [10] 陈文豪, 杜磊, 殷雪松, 康莉, 王芳, 陈松. PbS红外探测器低频噪声物理模型及缺陷表征研究. 物理学报, 2011, 60(10): 107202. doi: 10.7498/aps.60.107202
    [11] 王鑫华, 庞磊, 陈晓娟, 袁婷婷, 罗卫军, 郑英奎, 魏珂, 刘新宇. GaN HEMT栅边缘电容用于缺陷的研究. 物理学报, 2011, 60(9): 097101. doi: 10.7498/aps.60.097101
    [12] 周凯, 李辉, 王柱. 正电子湮没谱和光致发光谱研究掺锌GaSb质子辐照缺陷. 物理学报, 2010, 59(7): 5116-5121. doi: 10.7498/aps.59.5116
    [13] 张浩, 赵建林, 张晓娟. 带缺陷结构的二维磁性光子晶体的数值模拟分析. 物理学报, 2009, 58(5): 3532-3537. doi: 10.7498/aps.58.3532
    [14] 宁利中, 齐昕, 余荔, 周洋. 混合流体Rayleigh-Benard行波对流中的缺陷结构. 物理学报, 2009, 58(4): 2528-2534. doi: 10.7498/aps.58.2528
    [15] 张凯旺, 钟建新. 缺陷对单壁碳纳米管熔化与预熔化的影响. 物理学报, 2008, 57(6): 3679-3683. doi: 10.7498/aps.57.3679
    [16] 夏志林, 邵建达, 范正修. 薄膜体内缺陷对损伤概率的影响. 物理学报, 2007, 56(1): 400-406. doi: 10.7498/aps.56.400
    [17] 陈志权, 河裾厚男. He离子注入ZnO中缺陷形成的慢正电子束研究. 物理学报, 2006, 55(8): 4353-4357. doi: 10.7498/aps.55.4353
    [18] 孙贤开, 林碧霞, 朱俊杰, 张 杨, 傅竹西. LP-MOCVD异质外延ZnO薄膜中的应力及对缺陷的影响. 物理学报, 2005, 54(6): 2899-2903. doi: 10.7498/aps.54.2899
    [19] 李鹏飞, 颜晓红, 王如志. 缺陷对准周期磁超晶格输运性质的影响. 物理学报, 2002, 51(9): 2139-2143. doi: 10.7498/aps.51.2139
    [20] 汤学峰, 顾 牡, 童宏勇, 梁 玲, 姚明珍, 陈玲燕, 廖晶莹, 沈炳浮, 曲向东, 殷之文, 徐炜新, 王景成. 掺镧PbWO4闪烁晶体的缺陷研究. 物理学报, 2000, 49(10): 2007-2010. doi: 10.7498/aps.49.2007
计量
  • 文章访问数:  4294
  • PDF下载量:  58
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-02
  • 修回日期:  2021-03-08
  • 上网日期:  2021-05-26
  • 刊出日期:  2021-06-05

/

返回文章
返回