搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

14 T全身超导MRI磁体的技术挑战 —大规模应用强场超导磁体未来十年的发展目标之一

蒋晓华 薛芃 黄伟灿 李烨

引用本文:
Citation:

14 T全身超导MRI磁体的技术挑战 —大规模应用强场超导磁体未来十年的发展目标之一

蒋晓华, 薛芃, 黄伟灿, 李烨

Technology challenges of 14 T whole-body superconducting MRI magnets —A target of high-field superconducting magnet technology for large scale applications in next decade

Jiang Xiao-Hua, Xue Peng, Huang Wei-Can, Li Ye
PDF
HTML
导出引用
  • 本文首先综述了大规模应用的超导磁体, 依赖并推动铌三锡Nb3Sn导线技术进步, 向更强磁场发展的趋势. 着重分析了超高场14 T全身MRI磁体的挑战性技术. 选择青铜Nb3Sn导线, 采用Nb3Sn线圈和NbTi线圈相结合的混合结构, 对14 T全身MRI磁体进行了电磁概念设计和热稳定性及失超保护仿真分析, 并简要阐述了14 T全身MRI磁体在应力、接头和匀场方面的关键问题. 根据分析结果认为: 1) Nb3Sn导线是14 T全身MRI磁体需要面临的首要挑战性问题 —作为最佳选择的青铜Nb3Sn导线, 其现有产品的性能指标离14 T全身MRI磁体的要求尚存在有一定的差距; 2) 14 T全身MRI磁体的失超保护涉及线圈的铜超比设计、运行电流同线圈电感的协调配置、被动保护的分段策略和主动保护的失超触发控制以及主动屏蔽结构磁体在失超过程中的逸散磁场限制等多个十分复杂的环节, 是最具挑战性的综合性技术.
    This paper presents a brief review of the development trend of superconducting magnets in large scale applications towards high magnetic fields, depending on and pushing the Nb3Sn wire technics' continuous improvement. The focus is on analysis of the technology challenges of 14 T whole-body superconducting magnets. Using the Bonze Nb3Sn wires and on the base of a combination design of Nb3Sn and NbTi coils, an electromagnetic conception design of a 14 T whole-body MRI magnet is presented, and the thermal stability and quench protection are analyzed by simulations. The critical issues on stress, joints as well as shimming of 14 T whole-body superconducting magnets are also discussed. According to the results, this paper believes: 1) Nb3Sn wires are of the first important issue for 14 T whole-body superconducting magnets—the Bonze Nb3Sn wire is of the best choice but the performance specifications of the current products need to be improved further to match the requirements; 2) quench protection of 14 T whole-body superconducting magnets is one of the most complicated technics that covers design of the copper to superconductor (Cu/SC) ratio, coordination of the operating current and coil inductances, subdivisions of passive protection circuits and quench triggering control of active protection, as well as the stray field limitation during the transient process.
      通信作者: 李烨, liye1@siat.ac.cn
    • 基金项目: 中国科学院战略性先导科技专项(B类)(批准号: XDB25000000)资助的课题
      Corresponding author: Li Ye, liye1@siat.ac.cn
    • Funds: Project supported by the Strategic Priority Research Program of Chinese Academy of Sciences, China (Grant No. XDB25000000)
    [1]

    Seidel P 2015 Applied Superconductivity: Handbook on Devices and Applications (Wiley-VCH) pp448−580

    [2]

    Védrine P, Yildirim A 2019 Report on Superconducting Magnet Market Study Grant Agreement 731086

    [3]

    Field M B, Zhang Y, Miao H, Gerace M, Parrell J A 2014 IEEE T. Appl. Supercon. 24 6001105Google Scholar

    [4]

    https://www.iter.org/proj/inafewlines[2020-11-30]

    [5]

    Bordini B 2019 International Conference on Magnet Technology MT-26 (Canada: Vancouver)

    [6]

    Barzi E, Zlobin A V 2016 IEEE T. Nucl. Sci. 63 783Google Scholar

    [7]

    Nishijima G, Matsumoto S, Hashi K, Ohki S, Goto A, Noguchi T, Iguchi S, Yanagisawa Y, Takahashi M, Maeda H, Miki T, Saito K, Tanaka R, Shimizu T 2016 IEEE T. Appl. Supercon. 26 4303007Google Scholar

    [8]

    Iwasa Y, Bascuñán J, Hahn S, Voccio J, Kim Y, Lécrevisse T, Song J, Kajikawa K 2015 IEEE T. Appl. Supercon. 25 4301205

    [9]

    Cosmus T C, Parizh M 2011 IEEE T. Appl. Supercon. 21 2104Google Scholar

    [10]

    Lvovsky Y, Stautner E W, Zhang T 2013 Supercon. Sci. Tech. 26 093001Google Scholar

    [11]

    Warner Rory 2016 Supercon. Sci. Tech. 29 094006Google Scholar

    [12]

    Quettier L, Aubert G, Belorgey J, et al. 2020 IEEE T. Appl. Supercon. 30 4401705

    [13]

    Liang J, Jiang X, Li H, Wei X 2009 IEEE T. Appl. Supercon. 19 1282Google Scholar

    [14]

    Iwaki G, Nishijima G, Takahashi M, Katagiri K, Watanabe K 2006 IEEE T. Appl. Supercon. 16 1261Google Scholar

    [15]

    Oguro H, Awaji S, Watanabe K, Sugimoto M, Tsubouchi H 2013 Supercon. Sci. Tech. 26 094002Google Scholar

    [16]

    Chen J, Jiang X 2013 IEEE T. Appl. Supercon. 23 4701104Google Scholar

    [17]

    Chen J, Jiang X 2012 IEEE T. Appl. Supercon. 22 4903104Google Scholar

    [18]

    Vedrine P, Aubert G, Beaudet F, Belorgey J, Berriaud C, Bredy P, Donati A, Dubois O, Gilgrass G, Juster F P, Meuris C, Molinie F, Nunio F, Payn A, Schild T, Scola L, Sinanna A 2010 IEEE T. Appl. Supercon. 20 696Google Scholar

    [19]

    蒋晓华, 韩朔 1991 电工技术学报 0 12Google Scholar

    [20]

    https://www.jastec-inc.com/e_products_wire/list.html [2020-11-30]

    [21]

    Sugimoto M, Katayama K, Takagi A, Shimizu H, Tsubouchi H, Awaji S, Oguro H 2018 IEEE T. Appl. Supercon. 28 6000105Google Scholar

  • 图 1  14 T全身MRI磁体线圈结构示意图 (a)无屏蔽; (b)主动屏蔽

    Fig. 1.  14 T whole body MRI magnet coil configurations: (a) Unshielded; (b) actively shielded.

    图 2  14 T全身MRI磁体磁场强度等值线分布 (a)无屏蔽近场; (b)主动屏蔽近场; (c)无屏蔽远场(场强单位: Gs); (d)主动屏蔽远场(场强单位: Gs)

    Fig. 2.  Magnetic field intensity contours of 14 T whole-body MRI magnet: (a) Unshielded near field; (b) actively shielded near field; (c) unshielded far field (Field intensity unit: Gs); (d) actively shielded far field (Field intensity unit: Gs)

    图 3  14 T全身MRI磁体线圈的洛伦兹力周向应力分布 (a)无屏蔽; (b)主动屏蔽

    Fig. 3.  14 T whole-body MRI magnet coil Lorentz force circumferential stress distribution: (a) Unshielded; (b) actively shielded

    图 4  14 T全身MRI磁体线圈失超仿真结果 (a)线圈电压(无屏蔽); (b)线圈电压(主动屏蔽); (c)线圈电流(无屏蔽); (d)线圈电流(主动屏蔽); (e)线圈电阻(无屏蔽); (f)线圈电阻(主动屏蔽); (g)线圈热点温度(无屏蔽); (h)线圈热点温度(主动屏蔽); (i) 失超3 s后线圈温度分布(无屏蔽); (j)失超3 s后线圈温度分布(主动屏蔽)

    Fig. 4.  Simulation results of 14 T whole-body MRI magnet during quench: (a) Voltages of the coils (unshielded); (b) voltages of the coils (actively shielded); (c) currents of the coils (unshielded); (d) currents of the coils (actively shielded); (e) resistances of the coils (unshielded); (f) resistances of the coils (actively shielded); (g) hot spot temperatures of the coils (unshielded); (f) hot spot temperatures of the coils (actively shielded); (i) temperature distributions in the coils after 3 s of quench (unshielded); (j) temperature distributions in the coils after 3 s of quench (actively shielded)

    表 1  各线圈电流密度和铜超比预设

    Table 1.  Current density and copper/superconductor ratio of each coil.

    Nb3Sn线圈1Nb3Sn线圈2NbTi
    线圈3
    NbTi
    线圈4
    NbTi补
    偿线圈
    NbTi屏
    蔽线圈
    电流密度/A·mm–2809525356565
    铜超比22101088
    下载: 导出CSV

    表 2  无屏蔽/主动屏蔽优化设计结果对比

    Table 2.  Comparison of unshielded/active shielded optimization design results.

    无屏蔽主动屏蔽
    线圈最大长度/m2.992.98
    线圈最大外径/m1.633.18
    Nb3Sn导线总量/m3(不含铜)0.4600.466
    NbTi导线总量/m3(不含铜)0.1890.308
    磁场不均匀度(ppm on 40 cm DSV)1.12.4
    下载: 导出CSV

    表 3  无屏蔽/主动屏蔽线圈磁场对比

    Table 3.  Comparison of unshielded/active shielded coil magnetic field.

    无屏蔽主动屏蔽
    中心磁场/T1414
    Nb3Sn线圈1最大磁密/T14.7614.66
    Nb3Sn线圈2最大磁密/T10.6710.02
    NbTi线圈3最大磁密/T8.287.40
    NbTi线圈4最大磁密/T7.546.28
    NbTi补偿线圈最大磁密/T6.786.01
    NbTi屏蔽线圈最大磁密/T4.36
    5 Gs线(径向m × 轴向m)21.2 × 26.611.8 × 14.8
    线圈总能量/MJ260280
    下载: 导出CSV

    表 4  无屏蔽/主动屏蔽线圈最大洛伦兹力对比

    Table 4.  Comparison of unshielded/active shielded coil maximum Lorentz force.

    无屏蔽主动屏蔽
    最大周向应力/MPa645651
    补偿线圈轴向力/t, 压强/MPa–2540, –78.6–1560, –43.3
    屏蔽线圈轴向力/t, 压强/MPa1310, 20.3
    下载: 导出CSV

    表 5  无屏蔽/主动屏蔽线圈电感及导线长度对比

    Table 5.  Comparison of unshielded/active shielded coil inductances and wire lengths.

    无屏蔽主动屏蔽
    运行电流/A244248.8
    总电感/H874610287
    Nb3Sn导线总长/km315.6320.4
    NbTi导线总长/km331.8591.7
    下载: 导出CSV

    表 6  无屏蔽/主动屏蔽线圈最小失超能量对比

    Table 6.  Comparison of unshielded/active shielded coil minimum quench energy.

    无屏蔽主动屏蔽
    Nb3Sn线圈1最小失超能量/mJ3442
    Nb3Sn线圈2最小失超能量/mJ6878
    NbTi线圈3最小失超能量/mJ3268
    NbTi线圈4最小失超能量/mJ36104
    NbTi补偿线圈最小失超能量/mJ1418
    NbTi屏蔽线圈最小失超能量/mJ32
    下载: 导出CSV
  • [1]

    Seidel P 2015 Applied Superconductivity: Handbook on Devices and Applications (Wiley-VCH) pp448−580

    [2]

    Védrine P, Yildirim A 2019 Report on Superconducting Magnet Market Study Grant Agreement 731086

    [3]

    Field M B, Zhang Y, Miao H, Gerace M, Parrell J A 2014 IEEE T. Appl. Supercon. 24 6001105Google Scholar

    [4]

    https://www.iter.org/proj/inafewlines[2020-11-30]

    [5]

    Bordini B 2019 International Conference on Magnet Technology MT-26 (Canada: Vancouver)

    [6]

    Barzi E, Zlobin A V 2016 IEEE T. Nucl. Sci. 63 783Google Scholar

    [7]

    Nishijima G, Matsumoto S, Hashi K, Ohki S, Goto A, Noguchi T, Iguchi S, Yanagisawa Y, Takahashi M, Maeda H, Miki T, Saito K, Tanaka R, Shimizu T 2016 IEEE T. Appl. Supercon. 26 4303007Google Scholar

    [8]

    Iwasa Y, Bascuñán J, Hahn S, Voccio J, Kim Y, Lécrevisse T, Song J, Kajikawa K 2015 IEEE T. Appl. Supercon. 25 4301205

    [9]

    Cosmus T C, Parizh M 2011 IEEE T. Appl. Supercon. 21 2104Google Scholar

    [10]

    Lvovsky Y, Stautner E W, Zhang T 2013 Supercon. Sci. Tech. 26 093001Google Scholar

    [11]

    Warner Rory 2016 Supercon. Sci. Tech. 29 094006Google Scholar

    [12]

    Quettier L, Aubert G, Belorgey J, et al. 2020 IEEE T. Appl. Supercon. 30 4401705

    [13]

    Liang J, Jiang X, Li H, Wei X 2009 IEEE T. Appl. Supercon. 19 1282Google Scholar

    [14]

    Iwaki G, Nishijima G, Takahashi M, Katagiri K, Watanabe K 2006 IEEE T. Appl. Supercon. 16 1261Google Scholar

    [15]

    Oguro H, Awaji S, Watanabe K, Sugimoto M, Tsubouchi H 2013 Supercon. Sci. Tech. 26 094002Google Scholar

    [16]

    Chen J, Jiang X 2013 IEEE T. Appl. Supercon. 23 4701104Google Scholar

    [17]

    Chen J, Jiang X 2012 IEEE T. Appl. Supercon. 22 4903104Google Scholar

    [18]

    Vedrine P, Aubert G, Beaudet F, Belorgey J, Berriaud C, Bredy P, Donati A, Dubois O, Gilgrass G, Juster F P, Meuris C, Molinie F, Nunio F, Payn A, Schild T, Scola L, Sinanna A 2010 IEEE T. Appl. Supercon. 20 696Google Scholar

    [19]

    蒋晓华, 韩朔 1991 电工技术学报 0 12Google Scholar

    [20]

    https://www.jastec-inc.com/e_products_wire/list.html [2020-11-30]

    [21]

    Sugimoto M, Katayama K, Takagi A, Shimizu H, Tsubouchi H, Awaji S, Oguro H 2018 IEEE T. Appl. Supercon. 28 6000105Google Scholar

  • [1] 赵地, 赵莉芝, 甘永进, 覃斌毅. 基于支撑先验与深度图像先验的无预训练磁共振图像重建方法. 物理学报, 2022, 71(5): 058701. doi: 10.7498/aps.71.20211761
    [2] 向鹏程, 蔡聪波, 王杰超, 蔡淑惠, 陈忠. 基于深度神经网络的时空编码磁共振成像超分辨率重建方法. 物理学报, 2022, 71(5): 058702. doi: 10.7498/aps.71.20211754
    [3] 赵地, 赵莉芝, 甘永进, 覃斌毅. 基于支撑先验与深度图像先验的无预训练磁共振图像重建方法. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211761
    [4] 张朋, 刘政, 戴建明, 杨昭荣, 苏付海. 强磁场在ZnCr2Se4中诱导的各向异性太赫兹共振吸收. 物理学报, 2020, 69(20): 207501. doi: 10.7498/aps.69.20201507
    [5] 杜晓纪, 王为民, 兰贤辉, 李超. 1.5 T关节磁共振成像超导磁体的设计、制作与测试. 物理学报, 2017, 66(24): 248401. doi: 10.7498/aps.66.248401
    [6] 朱光, 刘建华, 程军胜, 冯忠奎, 戴银明, 王秋良. 25T超导磁体优化中线圈数量影响分析. 物理学报, 2016, 65(5): 058401. doi: 10.7498/aps.65.058401
    [7] 胡洋, 王秋良, 李毅, 朱旭晨, 牛超群. 基于边界元方法的超导核磁共振成像设备高阶轴向匀场线圈优化算法. 物理学报, 2016, 65(21): 218301. doi: 10.7498/aps.65.218301
    [8] 于红云. 超导磁体剩余磁场对软磁材料测试的影响. 物理学报, 2014, 63(4): 047502. doi: 10.7498/aps.63.047502
    [9] 方晟, 吴文川, 应葵, 郭华. 基于非均匀螺旋线数据和布雷格曼迭代的快速磁共振成像方法. 物理学报, 2013, 62(4): 048702. doi: 10.7498/aps.62.048702
    [10] 倪志鹏, 王秋良, 严陆光. 短腔、自屏蔽磁共振成像超导磁体系统的混合优化设计方法. 物理学报, 2013, 62(2): 020701. doi: 10.7498/aps.62.020701
    [11] 张国庆, 杜晓纪, 赵玲, 宁飞鹏, 姚卫超, 朱自安. 基于0—1整数线性规划的自屏蔽磁共振成像超导磁体设计. 物理学报, 2012, 61(22): 228701. doi: 10.7498/aps.61.228701
    [12] 曾思良, 倪飞飞, 何建锋, 邹士阳, 颜君. 强磁场中氢原子的能级结构. 物理学报, 2011, 60(4): 043201. doi: 10.7498/aps.60.043201
    [13] 王春江, 苑轶, 王强, 刘铁, 娄长胜, 赫冀成. 强磁场条件下金属凝固过程中第二相的迁移行为. 物理学报, 2010, 59(5): 3116-3122. doi: 10.7498/aps.59.3116
    [14] 任树洋, 任忠鸣, 任维丽, 操光辉. 3 T强磁场对真空蒸发Zn薄膜晶体结构的影响. 物理学报, 2009, 58(8): 5567-5571. doi: 10.7498/aps.58.5567
    [15] 赵安昆, 任忠鸣, 任树洋, 操光辉, 任维丽. 强磁场对真空蒸镀制取Te薄膜的影响. 物理学报, 2009, 58(10): 7101-7107. doi: 10.7498/aps.58.7101
    [16] 高 翱, 王 强, 王春江, 刘 铁, 张 超, 赫冀成. 强磁场条件下Mn-Sb梯度复合材料的制备. 物理学报, 2008, 57(2): 767-771. doi: 10.7498/aps.57.767
    [17] 庞雪君, 王 强, 王春江, 王亚勤, 李亚彬, 赫冀成. 强磁场对铝合金中溶质组元分布状态的影响效果. 物理学报, 2006, 55(10): 5129-5134. doi: 10.7498/aps.55.5129
    [18] 王春江, 王 强, 王亚勤, 黄 剑, 赫冀成. 强磁场对Al-Si合金凝固组织中硅分布的影响. 物理学报, 2006, 55(2): 648-654. doi: 10.7498/aps.55.648
    [19] 陈杰夫, 刘婉秋, 钟万勰. Bloch方程的精细时程积分及其在射频脉冲设计中的应用. 物理学报, 2006, 55(2): 884-890. doi: 10.7498/aps.55.884
    [20] 张必达, 王卫东, 宋枭禹, 俎栋林, 吕红宇, 包尚联. 磁共振现代射频脉冲理论在非均匀场成像中的应用. 物理学报, 2003, 52(5): 1143-1150. doi: 10.7498/aps.52.1143
计量
  • 文章访问数:  10846
  • PDF下载量:  356
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-02
  • 修回日期:  2020-12-22
  • 上网日期:  2020-12-30
  • 刊出日期:  2021-01-05

/

返回文章
返回