搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

中国超导电子学研究及应用进展

李春光 王佳 吴云 王旭 孙亮 董慧 高波 李浩 尤立星 林志荣 任洁 李婧 张文 贺青 王轶文 韦联福 孙汉聪 王华兵 李劲劲 屈继峰

引用本文:
Citation:

中国超导电子学研究及应用进展

李春光, 王佳, 吴云, 王旭, 孙亮, 董慧, 高波, 李浩, 尤立星, 林志荣, 任洁, 李婧, 张文, 贺青, 王轶文, 韦联福, 孙汉聪, 王华兵, 李劲劲, 屈继峰

Recent progress of superconducting electronics in China

Li Chun-Guang, Wang Jia, Wu Yun, Wang Xu, Sun Liang, Dong Hui, Gao Bo, Li Hao, You Li-Xing, Lin Zhi-Rong, Ren Jie, Li Jing, Zhang Wen, He Qing, Wang Yi-Wen, Wei Lian-Fu, Sun Han-Cong, Wang Hua-Bing, Li Jin-Jin, Qu Ji-Feng
PDF
HTML
导出引用
  • 超导体的发现距今已有近110年了, 高温超导体的发现也已经有30多年了. 超导材料的电子学应用在最近一二十年取得了突破性进展. 高温超导微波器件显示了比传统微波器件更优越的性能, 已经在移动通信、雷达和一些特殊通信系统中取得了规模化应用. 超导量子干涉器件以其磁场和电流测量的超高灵敏度, 成为地质勘探、磁共振成像和生物磁成像等领域不可替代的手段. 包括超导隧道结混频器、超导热电子混频器、超导转变沿探测器及超导单光子探测器等在内的超导传感器/探测器可以探测全波段的电磁波及各种宇宙辐射, 具有接近量子极限的超高灵敏度, 在地球物理、天体物理、量子信息技术、材料科学及生物医学等众多前沿领域发挥越来越重要的作用. 超导参量放大器已经成为实现超导量子计算的关键器件. 超导集成电路技术已被列入国际器件与系统技术路线图, 成为后摩尔时代微电子领域的前沿阵地之一. 在计量科学中, 超导约瑟夫森效应及约瑟夫森结阵器件被广泛应用于量子电压基准和国际单位制基本单位的重新定义中. 在当前的量子信息技术热潮中, 超导电子学扮演重要角色, 同时量子热潮也大力推动了超导电子学的发展. 本文主要对近几年我国超导电子学研究和应用的现状与进展进行概括总结.
    It has been nearly 110 years since the discovery of superconductors, and more than 30 years since the discovery of high temperature superconductors (HTS). Great progress has been made in the application of superconducting electronics in the last two decades. HTS microwave devices have shown much higher perfomance than the traditional ones and have found their ways to the industry applications in mobile communication, radar, and special communication applications. Owing to the ultrahigh sensitivity to magnetic fields and currents, superconducting quantum interference devices (SQUIDs) have been used as the irresplacible sensors in geological surveying, magnetic resonanc imaging, biomagnetic imaging, and other areas. The sensitivity of superconducting radiation detectors such as superconducting SIS mixer, superconducting hot electron bolometer, superconducting transition edge sensor, superconducting nanowire single photon detector, and superconducting microwave kinetic inductance detector are near the quantum limitation. They are now key technology in geophysics, astrophysics, quantum information science, biomedicine, and so on. Superconducting Josephson parametric amplifier has become a key element for superconducting quantum computing. Superconducting integrated circuit has been included in the international roadmap for devices and systems, and shows that having the potential to become one of the mainstreams for post-Moore information processing technology. In metrology, superconducting Josephson effect and Josephson junction array devices have been widely used in the redefinition of quantum voltage reference and basic units of the International system of Units. Superconducting electronics plays an important role in the current quantum information technology boom, which in turn promotes the development of superconducting electronics. This review will brief introduce the research and application of superconducting electronics in China in recent years.
      通信作者: 孙亮, sunliang@iphy.ac.cn
    • 基金项目: 国家自然科学基金(批准号: 51972012, 61971415, 61601456, 61971408, 61671438, 61827823, 11673073, U1831202, 11974290, 61871333, ‪11653004, 61727805, 11961141002‬)、国家科技部重点研发计划(批准号: 2017YFA0304000, 2017YFA0304003)、国家重点基础研究发展计划(批准号: 2010CB923104)、中国科学院战略性先导科技专项(A类,批准号: XDA18000000)和中国科学院青年创新促进会(批准号: 2017009)资助的课题
      Corresponding author: Sun Liang, sunliang@iphy.ac.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 51972012, 61971415, 61601456, 61971408, 61671438, 61827823, 11673073, U1831202, 11974290, 61871333, 11653004, 61727805, 11961141002), Key Research and Development plan of the Ministry of Science and Technology, China(Grant Nos. 2017YFA0304000, 2017YFA0304003), the National Basic Research Program of China(Grant No. 2010CB923104), the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No.XDA18000000) and the Youth Innovation Promotion Association, Chinese Academy of Sciences (Grant No. 2017009)
    [1]

    Onnes H K 1911 Phys. Lab. Univ. Leiden 120b 122

    [2]

    Quinn D J, Ittner W B 1962 J. Appl. Phys. 33 748Google Scholar

    [3]

    Meissner W, Ochsenfeld R 1933 Naturwiss 21 787

    [4]

    Giaever I 1974 Rev. Mod. Phys. 46 245Google Scholar

    [5]

    Josephson B D 1962 Phys. Lett. 1 251Google Scholar

    [6]

    Bednorz J G, Muller K A Z 1986 Physik B 64 189Google Scholar

    [7]

    Wu M K, Ashburn J R, Torng C J, Hor P H, Meng R L, Gao L, Huang Z J, Wang Y Q, Chu C W 1987 Phys. Rev. Lett. 58 908Google Scholar

    [8]

    赵忠贤, 陈立泉, 杨乾声, 黄玉珍, 陈赓华, 唐汝明, 刘贵荣, 崔长庚, 陈烈, 王连忠, 郭树权, 李山林, 毕建清 1987 科学通报 32 412

    Zhao Z X, Chen L Q, Yang Q S, Huang Y Z, Chen G H, Tang R M, Liu G R, Cui C G, Chen L, Wang L Z, Guo S Q, Li S L, Bi J Q 1987 Science Bulletin 32 412

    [9]

    Inam A, Wu X D, Nazar L, Hegde M S, Rogers C T, Venkatesan T, Simon R W, Daly K, Kirchgessner J, Moffat D, Rubin D, Shu Q S, Kalokitis D, Fathy A, Pendrick V, Brown R, Brycki B, Belohoubek E, Drabeck L, Gruner G, Hammond R, Gamble F, Lairson B M, Bravman J C 1990 Appl. Phys. Lett. 56 1178Google Scholar

    [10]

    Nisenoff M, Meyers W J 2001 IEEE Trans. Appl. Supercond. 11 799Google Scholar

    [11]

    Willemsen B A 2009 IEEE MTT-S International Microwave Symposium Digest Boston, USA, June 7−12, 2009 p1457

    [12]

    Anders S, Blamire M G, Buchholz F Im, Crété D G, Cristiano R, Febvre P, Fritzsch L, Herr A, Il’ichev E, Kohlmann J, Kunert J, Meyer H G, Niemeyer J, Ortlepp T, Rogalla H, Schurig T, Siegel M, Stolz R, Tarte E, Brake H J M, Toepfer H, Villegier J C, Zagoskin A M, Zorin A B 2010 Physica C 479 2079

    [13]

    Kawaguchi T, Ikeuchi H, Kayano H, Sawahara Y, Shiokawa N 2017 Proceedings of the 14th European Radar Conference Nuremberg, Germany, October 11−13, 2017 p449

    [14]

    Sekiya N, Matsuura H, Akiya M, Tanaka Y, Ohshima S 2013 IEEE Trans. Appl. Supercond. 23 1500904Google Scholar

    [15]

    Sekiya N 2017 IEEE Trans. Appl. Supercond. 27 1501804

    [16]

    Sekiya N, Kobayashi S 2019 IEEE Trans. Appl. Supercond. 29 1500804

    [17]

    Saito A, Sekiya N, Teshima H, Obara H, Noguchi Y, Hirano H, Hirano S, Ohshima S 2006 Physica C 300 445-448Google Scholar

    [18]

    Saito A, Teshima H, Obara H, Ono S, Kimura M, Sekiya N, Hirano H, Hirano S, Ohshima S 2007 IEEE Trans. Appl. Supercond. 17 886

    [19]

    Saito A, Tsurui R, Kato T, Nakajima K, Teshima H, Ohshima S 2015 Applied Physics Express 8 043101Google Scholar

    [20]

    Tsurui R, Saito T, Kato T, Teshima H, Ohshima S, Saito A 2016 IEEE Trans. Appl. Supercond. 26 1501004

    [21]

    Saito A, Saito T, Saito T, Kodama S, Nakajima K, Ohshima S 2018 IEEE Trans. Appl. Supercond. 28 1500205

    [22]

    Saito T, Kodama S, Saito T, Ohshima S, Saito A 2018 IEEE Trans. Appl. Supercond. 28 1500704

    [23]

    Sekiya N, Unno K 2018 IEEE Trans. Appl. Supercond. 28 1500105

    [24]

    Sekiya N, Tsuruoka T 2019 IEEE Trans. Appl. Supercond. 29 1501004

    [25]

    Laforge P 2018 18th International Symposium on Antenna Technology and Applied Electromagnetics (ANTEM) Waterloo, Canada, August 19−22, 2018

    [26]

    Laforge P, Mansour R R, Yu M 2018 IEEE Trans. Appl. Supercond. 28 1501208

    [27]

    Belyaev B A, Govorun I V, Leksikov A A, Serzhantov A M, Leksikov A A 2016 IEEE Trans. Appl. Supercond. 26 1500506

    [28]

    Govorun I V, Leksikov A A 2017 18th International Conference of Young Specialists on Micro/Nanotechnologies and Electron Devices (EDM) Erlagol, Russia, June 29−July 3 2017 p80

    [29]

    Ikeuchi H, Kawaguchi T, Shiokawa N, Sawahara Y, Kayano H 2018 13th European Microwave Integrated Circuits Conference (EuMIC) Madrid, Spain, September 23−25, 2018

    [30]

    Iijima K, Okada Y, Kumamoto T, Kawaguchi T, Ikeuchi H, Sawahara Y, Shiokawa N, Shinonaga M 2018 IEEE Radar Conference (RadarConf18) Oklahoma City, April 4−23 2018 p0077

    [31]

    Ikeuchi H, Kawaguchi T, Shiokawa N, Sawahara Y, Kayano H 2018 Asia-Pacific Microwave Conference (APMC) Kyoto, Japan, November 6−9, 2018 p797

    [32]

    Chaudy D, Llopis O, Marcilhac B, Lemaitre Y, Kelly O D, Hode J M 2018 IEEE International Frequency Control Symposium (IFCS) California, USA, May 21−24 2018 p50

    [33]

    Wei B, Guo X B, Piao Y L, Jin S C, Zhang X P, Gao L M, Peng H L, Yin Z S, Cao B S 2009 Chin. Sci. Bull. 54 612Google Scholar

    [34]

    Yu T, Li C G, Li F, Zhang Q, Sun L, Gao L, Wang Y H, Zhang X Q, Li H, Jin C J, Li J B, Liu H F, Gao C Z, Meng J B, He Y S 2009 IEEE Trans. Microw. Theory Techn. 57 1783Google Scholar

    [35]

    Li C G, Yu T, Bian Y B, Wu Y, Wang J, Zhang X Q, Sun L, Li H, He Y S 2016 IEEE Trans. Appl. Supercond. 26 1502104Google Scholar

    [36]

    Zhang X Q, Meng Q D, Li F, Li C G, Li S Z, He A S, Li H, He Y S 2006 Supercond. Sci. Technol. 19 394Google Scholar

    [37]

    Tsuzuki S M I, Shen Y, Berkowitz S 2002 IEEE Trans. Microw. Theory Techn. 50 2924Google Scholar

    [38]

    Liu H W, Rao L X, Xu Y C, Wen P, Ren B P, Guan X H, He Y S, Sun L, Ma J 2017 IEEE Trans. Appl. Supercond. 27 1501704

    [39]

    Shang S, Wei B, Guo X B, Cao B S, Wang X, Jiang L N, Lu X X 2018 IEEE Microw. Wirel. Compon. Lett. 28 588Google Scholar

    [40]

    Lu X L, Ma P Y, Wei B, Zhao L, Xu A G, Cao B S, Wang X, Song X K 2019 IEEE Trans. Appl. Supercond. 29 1500308

    [41]

    Long Z H, Tian M G, Zhang T L, Qiao M, Wu T H, Lan Y 2020 IEEE Trans. Appl. Supercond. 30 1500204

    [42]

    Huang H B, Wu Y, Wang J, Bian Y B, Wang X, Li G Q, Zhang X Q, Li C G, Sun L, He Y S 2018 Physica C 550 78Google Scholar

    [43]

    Dai J H, Wu Y, Yuan Y F, Wang X, Wang J, Li G Q, Li C G, Sun L, He Y S 2020 IEEE Microw. Wirel. Compon. Lett. To be published

    [44]

    Zhang Q, Bian Y B, Guo J, Cui B, Wang J, Yu T, Gao L, Wang Y H, Li C G, Zhang X Q, Li H, Gao C Z, He Y S 2010 IEEE Trans. Appl. Supercond. 20 2Google Scholar

    [45]

    Heng Y, Guo X, Cao B, Wei B 2013 Electron. Lett. 49 1230Google Scholar

    [46]

    Ji L Y, Ma J, Sun J, Wang L, Li Y Q, Liu B 2012 Sci. China Inf. Sci. 55 956Google Scholar

    [47]

    Liu H W, Lei J H, Guan X H, Zhao Y L, Sun L, He Y S 2014 IEEE Trans. Appl. Supercond. 24 8Google Scholar

    [48]

    Liu H W, Ren B P, Guan X H, Wen P, Wang Y 2014 IEEE Trans. Microw. Theory Techn. 62 2931Google Scholar

    [49]

    Sekiya N, Kitada N, Kishida K, Tsuruoka T 2020 Supercond. Sci. Technol. 33 095002Google Scholar

    [50]

    Ren B P, Ma Z W, Liu H W, Guan X H, Wang X L, Wen P, Ohira M 2019 IEEE Trans. Microw. Theory Techn. 67 726Google Scholar

    [51]

    Li C G, Bian Y B, Li G Q, Wu Y, Wang J, Wang X, Zhang X Q, Xia F J, Bai D D, Sun L, Li H, He Y S 2014 IEEE Trans. Appl. Supercond. 24 1501205

    [52]

    Wang X, Wang J, Li C G, Wu Y, Zhang X Q, Li G Q, Dai J H, Yuan Y F, Xu Z, Zhang C, He Y S, Sun L 2020 IEEE Trans. Appl. Supercond. To be published

    [53]

    Wang J, Li C G, Wang X, Li N, Bian Y B, Li G Q, Wu Y, Xia F J, Bai D D, Zhang X Q, Sun L, Li H, He Y S 2014 IEEE Trans. Appl. Supercond. 24 1501104

    [54]

    Wang X, Xia F J, Li N, Wang J, Li C G, Bai D D, Zhang X Q, Bian Y B, Li G Q, Wu Y, Li H, Sun L, He Y S 2015 IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications (IMWS-AMP) Suzhou, China, July 1−3, 2015 p1

    [55]

    Li C G, Wang X, Wang J, Sun L, He Y H 2017 Supercond. Sci. Technol. 30 073001Google Scholar

    [56]

    Li C G, Zhang Q, Meng Q D, Sun L, Huang J D, Wang Y F, Zhang X Q, He A S, Li H, He Y S, Luo S 2006 Supercond. Sci. Technol. 19 398Google Scholar

    [57]

    胡来平, 张士刚, 张梅, 丁晓杰, 王生旺 2020 低温与超导 48 82

    Hu L P, Zhang S G, Zhang M, Ding X J, Wang S W 2020 Cryo. & Supercond. 48 82

    [58]

    王生旺, 王贤华, 刘洋, 何川, 丁晓杰 2018 低温物理学报 6 25Google Scholar

    Wang S W, Wang X H, Liu Y, He C, Ding X J 2018 Low Temperature Physical Letters 6 25Google Scholar

    [59]

    Wu Y, Sun L, Li C G, Zhang X Q, Zhang Q, Wang J, Bian Y B, Yu T, Cui B, Li G Q, Li H, He Y S 2013 Proceedings of the 2013 International Kharkov Symposium on Physics and Engineering of Microwaves, Millimeter and Submillimeter Waves Kharkov, Ukraine, June 23−28 2013 p46

    [60]

    Sun L, He Y S 2014 IEEE Trans. Appl. Supercond. 24 1501308

    [61]

    Liu Q S, Wang H W, Zhang Q Y, Wang H, Peng W, Wang Z 2017 Appl. Phys. Lett. 110 222604Google Scholar

    [62]

    Zhang X, Zhang G F, Ying L L, Xiong W, Han H X, Wang Y L, Rong L L, Xie X M, Wang Z 2018 Physica C 548 1

    [63]

    Cao W H, Chen H, Liang T T, Li J J, Kong X Y, Sun T B, Zhong Q, Wang X S, Wang L R, Zhong Y 2018 IEEE Trans. Appl. Supercond. 28 1602204

    [64]

    韩昊轩, 张国峰, 张雪, 梁恬恬, 应利良, 王永良, 彭炜, 王镇 2019 物理学报 68 138501Google Scholar

    Han H X, Zhang G F, Zhang X, Liang T T, Ying L L, Wang Y L, Peng W, Wang Z 2019 Acta Phys. Sin. 68 138501Google Scholar

    [65]

    Zhang X, Zhang G F, Wang Y L, Rong L L, Zhang S L, Wu J Q, Qiu L Q, Xie X M, Wang Z 2019 IEEE Trans. Appl. Supercond. 29 1600503

    [66]

    Zhang G F, Zhang X, Wang Y L, Rong L L, Xie X M, Wang Z 2019 Physica C 562 32Google Scholar

    [67]

    Liu J, Gao H, Li G, Li Z W, Ahmada K, Shan Z Y, Liu J S, Chen W 2017 Chin. Physics B 26 098501Google Scholar

    [68]

    Zhang Q Y, Wang H W, Tang X, Peng W, Wang Z 2020 IEEE Trans. Appl. Supercond. 30 1600103

    [69]

    Chen L, Wang H, Liu X Y, Wu L, Wang Z 2016 Nano Lett. 16 7726Google Scholar

    [70]

    Linghu K H, Guo Z S, Li Y L, Xu T Q, Luo W H, Huang Z G, Jin Y R, Zheng D N, Wang F R, Gan Z Z 2019 Physica C 564 1

    [71]

    Zhang Y, Dong H, Krause H J, Zhang G F, Xie X M 2020 SQUID Readout Electronics and Magnetometric Systems for Practical Applications (Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA

    [72]

    Zhang Y, Liu C, Schmelz M, Krause H J, Braginski A I, Stolz R, Xie X M, Meyer H G, Offenhäusser A, Jiang M H 2012 Supercond. Sci. Technol. 25 125007Google Scholar

    [73]

    Liu C, Zhang Y, Mück M, Zhang S L, Krause H J, Braginski A I, Zhang G F, Wang Y L, Kong X Y, Xie X M, Offenhäusser A, Jiang M H 2013 Supercond. Sci. Technol. 26 065002Google Scholar

    [74]

    Zhang G F, Zhang Y, Hong T, Wang H, Krause H J, Xie X M 2015 Physica C 518 73Google Scholar

    [75]

    Song Z W, Dai H B, Rong L L, Dong H, Wu J, Qiu L Q, Zhang G F, Wang Y L, Tao Q, Pei Y F, Zhang S L, Xie X M 2019 IEEE Trans. Appl. Supercond. 29 1600205

    [76]

    Rong L L, Bao S X, Wu J, Zhang G F, Qiu L Q, Zhang S L, Wang Y L, Dong H, Pei Y F, Xie X M 2019 IEEE Trans. Appl. Supercond. 29 1601704

    [77]

    Ji Y J, Du S Y, Xie L J, Chang K, Liu Y, Zhang Y, Xie X M, Wang Y, Lin J, Rong L L 2016 J. Appl. Geophys. 135 243Google Scholar

    [78]

    Du S Y, Zhang Y, Pei Y F, Jiang K, Rong L L, Yin C C, Ji Y J, Xie X M 2018 Geophys 83 E111Google Scholar

    [79]

    Wu Y Q, Ma B Y, Shao J Y, Ji Y J, Teng F 2020 IEEE Access 8 150478Google Scholar

    [80]

    刘向东, 刘习凯, 马东, 陈亮, 张宁 2019 导航与控制 18 7Google Scholar

    Liu X D, Liu X K, Ma D, Chen L, Zhang N 2019 Navigation and Control 18 7Google Scholar

    [81]

    刘习凯, 马东, 陈亮, 刘向东 2018 地球物理学报 61 3037Google Scholar

    Liu X K, Ma D, Chen L, Liu X D 2018 Chin. J. Geophys. 61 3037Google Scholar

    [82]

    Dong H, Wang Y L, Zhang S L, Sun Y, Xie X M 2008 Supercond. Sci. Technol. 21 115009Google Scholar

    [83]

    Huang X L, Dong H, Qiu Y, Li B, Tao Q, Zhang Y, Krause H J, Offenhäusser A, Xie X M 2018 J. Magn. Reson. 286 52Google Scholar

    [84]

    Liu C, Chang B L, Qiu L Q, Dong H, Qiu Y, Zhang Y, Krause H J, Offenhäusser A, Xie X M 2015 J. Magn. Reson. 257 8Google Scholar

    [85]

    Dong H, Qiu L Q, Shi W, Chang B L, Qiu Y, Xu L, Liu C, Zhang Y, Krause H J, Offenhäusser A, Xie X M 2013 Appl. Phys. Lett. 102 102602Google Scholar

    [86]

    Yu M M, Tao Q, Dong H, Huang T, Li Y Q, Xiao Y, Yang S W, Gao B, Ding G Q, Xie X M 2020 J. Magn. Reson. 317 106775Google Scholar

    [87]

    Liu C, Chang B L, Qiu L Q, Qiu Y, Dong H, Zhang Y, Xie X M 2015 IEEE Trans. Appl. Supercond. 25 1602804

    [88]

    Dong H, Hwang S M, Wendland M, You L X, Clarke J, Inglis B 2017 Magn. Reson. Med. 78 2342Google Scholar

    [89]

    Wang W, Ma P, Dong H, Krause H J, Zhang Y, Willbold D, Offenhäusser A, Gu Z 2016 Biosens. Bioelectron. 80 661Google Scholar

    [90]

    Li Y Q, Dong H, Tao Q, Ye C C, Yu M M, Li J P, Zhou H F, Yang S W, Ding G Q, Xie X M 2020 Biomaterials 250 120056Google Scholar

    [91]

    Jin Y R, Jia Q J, Deng H, Wang N, Jiang F Y, Tian Y, Gao M Y, Zheng D N 2015 IEEE Trans. Appl. Supercond. 25 1601805

    [92]

    Linghu K H, Guo Z S, Wu Q H, Luo W H, Nie R J, Jin Y R, Zheng D N, Wang F R, Gan Z Z 2019 IEEE Trans. Appl. Supercond. 29 1600104

    [93]

    Li H, Zhang S, Zhang C, Xie X 2016 IEEE Trans. Appl. Supercond. 26 1601805

    [94]

    Tao R, Zhang S, Huang X, Tao M, Ma J, Ma S, Zhang C, Zhang T, Tang F, Lu J, Shen C, Xie X 2019 IEEE Trans. Biomed. Eng. 66 1658Google Scholar

    [95]

    Tucker J, Feldman M 1985 Rev. Mod. Phys. 57 1055Google Scholar

    [96]

    The EHT collaboration, 2019 ApJL 875 L1-6Google Scholar

    [97]

    Li J, Takeda M, Wang Z, Shi S C, Yang J 2008 Appl. Phys. Lett. 92 222504Google Scholar

    [98]

    Shi S C, Noguchi T, Inatani J 1997 IEEE Trans. Appl. Supercond. 7 3850Google Scholar

    [99]

    Li J, Takeda M, Wang Z, Shi S C 2009 IEEE Trans. Appl. Supercond. 19 417Google Scholar

    [100]

    李婧 2008 博士学位论文 (南京: 中国科学院紫金山天文台)

    Li J 2008 Ph. D. Dissertation(Nanjing: Purple Moutain Observatory, Chinese Academy of Sciences) (in Chinese)

    [101]

    Shurakov A, Lobanov Y, Goltsman G 2016 Supercond. Sci. Technol. 29 023001Google Scholar

    [102]

    Klapwijk T M, Semenov A V 2017 IEEE Trans. THz Sci. Technol, 7 627Google Scholar

    [103]

    Gusten R, Wiesemeyer H, Neufeld D, Menten K M, Graf U U, Jacobs K, Klein B, Ricken O, Risacher C, Stutzki J 2019 Nature 568 357Google Scholar

    [104]

    史生才, 李婧, 张文, 缪巍 2015 物理学报 64 228501Google Scholar

    Shi S C, Li J, Zhang W, Miao W 2015 Acta Phys. Sin. 64 228501Google Scholar

    [105]

    Zhang W, Miao W, Zhong J Q, Shi S C, Hayton D J, Vercruyssen N, Gao J R, Goltsman G N 2014 Supencond. Sci. Technol. 27 085013Google Scholar

    [106]

    Zhou K M, Miao W, Gen Y, Delorme Y, Zhang W, Ren Y, Zhang K, Shi S C 2020 Chin. Phys. B 29 058505Google Scholar

    [107]

    Miao W, Lou Z, Xu G Y, Hu J, Li S L, Zhang W, Zhou K M, Yao Q J, Zhang K, Duan W Y, Shi S C, Colombelli R, Beere H E, Ritchie D A 2015 Optics. Express 23 4453Google Scholar

    [108]

    Miao W, Gao H, Lou Z, Hu J, Zhang W, Ren Y, Zhou K M, Shi S C, Li H, Cao J C, Delorme Y 2018 IEEE Trans. THz Sci. Technol. 8 581Google Scholar

    [109]

    Ren Y, Zhang D X, Zhou K M, Miao W, Zhang W, Shi S C, Seleznev V, Pentin I, Vakhtomin Y, Smirnov K 2019 AIP Advances 9 075307Google Scholar

    [110]

    Ren Y, Zhang D X, Wang Z, Zhou K M, Zhong J Q, Liu D, Miao W, Zhang W, Shi S C 2020 Appl. Phys. Lett. 116 131108Google Scholar

    [111]

    Andrews D H, Brucksch W F, Ziegler W T, Blanchard E R 1941 Physical Review 59 1045

    [112]

    Andrews D H, Jr. W F B, Ziegler W T, Blanchard E R 1942 Rev. Sci. Instrum. 13 281Google Scholar

    [113]

    Andrews D H, Fowler R D, Williams M C 1949 Physical Review 76 154

    [114]

    Lita A E, Rosenberg D, Nam S, Miller A J, Balzar D, Kaatz L M, Schwall R E 2005 IEEE Trans. Appl. Supercond. 15 3528Google Scholar

    [115]

    Zhang W, Zhong J Q, Miao W, Wang Z, Liu D, Yao Q J, Shi S C, Chen T J, Wang M J 2016 J. Low Temp. Phys. 184 11Google Scholar

    [116]

    Tralshawala N, Aslam S, Brekosky R P, Chen T C, Figueroa Feliciano E, Finkbeiner F M, Li M J, Mott D B, Stahle C K, Stahle C M 2000 Nucl. Instrum. Meth. A 444 188Google Scholar

    [117]

    Hilton G C, Martinis J M, Irwin K D, Bergren N F, Wollman D A, Huber M E, Deiker S, Nam S W 2001 IEEE Trans. Appl. Supercond. 11 739Google Scholar

    [118]

    Muramatsu H, Nagayoshi K, Hayashi T, Sakai K, Yamamoto R, Mitsuda K, Yamasaki N Y, Maehata K, Hara T 2016 J. Low Temp. Phys. 184 91Google Scholar

    [119]

    Deiker S W, Doriese W, Hilton G C, Irwin K D, Rippard W H, Ullom J N, Vale L R, Ruggiero S T, Williams A, Young B A 2004 Appl. Phys. Lett. 85 2137Google Scholar

    [120]

    Doriese W B, Morgan K M, Bennett D A, Denison E V, Fitzgerald C P, Fowler J W, Gard J D, Hays-Wehle J P, Hilton G C, Irwin K D, Joe Y I, Mates J A B, O’Neil G C, Reintsema C D, Robbins N O, Schmidt D R, Swetz D S, Tatsuno H, Vale L R, Ullom J N 2016 J. Low Temp. Phys. 184 389Google Scholar

    [121]

    Korte P A J d, Beyer J, Deiker S, Hilton G C, Irwin K D, MacIntosh M, Nam S W, Reintsema C D, Vale L R, Huber M E 2003 Rev. Sci. Instrum. 74 3807Google Scholar

    [122]

    Kiviranta M, Seppä H, Kuur J V D, Korte P D 2002 AIP Conference Proceedings 605 Washington DC, USA, February 2002 p295

    [123]

    Akamatsu H, Gottardi L, van der Kuur J, de Vries C, Ravensberg K, Adams J, Bandler S, Bruijn M, Chervenak J, Kilbourne C, Kiviranta M, van der Linden A J, Jackson B, Smith S 2016 Proc. SPIE 9905, Space Telescopes and Instrumentation 2016: Ultraviolet to Gamma Ray, Edinburgh, Scotland, UK, July19, 2016 p99055S-1

    [124]

    Irwin K D, Lehnert K W 2004 Appl. Phys. Lett. 85 2107Google Scholar

    [125]

    Bennett D A, Mates J A B, Gard J D, Hoover A S, Rabin M W, Reintsema C D, Schmidt D R, Vale L R, Ullom J N 2015 IEEE Trans. Appl. Supercond. 25 2101405

    [126]

    Irwin K D, Chaudhuri S, Cho H M, Dawson C, Kuenstner S, Li D, Titus C J, Young B A 2018 J. Low Temp. Phys. 193 476Google Scholar

    [127]

    Wang Z, Zhang W, Miao W, Liu D, Zhong J Q, Shi S C 2018 IEEE Trans. Appl. Supercond. 28 2100204

    [128]

    Zhang W, Miao W, Wang Z, Liu D, Zhong J Q, Guo X H, Wu F, Yao Q J, Shi S C 2017 IEEE Trans. Appl. Supercond. 27 2100606

    [129]

    Zhang W, Miao W, Wang Z, Guo X H, Liu D, Zhong J Q, Yao Q J, Shi S C 2018 J. Low Temp. Phys. 193 276Google Scholar

    [130]

    Ahmad K, Liu J, Li G, Liu J S, Chen W 2019 J. Electron. Mater. 48 799Google Scholar

    [131]

    Ahmad K, Liu J, Liu Q C, Li G, Liu J S, Chen W 2019 J. Electron. Mater. 48 925Google Scholar

    [132]

    Zhang Q Y, Liu J S, Dong W H, Wang T S, He G F, Li T F, Zhou X X, Chen W 2014 Chinese Sci. Bull. 59 2292Google Scholar

    [133]

    Gao H, Liu C Z, Li Z W, Liu Y, Li Y, Li S Y, Li H, Gao G H, Lu F J, Zhang X M 2017 Radiation Detection Technology and Methods 1 12Google Scholar

    [134]

    Li H, Li S Y, Liu Y, Li Y P, Cai Y, Li M, Zhao G B, Liu C Z, Li Z W, Xu H, Wu D, Zhang Y J, Fan Z H, Yao Y Q, Kuo C L, Lu F J, Zhang X 2019 Natl. Sci. Rev. 6 145

    [135]

    Zhang Q Y, Wang T S, Liu J S, Dong W H, He G F, Li T F, Zhou X X, Chen W 2014 Chinese Phys. B 23 118502Google Scholar

    [136]

    Zhang W, Geng Y, Wang Z, Zhong J Q, Li P Z, Miao W, Ren Y, Yao Q J, Wang J F, Shi S C 2019 IEEE Trans. Appl. Supercond. 29 2100505

    [137]

    Geng Y, Zhang W, Li P Z, Zhong J Q, Wang Z, Miao W, Ren Y, Wang J F, Yao Q J, Shi S C 2020 J. Low Temp. Phys. 199 556Google Scholar

    [138]

    Uhlig J, Doriese W B, Fowler J W, Swetz D S, Jaye C, Fischer D A, Reintsema C D, Bennett D A, Vale L R, Mandal U, O'Neil G C, Miaja-Avila L, Joe Y I, El Nahhas A, Fullagar W, Gustafsson F P, Sundström V, Kurunthu D, Hilton G C, Schmidt D R, Ullom J N 2015 J.Synchrotron Radiat. 22 766Google Scholar

    [139]

    Gottardi L, Akamatsu H, Bruijn M P, den Hartog R, den Herder J W, Jackson B, Kiviranta M, van der Kuur J, van Weers H 2016 Nucl. Instrum. Meth. A 824 622Google Scholar

    [140]

    Lee S J, Titus C J, Mori R A, Baker M L, Bennett D A, Cho H M, Doriese W B, Fowler J W, Gaffney K J, Gallo A, Gard J D, Hilton G C, Jang H, Joe Y I, Kenney C J, Knight J, Kroll T, Lee J S, Li D, Lu D, Marks R, Minitti M P, Morgan K M, Ogasawara H, O’Neil G C, Reintsema C D, Schmidt D R, Sokaras D, Ullom J N, Weng T C, Williams C, Young B A, Swetz D S, Irwin K D, Nordlund D 2019 Rev. Sci. Instrum. 90 113101Google Scholar

    [141]

    Hashimoto T, Bennett D A, Doriese W B, Durkin M S, Fowler J W, Gard J D, Hayakawa R, Hayashi T, Hilton G C, Ichinohe Y, Ishimoto S, Morgan K M, Noda H, O’Neil G C, Okada S, Reintsema C D, Schmidt D R, Suzuki S, Swetz D S, Tatsuno H, Ullom J N, Yamada S, collaboration J P E 2020 J. Low Temp. Phys. 199 1018Google Scholar

    [142]

    Cui W, Chen L B, Gao B, Guo F L, Jin H, Wang G L, Wang L, Wang J J, Wang W, Wang Z S, Wang Z, Yuan F, Zhang W 2020 J. Low Temp. Phys. 199 502Google Scholar

    [143]

    Lv Y, Huang H, You T, Ren F, Ou X, Gao B, Wang Z 2020 J. Low Temp. Phys. in press

    [144]

    Xu X L, Li J J, Wang X S, Zhong Q, Zhong Y, Cao W H, Li W, Chen J, Zhao Z W, Gao Y, Liu Z, He Q 2020 Conf. Precis. Electromagn. Meas. IEEE, Denver, USA, August 24−28 2020 p1

    [145]

    Zhong Q, Liu W P, Zhong Y, Wu H P, Li J J, Wang X S 2019 OSA Contin. 2 2227Google Scholar

    [146]

    Chen L B, Jin H, Wang J, Pan C Z, Wu X L, Cui W, Zhou Y, Wang J J 2019 IOP Conference Series: Materials Science and Engineering 502 012063Google Scholar

    [147]

    You L X 2020 Nanophotonics 9 2673Google Scholar

    [148]

    Natarajan C M, Tanner M G, Hadfield R H 2012 Supercond. Sci. Technol. 25 063001Google Scholar

    [149]

    Yang X Y, Li H, Zhang W J, You L X, Zhang L, L iu, X Y, Wang Z, Peng W, Xie X M, Jiang M H 2014 Opt. Express 22 16267Google Scholar

    [150]

    Li X, Tan J R, Zheng K M, Zhang L B, Zhang J L, He W J, Huang P W, Li H C, Zhang B, Chen Q, Ge R, Guo S Y, Huang T, Jia X Q, Zhao Q Y, Tu X C, Kang L, Chen J, Wu P H 2020 Photonics Research 8 637

    [151]

    Chi X M, Zou K, Gu C, Zichi J, Cheng Y H, Hu N, Lan X J, Chen S F, Lin Z Z, Zwiller V, Hu X L 2018 Opt. Lett. 43 5017Google Scholar

    [152]

    Chen J P, Zhang C, Liu Y, Jiang C, Zhang W, Hu X L, Guan J Y, Yu Z W, Xu H, Lin J, Li M J, Chen H, Li H, You L X, Wang Z, Wang X B, Zhang Q, Pan J W 2020 Phys. Rev. Lett. 124 070501Google Scholar

    [153]

    Li H, Chen S J, You L X, Meng W D, Wu Z B, Zhang Z P, Tang K, Zhang L, Zhang W J, Yang X Y, Liu X Y, Wang Z, Xie X M 2016 Opt. Express 24 3535Google Scholar

    [154]

    Zhu J, Chen Y J, Zhang L B, Jia X Q, Feng Z J, Wu G H, Yan X C, Zhai J Q, Wu Y, Chen Q, Zhou X Y, Wang Z Z, Zhang C, Kang L, Chen J, Wu P H 2017 Scientific Reports 7 15113

    [155]

    Xue L, Li Z L, Zhang L B, Zhai D S, Li Y Q, Zhang S, Li M, Kang L, Chen J, Wu P H, Xiong Y H 2016 Opt. Lett. 41 3848

    [156]

    Tang R F, Li Z L, Li Y Q, Pi X Y, Su X L, Li R W, Zhang H T, Zhai D S, Fu H L 2018 Opt. Lett. 43 5488

    [157]

    Zhang B, Guan Y Q, Xia L H, Dong D X, Chen Q, Xu C, Wu C, Huang H X, Zhang L B 2020 Supercond. Sci. Technol. to be published

    [158]

    Yu J, Zhang R L, Gao Y F, Sheng Z H, Gu M, Sun Q C, Liao J L, Wu T, Lin Z Y, Wu P H, Kang L, Li H, Zhang L B, Zheng W 2020 Opt. Lett. 45 3305

    [159]

    Zhong H S, Wang H, Deng Y H, Chen M C, Peng L C, Luo Y H, Qin J, Wu D, Ding X, Hu Y, Hu P, Yang X Y, Zhang W J, Li H, Li Y X, JiangX, Gan L, Yang G W, You L X, Wang Z, Li L, Liu N L, Lu C Y, Pan J W 2020 Science 370 1460Google Scholar

    [160]

    Day P K, LeDuc H G, Mazin B A, Vayonakis A, Zmuidzinas J 2003 Nature 425 817

    [161]

    Li H J, Wang Y W, Wei L F, Zhou P J, Wei Q, Cao C H, Fang Y R, Yu Y, Wu P H 2013 Chinese Sci. Bull. 58 2413Google Scholar

    [162]

    Liu Q, Xue G M, Tan X S, Yu H F, Yu Y 2017 Chinese Phys. B 26 058402

    [163]

    He Q, Wang Y W, Wei L F To be published

    [164]

    Guo W, Liu X, Wang Y, Wei Q, Wei L F, Hubmayr J, Fowler J, Ullom J, Vale L, Vissers M R, Gao J 2017 Appl. Phys. Lett. 110 212601Google Scholar

    [165]

    石晴, 林镇辉, 杨瑾屏, 李婧, 史生才 2017 微波学报 S1 266

    Shi Q, Lin Z H, Yang J P, Li J, Shi S C 2017 J. Microwaves S1 266

    [166]

    Liu X, Guo W, Wang Y, Dai M, Wei L F, Dober B, McKenney C M, Hilton G C, Hubmay J, Austermann J E, Ullom J N, Gao J, Ullom J N 2017 Appl. Phys. Lett. 111 252601Google Scholar

    [167]

    Liu X, Guo W, Wang Y, Wei L F, Mckenney C M, Dober B, Billings T, Hubmayr J, Ferreira L S, Vissers M R, Gao J 2017 J. Appl. Phys. 122 034502Google Scholar

    [168]

    Zmuidzinas J 2012 Annual Review of Condensed Matter Physics 3 169Google Scholar

    [169]

    Tonouchi M 2007 Nature Photonics 1 97Google Scholar

    [170]

    Barbara P, Cawthorne A B, Shitov S V, Lobb C J 1999 Phys. Rev. Let. 82 1963Google Scholar

    [171]

    Ozyuzer L, Koshelev A E, Kurter C, Gopalsami N, Li Q, Tachiki M, Kadowaki K, Yamamoto T, Minami H, Yamaguchi H, Tachiki T, Gray K E, Kwok W K, Welp U 2007 Science 318 1291Google Scholar

    [172]

    Kleiner R, Wang H B 2019 J. Appl. Phys. 126 171101Google Scholar

    [173]

    Gu J Q, Singh R, Han J G, Cao W, Zhang W L, Xing Q R, Tian Z 2010 Appl. Phys. Lett. 97 071102Google Scholar

    [174]

    Li C, Wu J B, Jian S L, Su R F, Zhang C H, Jiang C T, Zhou G C, Jin B B, Kang L, Xu W W, Chen J, Wu P H 2017 Appl. Phys. Lett. 111 092601Google Scholar

    [175]

    张彩虹, 吴敬波, 金飚兵 2019 中国激光 46 42Google Scholar

    Zhang C H, Wu J B, Jin B B 2019 Chin. J. Las. 46 42Google Scholar

    [176]

    Jiang S L, Li F, Jia X Q, Kang L, Wu P H 2017 Supercond. Sci. Technol. 30 044004Google Scholar

    [177]

    Yu M, Geng H F, Hua T, An D Y 2020 Supercond. Sci. Technol. 33 025001

    [178]

    Sun H C, Wieland R, Xu Z Y, Qi Z D, Lv Y Y, Huang Y, Zhang H L, Zhou X J, Li J, Wang Y L, Rudau F, Hampp J S, Koelle D, Ishida S, Eisaki H, Yoshida Y, Jin B B, Koshelets V P, Kleiner R, Wang H B, Wu P H 2018 Phys. Rev. Applied 10 024041Google Scholar

    [179]

    Hao L Y, Ji M, Yuan J, An D Y, Li M Y, Zhou X J, Huang Y, Sun H C, Zhu Q, Rudau F, Wieland R, Kinev N, Li J, Xu W W, Jin B B, Chen J, Hatano T, Koshelets V P, Koelle D, Kleiner R, Wang H B, Wu P H 2015 Phys. Rev. Applied 3 024006Google Scholar

    [180]

    Sun H C, Yang Z B, Kinev N V, Kiselev O S, Lv Y Y, Huang Y, Hao L Y, Zhou X J, Ji M, Tu X C, Zhang C H, Li J, Rudau F, Wieland R, Hampp J S, Kizilaslan O, Koelle D, Jin B B, Chen J, Kang L, Xu W W, Kleiner R, Koshelets V P, Wang H B, Wu P H 2017 Phys. Rev. Applied 8 054005Google Scholar

    [181]

    An D Y, Yuan J, Kinev N, Li M Y, Huang Y, Ji M, Zhang H, Sun Z L, Kang L, Jin B B, Chen J, Li J, Gross B, Ishii A, Hirata K, Hatano T, Koshelets V P, Koelle D, Kleiner R, Wang H B, Xu W W, Wu P H 2013 Appl. Phys. Lett. 102 092601Google Scholar

    [182]

    Li C, Zhang C H, Hu G L, Zhou G C, Jiang S L, Jiang C T, Zhu G H, Jin B B, Kang L, Xu W W, Chen J, Wu P H 2016 Appl. Phys. Lett. 109 022601Google Scholar

    [183]

    Goto E 1959 Proc. Inst. Radio Engrs. 47 1304

    [184]

    Giordmaine J A and Miller R C 1965 Phys. Rev. Lett. 14 973Google Scholar

    [185]

    Turner K L, Miller S A, Hartwell P G, MacDonald N C, Strogatz S H, and Adams S G 1998 Nature 396 149Google Scholar

    [186]

    Pedersen N F, Davidson A 1981 Appl. Phys. Lett. 39 830Google Scholar

    [187]

    Bryant P H, Movshovich R, Yurke B 1991 Phys. Rev. Lett. 66 2641Google Scholar

    [188]

    Castellanos-Beltran M A, Irwin K D, Hilton G C, Vale L R, Lehnert K W 2008 Nature Phys. 4 929Google Scholar

    [189]

    Yamamoto T, Inomata K, Watanabe M, Matsuba K, Miyazaki T, Oliver W D, Nakamura Y, Tsai J S 2008 Appl. Phys. Lett. 93 042510Google Scholar

    [190]

    Bergeal N, Schackert F, Metcalfe M, Vijay R, Manucharyan V E, Frunzio L, Prober D E, Schoelkopf R J, Girvin S M, Devoret M H 2010 Nature 465 64

    [191]

    Hatridge M., Vijay R., Slichter D. H., Clarke J, Siddiqi I 2011 Phys. Rev. B 83 134501Google Scholar

    [192]

    Zhou X, Schmitt V, Bertet P, Vion D, Wustmann W, Shumeiko V, Esteve D 2014 Phys. Rev. B 89 214517Google Scholar

    [193]

    Mutus J Y, White T C, Barends R, Chen Y, Chen Z, Chiaro B, Dunsworth A, Jeffrey E, Kelly J, Megrant A, Neill C, O'Malley P J J, Roushan P, Sank D, Vainsencher A, Wenner J, Sundqvist K M, Cleland A N Martinis J M 2014 Appl. Phys. Lett. 104 263513Google Scholar

    [194]

    Roy T, Kundu S, Chand M, Vadiraj A M, Ranadive A, Nehra N, Patankar M P, Aumentado J, Clerk A A, Vijay R 2015 Appl. Phys. Lett. 107 262601Google Scholar

    [195]

    Frattini N E, Sivak V V, Lingenfelter A, Shankar S, Devoret M H 2018 Phys. Rev. Applied 10 054020Google Scholar

    [196]

    Eom B, Day P K, LeDuc H, Zmuidzinas J 2012 Nature Physics 8 623Google Scholar

    [197]

    Vijay R, Slichter D H, Siddiqi I 2011 Phys. Rev. Lett. 106 110502Google Scholar

    [198]

    Lin Z R, Inomata K, Oliver W D, Koshino K, Nakamura Y, Tsai J S, Yamamoto T 2013 Appl. Phys. Lett. 103 132602Google Scholar

    [199]

    Vijay R, Macklin C, Slichter D H, Weber S J, Murch K W, Naik R, Korotkov A N, Siddiqi I 2012 Nature 490 77Google Scholar

    [200]

    Song C, Xu K, Liu W X, Yang C P, Zheng S B, Deng H, Xie Q W, Huang K Q, Guo Q J, Zhang L B, Zhang P F, Xu D, Zheng D N, Zhu X B, Wang H, Chen Y A, Lu C Y, Han S Y, Pan J W 2017 Phys. Rev. Lett. 119 180511Google Scholar

    [201]

    Macklin C, O'Brien K, Hover D, Schwartz M E, Bolkhovsky V, Zhang X, Oliver W D, Siddiqi I 2015 Science 350 307Google Scholar

    [202]

    Yuan X 2016 Phys. Rev. Lett. 117 010502Google Scholar

    [203]

    Yang R, Deng H 2020 IEEE Trans. Appl. Supercond. 30 1100306

    [204]

    Huang K Q, Guo Q J, Song C, Zheng Y, Deng H, Wu Y, Jin Y, Zhu X B, Zheng D N 2017 Chin. Phys. B 26 094203Google Scholar

    [205]

    Nakagawa H, Kurosawa I, Aoyagi M, Kosaka S, Hamazaki Y, Okada Y, Takada S 1991 IEEE Trans. Appl. Supercond. 1 37

    [206]

    Likharev K K, Mukhanov O A, Semenov V K 1985 SQUID'85 -Superconducting Quantum Interference Devices and their Applications Berlin, Germany, June 25−28, 1985 p1103

    [207]

    Likharev K K, Semenov V K 1991 IEEE Trans. Appl. Supercond. 1 3

    [208]

    Chen W, Rylyakov A V, Patel V, Lukens J E, Likharev K K 1999 IEEE Trans. Appl. Supercond. 9 3212Google Scholar

    [209]

    Ishida K, Tanaka M, Nagaoka I, Ono T, Kawakami S, Tanimoto T, Fujimaki A, Inoue K 2020 IEEE Symposium on VLSI Circuits Honolulu HI, USA, June 16−19, 2020 p1

    [210]

    Horst Rogalla, Peter H Kes 2012 100 Years of Superconductivity (London: Taylor & Francis) pp440−458

    [211]

    http://www.hypres.com[2020-10-1]

    [212]

    Bunyk P I, Hoskinson E M, Johnson M W, Tolkacheva E, Altomare F, Berkley A J, Harris R, Hilton J P, Lanting T, Przybysz A J, Whittaker J 2014 IEEE Trans. Appl. Supercond. 24 1700110

    [213]

    McDermott R, Vavilov M G, Plourde B L T, Wilhelm F K, Liebermann P J, Mukhanov O A, Ohki T A 2018 Quantum Sci. and Technol. 3 024004Google Scholar

    [214]

    Yoshikawa N 2019 IEICE Trans. Electron E102-C 217Google Scholar

    [215]

    Terai H, Miki S, Yamashita T, Makise K, Wang Z 2010 Appl. Phys. Lett. 97 112510Google Scholar

    [216]

    Ren J, Semenov V K 2011 IEEE Trans. Appl. Supercond. 21 780Google Scholar

    [217]

    Takeuchi N, Yamae T, Ayala C L, Suzuki H, Yoshikawa N 2019 Appl. Phys. Lett. 114 042602Google Scholar

    [218]

    https://irds.ieee.org [2020-10-1]

    [219]

    Akaike H, Tanaka M, Takagi K, Kataeva I, Kasagi R, Fujimaki A, Takagi K, Igarashi M, Park H, Yamanashi Y, Yoshikawa N, Fujiwara K, Nagasawa S, Hidaka M, Takagi N 2009 Physica C 469 1670Google Scholar

    [220]

    曹文会, 李劲劲, 钟青, 郭小玮, 贺青, 迟宗涛 2012 物理学报 61 170304Google Scholar

    Cao W H, Li J J, Zhong Q, Guo X W, He Q, Chi Z T 2012 Acta Phys. Sin. 61 170304Google Scholar

    [221]

    Cao W H, Li J J, Zhong Y, He Q 2015 Chinese Phys. B 24 127402

    [222]

    Cao W H, Li J J, Wang L R, Zhong Y, Zhong Q 2020 Chinese Phys. B 29 067404Google Scholar

    [223]

    Wang L R, Li J J, Wang X S, Zhong Y, Tong J, Cao W H, Zhong Q 2021 IEEE Trans. Appl. Supercond. 31 1500104

    [224]

    Cao W H, Li J J, Zhong Y, Gao Y, Li H H, Wang Z Y, He Q 2016 Chinese Phys. B 25 057401Google Scholar

    [225]

    王兰若, 钟源, 李劲劲, 屈继峰, 钟青, 曹文会, 王雪深, 周志强, 付凯, 石勇 2018 物理学报 67 108501Google Scholar

    Wang L R, Zhong Y, Li J J, Qu J F, Zhong Q, Cao W H, Wang X S, Zhou Z Q, Fu K, Shi Y 2018 Acta Phys. Sin. 67 108501Google Scholar

    [226]

    Zhou K L, Qu J F, Benz S P 2015 IEEE Trans. Appl. Supercond. 25 1400806

    [227]

    周琨荔, 韩琪娜, 赵建亭, 鲁云峰, 施杨, 杨雁, 屈继峰 2020 计量学报 41 1Google Scholar

    Zhou K L, Han Q N, Zhao J T, Lu Y F, Shi Y, Yang Y, Qu J F 2020 Acta. Metrol. Sin. 41 1Google Scholar

    [228]

    Qu J F, Benz S P, Pollarolo A, Rogalla H, Tew W L, White D R, Zhou K L 2015 Metrologia 52 S242Google Scholar

    [229]

    Qu J F, Benz S P, Coakley K, Rogalla H, Tew W L, White D R, Zhou K L, Zhou Z Y, 2017 Metrologia 54 549Google Scholar

  • 图 1  YBCO薄膜与铜的微波表面电阻的频率特性[9]

    Fig. 1.  Frequency dependence of the microwave surface resistance of YBCO film and copper[9].

    图 2  物理所研发的通带频率为0.8−2.7 GHz的超宽带超导滤波器[43]

    Fig. 2.  HTS UWB filter with frequency band of 0.8− 2.7 GHz developed by Institute of Physics, Chinese Academy of Sciences[43].

    图 3  华东交通大学任保平等[50]研制的双通带平衡滤波器

    Fig. 3.  HTS differential bandpass filter developed by East China Jiaotong University[50].

    图 4  (a) 100 GHz频段超导接收机系统; (b) 赵忠贤院士和史生才研究员在已安装我国首台毫米波超导接收机系统的13.7米毫米波望远镜前的合影

    Fig. 4.  (a) The first superconducting SIS receiver in China; (b) photo of professor Zhao Zhongxian and Shi Shengcai standing next to the astronomical telescope with superconducting SIS receiver inside.

    图 5  高集成度外差接收机 (a) 腔体里面集成了超导HEB混频器、QCL、抛物镜和Mylar分光膜; (b) 集成接收机光路图

    Fig. 5.  Highly-integrated receiver based on superconducting HEB and QCL: (a) Superconducting HEB mixer, QCL, parabolic mirror and Mylar beamsplitter are integrated in the receiver block; (b) coupling of THz radiation from the QCL to the superconducting HEB.

    图 6  (a) 紫金山天文台研制的双缝天线耦合的TES功率计; (b) 上海微系统所研制的MoAu-TES微量能器

    Fig. 6.  (a) TES with planar twin-slot antenna developed by Purple Mountain Observatory, Chinese Academy of Sciences; (b) MoAu-TES developed by Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences.

    图 7  单元MIKD实现1550 nm波段光子数可分辨的单光子探测[164] (a) 器件S21参数的复频面脉冲响应; (b) 可分辨7个光子的光子数分辨探测; (c) 集总型MKID, 红色表示光子吸收部位(高动态电感区); (d) 用于MKID光子计数实验的IQ-mixer零拍测量系统

    Fig. 7.  Photon number resolution detection with one-pixel MKID at 1550 nm[164]: (a) Pulse response in the complex S21 plane; (b) 7-photon resolution detection, and the averaged frequency and dissipation pulse responses in the time domain; (c) A MKID, the red regime (high kinetic inductance) for photon absorption; (d) IQ-mixer Homodyne detection for photon counting

    图 8  三种谐振腔模式参量放大器 (a) SQUID阵列谐振器腔的参量放大器[188]; (b) 磁通驱动参量放大器[189]; (c) 约瑟夫森参量转换器[190]

    Fig. 8.  Three resonance-type Josephson parametric amplifiers: (a)Josephson parametric amplifier based on a SQUID array resonator[188]; (b) flux-driven Josephson parametric amplifier[189]; (c) Josephson parametric converter[190].

    图 9  SIMIT Nb03工艺下 (a) 电路TEM剖面图; (b) Nb/Al-AlOx/Nb约瑟夫森结TEM剖面图

    Fig. 9.  In SIMIT Nb03 process: (a) Sectional view of the TEM image of superconducting IC; (b) sectional view of the TEM image of Nb/Al-AlOxx/Nb JJ.

  • [1]

    Onnes H K 1911 Phys. Lab. Univ. Leiden 120b 122

    [2]

    Quinn D J, Ittner W B 1962 J. Appl. Phys. 33 748Google Scholar

    [3]

    Meissner W, Ochsenfeld R 1933 Naturwiss 21 787

    [4]

    Giaever I 1974 Rev. Mod. Phys. 46 245Google Scholar

    [5]

    Josephson B D 1962 Phys. Lett. 1 251Google Scholar

    [6]

    Bednorz J G, Muller K A Z 1986 Physik B 64 189Google Scholar

    [7]

    Wu M K, Ashburn J R, Torng C J, Hor P H, Meng R L, Gao L, Huang Z J, Wang Y Q, Chu C W 1987 Phys. Rev. Lett. 58 908Google Scholar

    [8]

    赵忠贤, 陈立泉, 杨乾声, 黄玉珍, 陈赓华, 唐汝明, 刘贵荣, 崔长庚, 陈烈, 王连忠, 郭树权, 李山林, 毕建清 1987 科学通报 32 412

    Zhao Z X, Chen L Q, Yang Q S, Huang Y Z, Chen G H, Tang R M, Liu G R, Cui C G, Chen L, Wang L Z, Guo S Q, Li S L, Bi J Q 1987 Science Bulletin 32 412

    [9]

    Inam A, Wu X D, Nazar L, Hegde M S, Rogers C T, Venkatesan T, Simon R W, Daly K, Kirchgessner J, Moffat D, Rubin D, Shu Q S, Kalokitis D, Fathy A, Pendrick V, Brown R, Brycki B, Belohoubek E, Drabeck L, Gruner G, Hammond R, Gamble F, Lairson B M, Bravman J C 1990 Appl. Phys. Lett. 56 1178Google Scholar

    [10]

    Nisenoff M, Meyers W J 2001 IEEE Trans. Appl. Supercond. 11 799Google Scholar

    [11]

    Willemsen B A 2009 IEEE MTT-S International Microwave Symposium Digest Boston, USA, June 7−12, 2009 p1457

    [12]

    Anders S, Blamire M G, Buchholz F Im, Crété D G, Cristiano R, Febvre P, Fritzsch L, Herr A, Il’ichev E, Kohlmann J, Kunert J, Meyer H G, Niemeyer J, Ortlepp T, Rogalla H, Schurig T, Siegel M, Stolz R, Tarte E, Brake H J M, Toepfer H, Villegier J C, Zagoskin A M, Zorin A B 2010 Physica C 479 2079

    [13]

    Kawaguchi T, Ikeuchi H, Kayano H, Sawahara Y, Shiokawa N 2017 Proceedings of the 14th European Radar Conference Nuremberg, Germany, October 11−13, 2017 p449

    [14]

    Sekiya N, Matsuura H, Akiya M, Tanaka Y, Ohshima S 2013 IEEE Trans. Appl. Supercond. 23 1500904Google Scholar

    [15]

    Sekiya N 2017 IEEE Trans. Appl. Supercond. 27 1501804

    [16]

    Sekiya N, Kobayashi S 2019 IEEE Trans. Appl. Supercond. 29 1500804

    [17]

    Saito A, Sekiya N, Teshima H, Obara H, Noguchi Y, Hirano H, Hirano S, Ohshima S 2006 Physica C 300 445-448Google Scholar

    [18]

    Saito A, Teshima H, Obara H, Ono S, Kimura M, Sekiya N, Hirano H, Hirano S, Ohshima S 2007 IEEE Trans. Appl. Supercond. 17 886

    [19]

    Saito A, Tsurui R, Kato T, Nakajima K, Teshima H, Ohshima S 2015 Applied Physics Express 8 043101Google Scholar

    [20]

    Tsurui R, Saito T, Kato T, Teshima H, Ohshima S, Saito A 2016 IEEE Trans. Appl. Supercond. 26 1501004

    [21]

    Saito A, Saito T, Saito T, Kodama S, Nakajima K, Ohshima S 2018 IEEE Trans. Appl. Supercond. 28 1500205

    [22]

    Saito T, Kodama S, Saito T, Ohshima S, Saito A 2018 IEEE Trans. Appl. Supercond. 28 1500704

    [23]

    Sekiya N, Unno K 2018 IEEE Trans. Appl. Supercond. 28 1500105

    [24]

    Sekiya N, Tsuruoka T 2019 IEEE Trans. Appl. Supercond. 29 1501004

    [25]

    Laforge P 2018 18th International Symposium on Antenna Technology and Applied Electromagnetics (ANTEM) Waterloo, Canada, August 19−22, 2018

    [26]

    Laforge P, Mansour R R, Yu M 2018 IEEE Trans. Appl. Supercond. 28 1501208

    [27]

    Belyaev B A, Govorun I V, Leksikov A A, Serzhantov A M, Leksikov A A 2016 IEEE Trans. Appl. Supercond. 26 1500506

    [28]

    Govorun I V, Leksikov A A 2017 18th International Conference of Young Specialists on Micro/Nanotechnologies and Electron Devices (EDM) Erlagol, Russia, June 29−July 3 2017 p80

    [29]

    Ikeuchi H, Kawaguchi T, Shiokawa N, Sawahara Y, Kayano H 2018 13th European Microwave Integrated Circuits Conference (EuMIC) Madrid, Spain, September 23−25, 2018

    [30]

    Iijima K, Okada Y, Kumamoto T, Kawaguchi T, Ikeuchi H, Sawahara Y, Shiokawa N, Shinonaga M 2018 IEEE Radar Conference (RadarConf18) Oklahoma City, April 4−23 2018 p0077

    [31]

    Ikeuchi H, Kawaguchi T, Shiokawa N, Sawahara Y, Kayano H 2018 Asia-Pacific Microwave Conference (APMC) Kyoto, Japan, November 6−9, 2018 p797

    [32]

    Chaudy D, Llopis O, Marcilhac B, Lemaitre Y, Kelly O D, Hode J M 2018 IEEE International Frequency Control Symposium (IFCS) California, USA, May 21−24 2018 p50

    [33]

    Wei B, Guo X B, Piao Y L, Jin S C, Zhang X P, Gao L M, Peng H L, Yin Z S, Cao B S 2009 Chin. Sci. Bull. 54 612Google Scholar

    [34]

    Yu T, Li C G, Li F, Zhang Q, Sun L, Gao L, Wang Y H, Zhang X Q, Li H, Jin C J, Li J B, Liu H F, Gao C Z, Meng J B, He Y S 2009 IEEE Trans. Microw. Theory Techn. 57 1783Google Scholar

    [35]

    Li C G, Yu T, Bian Y B, Wu Y, Wang J, Zhang X Q, Sun L, Li H, He Y S 2016 IEEE Trans. Appl. Supercond. 26 1502104Google Scholar

    [36]

    Zhang X Q, Meng Q D, Li F, Li C G, Li S Z, He A S, Li H, He Y S 2006 Supercond. Sci. Technol. 19 394Google Scholar

    [37]

    Tsuzuki S M I, Shen Y, Berkowitz S 2002 IEEE Trans. Microw. Theory Techn. 50 2924Google Scholar

    [38]

    Liu H W, Rao L X, Xu Y C, Wen P, Ren B P, Guan X H, He Y S, Sun L, Ma J 2017 IEEE Trans. Appl. Supercond. 27 1501704

    [39]

    Shang S, Wei B, Guo X B, Cao B S, Wang X, Jiang L N, Lu X X 2018 IEEE Microw. Wirel. Compon. Lett. 28 588Google Scholar

    [40]

    Lu X L, Ma P Y, Wei B, Zhao L, Xu A G, Cao B S, Wang X, Song X K 2019 IEEE Trans. Appl. Supercond. 29 1500308

    [41]

    Long Z H, Tian M G, Zhang T L, Qiao M, Wu T H, Lan Y 2020 IEEE Trans. Appl. Supercond. 30 1500204

    [42]

    Huang H B, Wu Y, Wang J, Bian Y B, Wang X, Li G Q, Zhang X Q, Li C G, Sun L, He Y S 2018 Physica C 550 78Google Scholar

    [43]

    Dai J H, Wu Y, Yuan Y F, Wang X, Wang J, Li G Q, Li C G, Sun L, He Y S 2020 IEEE Microw. Wirel. Compon. Lett. To be published

    [44]

    Zhang Q, Bian Y B, Guo J, Cui B, Wang J, Yu T, Gao L, Wang Y H, Li C G, Zhang X Q, Li H, Gao C Z, He Y S 2010 IEEE Trans. Appl. Supercond. 20 2Google Scholar

    [45]

    Heng Y, Guo X, Cao B, Wei B 2013 Electron. Lett. 49 1230Google Scholar

    [46]

    Ji L Y, Ma J, Sun J, Wang L, Li Y Q, Liu B 2012 Sci. China Inf. Sci. 55 956Google Scholar

    [47]

    Liu H W, Lei J H, Guan X H, Zhao Y L, Sun L, He Y S 2014 IEEE Trans. Appl. Supercond. 24 8Google Scholar

    [48]

    Liu H W, Ren B P, Guan X H, Wen P, Wang Y 2014 IEEE Trans. Microw. Theory Techn. 62 2931Google Scholar

    [49]

    Sekiya N, Kitada N, Kishida K, Tsuruoka T 2020 Supercond. Sci. Technol. 33 095002Google Scholar

    [50]

    Ren B P, Ma Z W, Liu H W, Guan X H, Wang X L, Wen P, Ohira M 2019 IEEE Trans. Microw. Theory Techn. 67 726Google Scholar

    [51]

    Li C G, Bian Y B, Li G Q, Wu Y, Wang J, Wang X, Zhang X Q, Xia F J, Bai D D, Sun L, Li H, He Y S 2014 IEEE Trans. Appl. Supercond. 24 1501205

    [52]

    Wang X, Wang J, Li C G, Wu Y, Zhang X Q, Li G Q, Dai J H, Yuan Y F, Xu Z, Zhang C, He Y S, Sun L 2020 IEEE Trans. Appl. Supercond. To be published

    [53]

    Wang J, Li C G, Wang X, Li N, Bian Y B, Li G Q, Wu Y, Xia F J, Bai D D, Zhang X Q, Sun L, Li H, He Y S 2014 IEEE Trans. Appl. Supercond. 24 1501104

    [54]

    Wang X, Xia F J, Li N, Wang J, Li C G, Bai D D, Zhang X Q, Bian Y B, Li G Q, Wu Y, Li H, Sun L, He Y S 2015 IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications (IMWS-AMP) Suzhou, China, July 1−3, 2015 p1

    [55]

    Li C G, Wang X, Wang J, Sun L, He Y H 2017 Supercond. Sci. Technol. 30 073001Google Scholar

    [56]

    Li C G, Zhang Q, Meng Q D, Sun L, Huang J D, Wang Y F, Zhang X Q, He A S, Li H, He Y S, Luo S 2006 Supercond. Sci. Technol. 19 398Google Scholar

    [57]

    胡来平, 张士刚, 张梅, 丁晓杰, 王生旺 2020 低温与超导 48 82

    Hu L P, Zhang S G, Zhang M, Ding X J, Wang S W 2020 Cryo. & Supercond. 48 82

    [58]

    王生旺, 王贤华, 刘洋, 何川, 丁晓杰 2018 低温物理学报 6 25Google Scholar

    Wang S W, Wang X H, Liu Y, He C, Ding X J 2018 Low Temperature Physical Letters 6 25Google Scholar

    [59]

    Wu Y, Sun L, Li C G, Zhang X Q, Zhang Q, Wang J, Bian Y B, Yu T, Cui B, Li G Q, Li H, He Y S 2013 Proceedings of the 2013 International Kharkov Symposium on Physics and Engineering of Microwaves, Millimeter and Submillimeter Waves Kharkov, Ukraine, June 23−28 2013 p46

    [60]

    Sun L, He Y S 2014 IEEE Trans. Appl. Supercond. 24 1501308

    [61]

    Liu Q S, Wang H W, Zhang Q Y, Wang H, Peng W, Wang Z 2017 Appl. Phys. Lett. 110 222604Google Scholar

    [62]

    Zhang X, Zhang G F, Ying L L, Xiong W, Han H X, Wang Y L, Rong L L, Xie X M, Wang Z 2018 Physica C 548 1

    [63]

    Cao W H, Chen H, Liang T T, Li J J, Kong X Y, Sun T B, Zhong Q, Wang X S, Wang L R, Zhong Y 2018 IEEE Trans. Appl. Supercond. 28 1602204

    [64]

    韩昊轩, 张国峰, 张雪, 梁恬恬, 应利良, 王永良, 彭炜, 王镇 2019 物理学报 68 138501Google Scholar

    Han H X, Zhang G F, Zhang X, Liang T T, Ying L L, Wang Y L, Peng W, Wang Z 2019 Acta Phys. Sin. 68 138501Google Scholar

    [65]

    Zhang X, Zhang G F, Wang Y L, Rong L L, Zhang S L, Wu J Q, Qiu L Q, Xie X M, Wang Z 2019 IEEE Trans. Appl. Supercond. 29 1600503

    [66]

    Zhang G F, Zhang X, Wang Y L, Rong L L, Xie X M, Wang Z 2019 Physica C 562 32Google Scholar

    [67]

    Liu J, Gao H, Li G, Li Z W, Ahmada K, Shan Z Y, Liu J S, Chen W 2017 Chin. Physics B 26 098501Google Scholar

    [68]

    Zhang Q Y, Wang H W, Tang X, Peng W, Wang Z 2020 IEEE Trans. Appl. Supercond. 30 1600103

    [69]

    Chen L, Wang H, Liu X Y, Wu L, Wang Z 2016 Nano Lett. 16 7726Google Scholar

    [70]

    Linghu K H, Guo Z S, Li Y L, Xu T Q, Luo W H, Huang Z G, Jin Y R, Zheng D N, Wang F R, Gan Z Z 2019 Physica C 564 1

    [71]

    Zhang Y, Dong H, Krause H J, Zhang G F, Xie X M 2020 SQUID Readout Electronics and Magnetometric Systems for Practical Applications (Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA

    [72]

    Zhang Y, Liu C, Schmelz M, Krause H J, Braginski A I, Stolz R, Xie X M, Meyer H G, Offenhäusser A, Jiang M H 2012 Supercond. Sci. Technol. 25 125007Google Scholar

    [73]

    Liu C, Zhang Y, Mück M, Zhang S L, Krause H J, Braginski A I, Zhang G F, Wang Y L, Kong X Y, Xie X M, Offenhäusser A, Jiang M H 2013 Supercond. Sci. Technol. 26 065002Google Scholar

    [74]

    Zhang G F, Zhang Y, Hong T, Wang H, Krause H J, Xie X M 2015 Physica C 518 73Google Scholar

    [75]

    Song Z W, Dai H B, Rong L L, Dong H, Wu J, Qiu L Q, Zhang G F, Wang Y L, Tao Q, Pei Y F, Zhang S L, Xie X M 2019 IEEE Trans. Appl. Supercond. 29 1600205

    [76]

    Rong L L, Bao S X, Wu J, Zhang G F, Qiu L Q, Zhang S L, Wang Y L, Dong H, Pei Y F, Xie X M 2019 IEEE Trans. Appl. Supercond. 29 1601704

    [77]

    Ji Y J, Du S Y, Xie L J, Chang K, Liu Y, Zhang Y, Xie X M, Wang Y, Lin J, Rong L L 2016 J. Appl. Geophys. 135 243Google Scholar

    [78]

    Du S Y, Zhang Y, Pei Y F, Jiang K, Rong L L, Yin C C, Ji Y J, Xie X M 2018 Geophys 83 E111Google Scholar

    [79]

    Wu Y Q, Ma B Y, Shao J Y, Ji Y J, Teng F 2020 IEEE Access 8 150478Google Scholar

    [80]

    刘向东, 刘习凯, 马东, 陈亮, 张宁 2019 导航与控制 18 7Google Scholar

    Liu X D, Liu X K, Ma D, Chen L, Zhang N 2019 Navigation and Control 18 7Google Scholar

    [81]

    刘习凯, 马东, 陈亮, 刘向东 2018 地球物理学报 61 3037Google Scholar

    Liu X K, Ma D, Chen L, Liu X D 2018 Chin. J. Geophys. 61 3037Google Scholar

    [82]

    Dong H, Wang Y L, Zhang S L, Sun Y, Xie X M 2008 Supercond. Sci. Technol. 21 115009Google Scholar

    [83]

    Huang X L, Dong H, Qiu Y, Li B, Tao Q, Zhang Y, Krause H J, Offenhäusser A, Xie X M 2018 J. Magn. Reson. 286 52Google Scholar

    [84]

    Liu C, Chang B L, Qiu L Q, Dong H, Qiu Y, Zhang Y, Krause H J, Offenhäusser A, Xie X M 2015 J. Magn. Reson. 257 8Google Scholar

    [85]

    Dong H, Qiu L Q, Shi W, Chang B L, Qiu Y, Xu L, Liu C, Zhang Y, Krause H J, Offenhäusser A, Xie X M 2013 Appl. Phys. Lett. 102 102602Google Scholar

    [86]

    Yu M M, Tao Q, Dong H, Huang T, Li Y Q, Xiao Y, Yang S W, Gao B, Ding G Q, Xie X M 2020 J. Magn. Reson. 317 106775Google Scholar

    [87]

    Liu C, Chang B L, Qiu L Q, Qiu Y, Dong H, Zhang Y, Xie X M 2015 IEEE Trans. Appl. Supercond. 25 1602804

    [88]

    Dong H, Hwang S M, Wendland M, You L X, Clarke J, Inglis B 2017 Magn. Reson. Med. 78 2342Google Scholar

    [89]

    Wang W, Ma P, Dong H, Krause H J, Zhang Y, Willbold D, Offenhäusser A, Gu Z 2016 Biosens. Bioelectron. 80 661Google Scholar

    [90]

    Li Y Q, Dong H, Tao Q, Ye C C, Yu M M, Li J P, Zhou H F, Yang S W, Ding G Q, Xie X M 2020 Biomaterials 250 120056Google Scholar

    [91]

    Jin Y R, Jia Q J, Deng H, Wang N, Jiang F Y, Tian Y, Gao M Y, Zheng D N 2015 IEEE Trans. Appl. Supercond. 25 1601805

    [92]

    Linghu K H, Guo Z S, Wu Q H, Luo W H, Nie R J, Jin Y R, Zheng D N, Wang F R, Gan Z Z 2019 IEEE Trans. Appl. Supercond. 29 1600104

    [93]

    Li H, Zhang S, Zhang C, Xie X 2016 IEEE Trans. Appl. Supercond. 26 1601805

    [94]

    Tao R, Zhang S, Huang X, Tao M, Ma J, Ma S, Zhang C, Zhang T, Tang F, Lu J, Shen C, Xie X 2019 IEEE Trans. Biomed. Eng. 66 1658Google Scholar

    [95]

    Tucker J, Feldman M 1985 Rev. Mod. Phys. 57 1055Google Scholar

    [96]

    The EHT collaboration, 2019 ApJL 875 L1-6Google Scholar

    [97]

    Li J, Takeda M, Wang Z, Shi S C, Yang J 2008 Appl. Phys. Lett. 92 222504Google Scholar

    [98]

    Shi S C, Noguchi T, Inatani J 1997 IEEE Trans. Appl. Supercond. 7 3850Google Scholar

    [99]

    Li J, Takeda M, Wang Z, Shi S C 2009 IEEE Trans. Appl. Supercond. 19 417Google Scholar

    [100]

    李婧 2008 博士学位论文 (南京: 中国科学院紫金山天文台)

    Li J 2008 Ph. D. Dissertation(Nanjing: Purple Moutain Observatory, Chinese Academy of Sciences) (in Chinese)

    [101]

    Shurakov A, Lobanov Y, Goltsman G 2016 Supercond. Sci. Technol. 29 023001Google Scholar

    [102]

    Klapwijk T M, Semenov A V 2017 IEEE Trans. THz Sci. Technol, 7 627Google Scholar

    [103]

    Gusten R, Wiesemeyer H, Neufeld D, Menten K M, Graf U U, Jacobs K, Klein B, Ricken O, Risacher C, Stutzki J 2019 Nature 568 357Google Scholar

    [104]

    史生才, 李婧, 张文, 缪巍 2015 物理学报 64 228501Google Scholar

    Shi S C, Li J, Zhang W, Miao W 2015 Acta Phys. Sin. 64 228501Google Scholar

    [105]

    Zhang W, Miao W, Zhong J Q, Shi S C, Hayton D J, Vercruyssen N, Gao J R, Goltsman G N 2014 Supencond. Sci. Technol. 27 085013Google Scholar

    [106]

    Zhou K M, Miao W, Gen Y, Delorme Y, Zhang W, Ren Y, Zhang K, Shi S C 2020 Chin. Phys. B 29 058505Google Scholar

    [107]

    Miao W, Lou Z, Xu G Y, Hu J, Li S L, Zhang W, Zhou K M, Yao Q J, Zhang K, Duan W Y, Shi S C, Colombelli R, Beere H E, Ritchie D A 2015 Optics. Express 23 4453Google Scholar

    [108]

    Miao W, Gao H, Lou Z, Hu J, Zhang W, Ren Y, Zhou K M, Shi S C, Li H, Cao J C, Delorme Y 2018 IEEE Trans. THz Sci. Technol. 8 581Google Scholar

    [109]

    Ren Y, Zhang D X, Zhou K M, Miao W, Zhang W, Shi S C, Seleznev V, Pentin I, Vakhtomin Y, Smirnov K 2019 AIP Advances 9 075307Google Scholar

    [110]

    Ren Y, Zhang D X, Wang Z, Zhou K M, Zhong J Q, Liu D, Miao W, Zhang W, Shi S C 2020 Appl. Phys. Lett. 116 131108Google Scholar

    [111]

    Andrews D H, Brucksch W F, Ziegler W T, Blanchard E R 1941 Physical Review 59 1045

    [112]

    Andrews D H, Jr. W F B, Ziegler W T, Blanchard E R 1942 Rev. Sci. Instrum. 13 281Google Scholar

    [113]

    Andrews D H, Fowler R D, Williams M C 1949 Physical Review 76 154

    [114]

    Lita A E, Rosenberg D, Nam S, Miller A J, Balzar D, Kaatz L M, Schwall R E 2005 IEEE Trans. Appl. Supercond. 15 3528Google Scholar

    [115]

    Zhang W, Zhong J Q, Miao W, Wang Z, Liu D, Yao Q J, Shi S C, Chen T J, Wang M J 2016 J. Low Temp. Phys. 184 11Google Scholar

    [116]

    Tralshawala N, Aslam S, Brekosky R P, Chen T C, Figueroa Feliciano E, Finkbeiner F M, Li M J, Mott D B, Stahle C K, Stahle C M 2000 Nucl. Instrum. Meth. A 444 188Google Scholar

    [117]

    Hilton G C, Martinis J M, Irwin K D, Bergren N F, Wollman D A, Huber M E, Deiker S, Nam S W 2001 IEEE Trans. Appl. Supercond. 11 739Google Scholar

    [118]

    Muramatsu H, Nagayoshi K, Hayashi T, Sakai K, Yamamoto R, Mitsuda K, Yamasaki N Y, Maehata K, Hara T 2016 J. Low Temp. Phys. 184 91Google Scholar

    [119]

    Deiker S W, Doriese W, Hilton G C, Irwin K D, Rippard W H, Ullom J N, Vale L R, Ruggiero S T, Williams A, Young B A 2004 Appl. Phys. Lett. 85 2137Google Scholar

    [120]

    Doriese W B, Morgan K M, Bennett D A, Denison E V, Fitzgerald C P, Fowler J W, Gard J D, Hays-Wehle J P, Hilton G C, Irwin K D, Joe Y I, Mates J A B, O’Neil G C, Reintsema C D, Robbins N O, Schmidt D R, Swetz D S, Tatsuno H, Vale L R, Ullom J N 2016 J. Low Temp. Phys. 184 389Google Scholar

    [121]

    Korte P A J d, Beyer J, Deiker S, Hilton G C, Irwin K D, MacIntosh M, Nam S W, Reintsema C D, Vale L R, Huber M E 2003 Rev. Sci. Instrum. 74 3807Google Scholar

    [122]

    Kiviranta M, Seppä H, Kuur J V D, Korte P D 2002 AIP Conference Proceedings 605 Washington DC, USA, February 2002 p295

    [123]

    Akamatsu H, Gottardi L, van der Kuur J, de Vries C, Ravensberg K, Adams J, Bandler S, Bruijn M, Chervenak J, Kilbourne C, Kiviranta M, van der Linden A J, Jackson B, Smith S 2016 Proc. SPIE 9905, Space Telescopes and Instrumentation 2016: Ultraviolet to Gamma Ray, Edinburgh, Scotland, UK, July19, 2016 p99055S-1

    [124]

    Irwin K D, Lehnert K W 2004 Appl. Phys. Lett. 85 2107Google Scholar

    [125]

    Bennett D A, Mates J A B, Gard J D, Hoover A S, Rabin M W, Reintsema C D, Schmidt D R, Vale L R, Ullom J N 2015 IEEE Trans. Appl. Supercond. 25 2101405

    [126]

    Irwin K D, Chaudhuri S, Cho H M, Dawson C, Kuenstner S, Li D, Titus C J, Young B A 2018 J. Low Temp. Phys. 193 476Google Scholar

    [127]

    Wang Z, Zhang W, Miao W, Liu D, Zhong J Q, Shi S C 2018 IEEE Trans. Appl. Supercond. 28 2100204

    [128]

    Zhang W, Miao W, Wang Z, Liu D, Zhong J Q, Guo X H, Wu F, Yao Q J, Shi S C 2017 IEEE Trans. Appl. Supercond. 27 2100606

    [129]

    Zhang W, Miao W, Wang Z, Guo X H, Liu D, Zhong J Q, Yao Q J, Shi S C 2018 J. Low Temp. Phys. 193 276Google Scholar

    [130]

    Ahmad K, Liu J, Li G, Liu J S, Chen W 2019 J. Electron. Mater. 48 799Google Scholar

    [131]

    Ahmad K, Liu J, Liu Q C, Li G, Liu J S, Chen W 2019 J. Electron. Mater. 48 925Google Scholar

    [132]

    Zhang Q Y, Liu J S, Dong W H, Wang T S, He G F, Li T F, Zhou X X, Chen W 2014 Chinese Sci. Bull. 59 2292Google Scholar

    [133]

    Gao H, Liu C Z, Li Z W, Liu Y, Li Y, Li S Y, Li H, Gao G H, Lu F J, Zhang X M 2017 Radiation Detection Technology and Methods 1 12Google Scholar

    [134]

    Li H, Li S Y, Liu Y, Li Y P, Cai Y, Li M, Zhao G B, Liu C Z, Li Z W, Xu H, Wu D, Zhang Y J, Fan Z H, Yao Y Q, Kuo C L, Lu F J, Zhang X 2019 Natl. Sci. Rev. 6 145

    [135]

    Zhang Q Y, Wang T S, Liu J S, Dong W H, He G F, Li T F, Zhou X X, Chen W 2014 Chinese Phys. B 23 118502Google Scholar

    [136]

    Zhang W, Geng Y, Wang Z, Zhong J Q, Li P Z, Miao W, Ren Y, Yao Q J, Wang J F, Shi S C 2019 IEEE Trans. Appl. Supercond. 29 2100505

    [137]

    Geng Y, Zhang W, Li P Z, Zhong J Q, Wang Z, Miao W, Ren Y, Wang J F, Yao Q J, Shi S C 2020 J. Low Temp. Phys. 199 556Google Scholar

    [138]

    Uhlig J, Doriese W B, Fowler J W, Swetz D S, Jaye C, Fischer D A, Reintsema C D, Bennett D A, Vale L R, Mandal U, O'Neil G C, Miaja-Avila L, Joe Y I, El Nahhas A, Fullagar W, Gustafsson F P, Sundström V, Kurunthu D, Hilton G C, Schmidt D R, Ullom J N 2015 J.Synchrotron Radiat. 22 766Google Scholar

    [139]

    Gottardi L, Akamatsu H, Bruijn M P, den Hartog R, den Herder J W, Jackson B, Kiviranta M, van der Kuur J, van Weers H 2016 Nucl. Instrum. Meth. A 824 622Google Scholar

    [140]

    Lee S J, Titus C J, Mori R A, Baker M L, Bennett D A, Cho H M, Doriese W B, Fowler J W, Gaffney K J, Gallo A, Gard J D, Hilton G C, Jang H, Joe Y I, Kenney C J, Knight J, Kroll T, Lee J S, Li D, Lu D, Marks R, Minitti M P, Morgan K M, Ogasawara H, O’Neil G C, Reintsema C D, Schmidt D R, Sokaras D, Ullom J N, Weng T C, Williams C, Young B A, Swetz D S, Irwin K D, Nordlund D 2019 Rev. Sci. Instrum. 90 113101Google Scholar

    [141]

    Hashimoto T, Bennett D A, Doriese W B, Durkin M S, Fowler J W, Gard J D, Hayakawa R, Hayashi T, Hilton G C, Ichinohe Y, Ishimoto S, Morgan K M, Noda H, O’Neil G C, Okada S, Reintsema C D, Schmidt D R, Suzuki S, Swetz D S, Tatsuno H, Ullom J N, Yamada S, collaboration J P E 2020 J. Low Temp. Phys. 199 1018Google Scholar

    [142]

    Cui W, Chen L B, Gao B, Guo F L, Jin H, Wang G L, Wang L, Wang J J, Wang W, Wang Z S, Wang Z, Yuan F, Zhang W 2020 J. Low Temp. Phys. 199 502Google Scholar

    [143]

    Lv Y, Huang H, You T, Ren F, Ou X, Gao B, Wang Z 2020 J. Low Temp. Phys. in press

    [144]

    Xu X L, Li J J, Wang X S, Zhong Q, Zhong Y, Cao W H, Li W, Chen J, Zhao Z W, Gao Y, Liu Z, He Q 2020 Conf. Precis. Electromagn. Meas. IEEE, Denver, USA, August 24−28 2020 p1

    [145]

    Zhong Q, Liu W P, Zhong Y, Wu H P, Li J J, Wang X S 2019 OSA Contin. 2 2227Google Scholar

    [146]

    Chen L B, Jin H, Wang J, Pan C Z, Wu X L, Cui W, Zhou Y, Wang J J 2019 IOP Conference Series: Materials Science and Engineering 502 012063Google Scholar

    [147]

    You L X 2020 Nanophotonics 9 2673Google Scholar

    [148]

    Natarajan C M, Tanner M G, Hadfield R H 2012 Supercond. Sci. Technol. 25 063001Google Scholar

    [149]

    Yang X Y, Li H, Zhang W J, You L X, Zhang L, L iu, X Y, Wang Z, Peng W, Xie X M, Jiang M H 2014 Opt. Express 22 16267Google Scholar

    [150]

    Li X, Tan J R, Zheng K M, Zhang L B, Zhang J L, He W J, Huang P W, Li H C, Zhang B, Chen Q, Ge R, Guo S Y, Huang T, Jia X Q, Zhao Q Y, Tu X C, Kang L, Chen J, Wu P H 2020 Photonics Research 8 637

    [151]

    Chi X M, Zou K, Gu C, Zichi J, Cheng Y H, Hu N, Lan X J, Chen S F, Lin Z Z, Zwiller V, Hu X L 2018 Opt. Lett. 43 5017Google Scholar

    [152]

    Chen J P, Zhang C, Liu Y, Jiang C, Zhang W, Hu X L, Guan J Y, Yu Z W, Xu H, Lin J, Li M J, Chen H, Li H, You L X, Wang Z, Wang X B, Zhang Q, Pan J W 2020 Phys. Rev. Lett. 124 070501Google Scholar

    [153]

    Li H, Chen S J, You L X, Meng W D, Wu Z B, Zhang Z P, Tang K, Zhang L, Zhang W J, Yang X Y, Liu X Y, Wang Z, Xie X M 2016 Opt. Express 24 3535Google Scholar

    [154]

    Zhu J, Chen Y J, Zhang L B, Jia X Q, Feng Z J, Wu G H, Yan X C, Zhai J Q, Wu Y, Chen Q, Zhou X Y, Wang Z Z, Zhang C, Kang L, Chen J, Wu P H 2017 Scientific Reports 7 15113

    [155]

    Xue L, Li Z L, Zhang L B, Zhai D S, Li Y Q, Zhang S, Li M, Kang L, Chen J, Wu P H, Xiong Y H 2016 Opt. Lett. 41 3848

    [156]

    Tang R F, Li Z L, Li Y Q, Pi X Y, Su X L, Li R W, Zhang H T, Zhai D S, Fu H L 2018 Opt. Lett. 43 5488

    [157]

    Zhang B, Guan Y Q, Xia L H, Dong D X, Chen Q, Xu C, Wu C, Huang H X, Zhang L B 2020 Supercond. Sci. Technol. to be published

    [158]

    Yu J, Zhang R L, Gao Y F, Sheng Z H, Gu M, Sun Q C, Liao J L, Wu T, Lin Z Y, Wu P H, Kang L, Li H, Zhang L B, Zheng W 2020 Opt. Lett. 45 3305

    [159]

    Zhong H S, Wang H, Deng Y H, Chen M C, Peng L C, Luo Y H, Qin J, Wu D, Ding X, Hu Y, Hu P, Yang X Y, Zhang W J, Li H, Li Y X, JiangX, Gan L, Yang G W, You L X, Wang Z, Li L, Liu N L, Lu C Y, Pan J W 2020 Science 370 1460Google Scholar

    [160]

    Day P K, LeDuc H G, Mazin B A, Vayonakis A, Zmuidzinas J 2003 Nature 425 817

    [161]

    Li H J, Wang Y W, Wei L F, Zhou P J, Wei Q, Cao C H, Fang Y R, Yu Y, Wu P H 2013 Chinese Sci. Bull. 58 2413Google Scholar

    [162]

    Liu Q, Xue G M, Tan X S, Yu H F, Yu Y 2017 Chinese Phys. B 26 058402

    [163]

    He Q, Wang Y W, Wei L F To be published

    [164]

    Guo W, Liu X, Wang Y, Wei Q, Wei L F, Hubmayr J, Fowler J, Ullom J, Vale L, Vissers M R, Gao J 2017 Appl. Phys. Lett. 110 212601Google Scholar

    [165]

    石晴, 林镇辉, 杨瑾屏, 李婧, 史生才 2017 微波学报 S1 266

    Shi Q, Lin Z H, Yang J P, Li J, Shi S C 2017 J. Microwaves S1 266

    [166]

    Liu X, Guo W, Wang Y, Dai M, Wei L F, Dober B, McKenney C M, Hilton G C, Hubmay J, Austermann J E, Ullom J N, Gao J, Ullom J N 2017 Appl. Phys. Lett. 111 252601Google Scholar

    [167]

    Liu X, Guo W, Wang Y, Wei L F, Mckenney C M, Dober B, Billings T, Hubmayr J, Ferreira L S, Vissers M R, Gao J 2017 J. Appl. Phys. 122 034502Google Scholar

    [168]

    Zmuidzinas J 2012 Annual Review of Condensed Matter Physics 3 169Google Scholar

    [169]

    Tonouchi M 2007 Nature Photonics 1 97Google Scholar

    [170]

    Barbara P, Cawthorne A B, Shitov S V, Lobb C J 1999 Phys. Rev. Let. 82 1963Google Scholar

    [171]

    Ozyuzer L, Koshelev A E, Kurter C, Gopalsami N, Li Q, Tachiki M, Kadowaki K, Yamamoto T, Minami H, Yamaguchi H, Tachiki T, Gray K E, Kwok W K, Welp U 2007 Science 318 1291Google Scholar

    [172]

    Kleiner R, Wang H B 2019 J. Appl. Phys. 126 171101Google Scholar

    [173]

    Gu J Q, Singh R, Han J G, Cao W, Zhang W L, Xing Q R, Tian Z 2010 Appl. Phys. Lett. 97 071102Google Scholar

    [174]

    Li C, Wu J B, Jian S L, Su R F, Zhang C H, Jiang C T, Zhou G C, Jin B B, Kang L, Xu W W, Chen J, Wu P H 2017 Appl. Phys. Lett. 111 092601Google Scholar

    [175]

    张彩虹, 吴敬波, 金飚兵 2019 中国激光 46 42Google Scholar

    Zhang C H, Wu J B, Jin B B 2019 Chin. J. Las. 46 42Google Scholar

    [176]

    Jiang S L, Li F, Jia X Q, Kang L, Wu P H 2017 Supercond. Sci. Technol. 30 044004Google Scholar

    [177]

    Yu M, Geng H F, Hua T, An D Y 2020 Supercond. Sci. Technol. 33 025001

    [178]

    Sun H C, Wieland R, Xu Z Y, Qi Z D, Lv Y Y, Huang Y, Zhang H L, Zhou X J, Li J, Wang Y L, Rudau F, Hampp J S, Koelle D, Ishida S, Eisaki H, Yoshida Y, Jin B B, Koshelets V P, Kleiner R, Wang H B, Wu P H 2018 Phys. Rev. Applied 10 024041Google Scholar

    [179]

    Hao L Y, Ji M, Yuan J, An D Y, Li M Y, Zhou X J, Huang Y, Sun H C, Zhu Q, Rudau F, Wieland R, Kinev N, Li J, Xu W W, Jin B B, Chen J, Hatano T, Koshelets V P, Koelle D, Kleiner R, Wang H B, Wu P H 2015 Phys. Rev. Applied 3 024006Google Scholar

    [180]

    Sun H C, Yang Z B, Kinev N V, Kiselev O S, Lv Y Y, Huang Y, Hao L Y, Zhou X J, Ji M, Tu X C, Zhang C H, Li J, Rudau F, Wieland R, Hampp J S, Kizilaslan O, Koelle D, Jin B B, Chen J, Kang L, Xu W W, Kleiner R, Koshelets V P, Wang H B, Wu P H 2017 Phys. Rev. Applied 8 054005Google Scholar

    [181]

    An D Y, Yuan J, Kinev N, Li M Y, Huang Y, Ji M, Zhang H, Sun Z L, Kang L, Jin B B, Chen J, Li J, Gross B, Ishii A, Hirata K, Hatano T, Koshelets V P, Koelle D, Kleiner R, Wang H B, Xu W W, Wu P H 2013 Appl. Phys. Lett. 102 092601Google Scholar

    [182]

    Li C, Zhang C H, Hu G L, Zhou G C, Jiang S L, Jiang C T, Zhu G H, Jin B B, Kang L, Xu W W, Chen J, Wu P H 2016 Appl. Phys. Lett. 109 022601Google Scholar

    [183]

    Goto E 1959 Proc. Inst. Radio Engrs. 47 1304

    [184]

    Giordmaine J A and Miller R C 1965 Phys. Rev. Lett. 14 973Google Scholar

    [185]

    Turner K L, Miller S A, Hartwell P G, MacDonald N C, Strogatz S H, and Adams S G 1998 Nature 396 149Google Scholar

    [186]

    Pedersen N F, Davidson A 1981 Appl. Phys. Lett. 39 830Google Scholar

    [187]

    Bryant P H, Movshovich R, Yurke B 1991 Phys. Rev. Lett. 66 2641Google Scholar

    [188]

    Castellanos-Beltran M A, Irwin K D, Hilton G C, Vale L R, Lehnert K W 2008 Nature Phys. 4 929Google Scholar

    [189]

    Yamamoto T, Inomata K, Watanabe M, Matsuba K, Miyazaki T, Oliver W D, Nakamura Y, Tsai J S 2008 Appl. Phys. Lett. 93 042510Google Scholar

    [190]

    Bergeal N, Schackert F, Metcalfe M, Vijay R, Manucharyan V E, Frunzio L, Prober D E, Schoelkopf R J, Girvin S M, Devoret M H 2010 Nature 465 64

    [191]

    Hatridge M., Vijay R., Slichter D. H., Clarke J, Siddiqi I 2011 Phys. Rev. B 83 134501Google Scholar

    [192]

    Zhou X, Schmitt V, Bertet P, Vion D, Wustmann W, Shumeiko V, Esteve D 2014 Phys. Rev. B 89 214517Google Scholar

    [193]

    Mutus J Y, White T C, Barends R, Chen Y, Chen Z, Chiaro B, Dunsworth A, Jeffrey E, Kelly J, Megrant A, Neill C, O'Malley P J J, Roushan P, Sank D, Vainsencher A, Wenner J, Sundqvist K M, Cleland A N Martinis J M 2014 Appl. Phys. Lett. 104 263513Google Scholar

    [194]

    Roy T, Kundu S, Chand M, Vadiraj A M, Ranadive A, Nehra N, Patankar M P, Aumentado J, Clerk A A, Vijay R 2015 Appl. Phys. Lett. 107 262601Google Scholar

    [195]

    Frattini N E, Sivak V V, Lingenfelter A, Shankar S, Devoret M H 2018 Phys. Rev. Applied 10 054020Google Scholar

    [196]

    Eom B, Day P K, LeDuc H, Zmuidzinas J 2012 Nature Physics 8 623Google Scholar

    [197]

    Vijay R, Slichter D H, Siddiqi I 2011 Phys. Rev. Lett. 106 110502Google Scholar

    [198]

    Lin Z R, Inomata K, Oliver W D, Koshino K, Nakamura Y, Tsai J S, Yamamoto T 2013 Appl. Phys. Lett. 103 132602Google Scholar

    [199]

    Vijay R, Macklin C, Slichter D H, Weber S J, Murch K W, Naik R, Korotkov A N, Siddiqi I 2012 Nature 490 77Google Scholar

    [200]

    Song C, Xu K, Liu W X, Yang C P, Zheng S B, Deng H, Xie Q W, Huang K Q, Guo Q J, Zhang L B, Zhang P F, Xu D, Zheng D N, Zhu X B, Wang H, Chen Y A, Lu C Y, Han S Y, Pan J W 2017 Phys. Rev. Lett. 119 180511Google Scholar

    [201]

    Macklin C, O'Brien K, Hover D, Schwartz M E, Bolkhovsky V, Zhang X, Oliver W D, Siddiqi I 2015 Science 350 307Google Scholar

    [202]

    Yuan X 2016 Phys. Rev. Lett. 117 010502Google Scholar

    [203]

    Yang R, Deng H 2020 IEEE Trans. Appl. Supercond. 30 1100306

    [204]

    Huang K Q, Guo Q J, Song C, Zheng Y, Deng H, Wu Y, Jin Y, Zhu X B, Zheng D N 2017 Chin. Phys. B 26 094203Google Scholar

    [205]

    Nakagawa H, Kurosawa I, Aoyagi M, Kosaka S, Hamazaki Y, Okada Y, Takada S 1991 IEEE Trans. Appl. Supercond. 1 37

    [206]

    Likharev K K, Mukhanov O A, Semenov V K 1985 SQUID'85 -Superconducting Quantum Interference Devices and their Applications Berlin, Germany, June 25−28, 1985 p1103

    [207]

    Likharev K K, Semenov V K 1991 IEEE Trans. Appl. Supercond. 1 3

    [208]

    Chen W, Rylyakov A V, Patel V, Lukens J E, Likharev K K 1999 IEEE Trans. Appl. Supercond. 9 3212Google Scholar

    [209]

    Ishida K, Tanaka M, Nagaoka I, Ono T, Kawakami S, Tanimoto T, Fujimaki A, Inoue K 2020 IEEE Symposium on VLSI Circuits Honolulu HI, USA, June 16−19, 2020 p1

    [210]

    Horst Rogalla, Peter H Kes 2012 100 Years of Superconductivity (London: Taylor & Francis) pp440−458

    [211]

    http://www.hypres.com[2020-10-1]

    [212]

    Bunyk P I, Hoskinson E M, Johnson M W, Tolkacheva E, Altomare F, Berkley A J, Harris R, Hilton J P, Lanting T, Przybysz A J, Whittaker J 2014 IEEE Trans. Appl. Supercond. 24 1700110

    [213]

    McDermott R, Vavilov M G, Plourde B L T, Wilhelm F K, Liebermann P J, Mukhanov O A, Ohki T A 2018 Quantum Sci. and Technol. 3 024004Google Scholar

    [214]

    Yoshikawa N 2019 IEICE Trans. Electron E102-C 217Google Scholar

    [215]

    Terai H, Miki S, Yamashita T, Makise K, Wang Z 2010 Appl. Phys. Lett. 97 112510Google Scholar

    [216]

    Ren J, Semenov V K 2011 IEEE Trans. Appl. Supercond. 21 780Google Scholar

    [217]

    Takeuchi N, Yamae T, Ayala C L, Suzuki H, Yoshikawa N 2019 Appl. Phys. Lett. 114 042602Google Scholar

    [218]

    https://irds.ieee.org [2020-10-1]

    [219]

    Akaike H, Tanaka M, Takagi K, Kataeva I, Kasagi R, Fujimaki A, Takagi K, Igarashi M, Park H, Yamanashi Y, Yoshikawa N, Fujiwara K, Nagasawa S, Hidaka M, Takagi N 2009 Physica C 469 1670Google Scholar

    [220]

    曹文会, 李劲劲, 钟青, 郭小玮, 贺青, 迟宗涛 2012 物理学报 61 170304Google Scholar

    Cao W H, Li J J, Zhong Q, Guo X W, He Q, Chi Z T 2012 Acta Phys. Sin. 61 170304Google Scholar

    [221]

    Cao W H, Li J J, Zhong Y, He Q 2015 Chinese Phys. B 24 127402

    [222]

    Cao W H, Li J J, Wang L R, Zhong Y, Zhong Q 2020 Chinese Phys. B 29 067404Google Scholar

    [223]

    Wang L R, Li J J, Wang X S, Zhong Y, Tong J, Cao W H, Zhong Q 2021 IEEE Trans. Appl. Supercond. 31 1500104

    [224]

    Cao W H, Li J J, Zhong Y, Gao Y, Li H H, Wang Z Y, He Q 2016 Chinese Phys. B 25 057401Google Scholar

    [225]

    王兰若, 钟源, 李劲劲, 屈继峰, 钟青, 曹文会, 王雪深, 周志强, 付凯, 石勇 2018 物理学报 67 108501Google Scholar

    Wang L R, Zhong Y, Li J J, Qu J F, Zhong Q, Cao W H, Wang X S, Zhou Z Q, Fu K, Shi Y 2018 Acta Phys. Sin. 67 108501Google Scholar

    [226]

    Zhou K L, Qu J F, Benz S P 2015 IEEE Trans. Appl. Supercond. 25 1400806

    [227]

    周琨荔, 韩琪娜, 赵建亭, 鲁云峰, 施杨, 杨雁, 屈继峰 2020 计量学报 41 1Google Scholar

    Zhou K L, Han Q N, Zhao J T, Lu Y F, Shi Y, Yang Y, Qu J F 2020 Acta. Metrol. Sin. 41 1Google Scholar

    [228]

    Qu J F, Benz S P, Pollarolo A, Rogalla H, Tew W L, White D R, Zhou K L 2015 Metrologia 52 S242Google Scholar

    [229]

    Qu J F, Benz S P, Coakley K, Rogalla H, Tew W L, White D R, Zhou K L, Zhou Z Y, 2017 Metrologia 54 549Google Scholar

  • [1] 陈志刚, 张伟君, 张兴雨, 王钰泽, 熊佳敏, 洪逸裕, 原蒲升, 吴玲, 王镇, 尤立星. 基于运算放大器的超导纳米线单光子探测器低温直流耦合读出电路. 物理学报, 2024, 73(13): 138501. doi: 10.7498/aps.73.20240398
    [2] 石中誉, 代旭城, 王浩宇, 麦展彰, 欧阳鹏辉, 王翼卓, 柴亚强, 韦联福, 刘旭明, 潘长钊, 郭伟杰, 舒诗博, 王轶文. 超导动态电感探测器的噪声谱分析. 物理学报, 2024, 73(3): 038501. doi: 10.7498/aps.73.20231504
    [3] 郗玲玲, 杨晓燕, 张天柱, 肖游, 尤立星, 李浩. 高综合性能超导纳米线单光子探测器. 物理学报, 2023, 72(11): 118501. doi: 10.7498/aps.72.20230326
    [4] 张笑, 吕嘉煜, 管焰秋, 李慧, 王锡明, 张蜡宝, 王昊, 涂学凑, 康琳, 贾小氢, 赵清源, 陈健, 吴培亨. 超大面积超导纳米线阵列单光子探测器设计与制备. 物理学报, 2022, 71(24): 248501. doi: 10.7498/aps.71.20221569
    [5] 吴曼瑾, 姚柏志, 石粒力, 陈本纹, 吴敬波, 张彩虹, 金飚兵, 陈健, 吴培亨. 用于超导太赫兹探测器的低温标准黑体辐射源. 物理学报, 2022, 71(16): 168702. doi: 10.7498/aps.71.20220103
    [6] 高冠华, 徐郁, 廖国福, 卢方军. 超导转变边沿探测器梁架尺寸估算方法. 物理学报, 2022, 71(15): 158502. doi: 10.7498/aps.71.20220335
    [7] 马璐瑶, 张兴雨, 舒志运, 肖游, 张天柱, 李浩, 尤立星. 自差分交流偏置超导纳米线单光子探测器. 物理学报, 2022, 71(15): 158501. doi: 10.7498/aps.71.20220373
    [8] 陈奇, 戴越, 李飞燕, 张彪, 李昊辰, 谭静柔, 汪潇涵, 何广龙, 费越, 王昊, 张蜡宝, 康琳, 陈健, 吴培亨. 5—10 µm波段超导单光子探测器设计与研制. 物理学报, 2022, 71(24): 248502. doi: 10.7498/aps.71.20221594
    [9] 徐达, 钟青, 曹文会, 王雪深, 王仕建, 李劲劲, 刘建设, 陈炜. 二阶梯度交叉耦合超导量子干涉仪电流传感器研制. 物理学报, 2021, 70(12): 128501. doi: 10.7498/aps.70.20201816
    [10] 张文英, 胡鹏, 肖游, 李浩, 尤立星. 高效、偏振不敏感超导纳米线单光子探测器. 物理学报, 2021, 70(18): 188501. doi: 10.7498/aps.70.20210486
    [11] 张彪, 陈奇, 管焰秋, 靳飞飞, 王昊, 张蜡宝, 涂学凑, 赵清源, 贾小氢, 康琳, 陈健, 吴培亨. 超导纳米线单光子探测器光子响应机制研究进展. 物理学报, 2021, 70(19): 198501. doi: 10.7498/aps.70.20210652
    [12] 黄典, 戴万霖, 王轶文, 贺青, 韦联福. 超导动态电感单光子探测器的噪声处理. 物理学报, 2021, 70(14): 140703. doi: 10.7498/aps.70.20210185
    [13] 张森, 陶旭, 冯志军, 吴淦华, 薛莉, 闫夏超, 张蜡宝, 贾小氢, 王治中, 孙俊, 董光焰, 康琳, 吴培亨. 超导单光子探测器暗计数对激光测距距离的影响. 物理学报, 2016, 65(18): 188501. doi: 10.7498/aps.65.188501
    [14] 史生才, 李婧, 张文, 缪巍. 超高灵敏度太赫兹超导探测器. 物理学报, 2015, 64(22): 228501. doi: 10.7498/aps.64.228501
    [15] 张青雅, 董文慧, 何根芳, 李铁夫, 刘建设, 陈炜. 超导转变边沿单光子探测器原理与研究进展. 物理学报, 2014, 63(20): 200303. doi: 10.7498/aps.63.200303
    [16] 张蜡宝, 康琳, 陈健, 赵清源, 郏涛, 许伟伟, 曹春海, 金飚兵, 吴培亨. 超导纳米线单光子探测器. 物理学报, 2011, 60(3): 038501. doi: 10.7498/aps.60.038501
    [17] 李宏成, 王瑞兰, 魏 斌, 郑东宁. 高温超导膜微波表面电阻Rs对微波滤波器插入损耗的贡献. 物理学报, 2005, 54(1): 359-363. doi: 10.7498/aps.54.359
    [18] 李宏成, 王瑞兰, 魏斌. 介质谐振器法测量高温超导薄膜微波表面电阻的误差分析. 物理学报, 2001, 50(5): 938-941. doi: 10.7498/aps.50.938
    [19] 杜胜望, 戴远东, 王世光. 用射频超导量子干涉器件测量高温超导体序参量的位相. 物理学报, 1999, 48(12): 2364-2368. doi: 10.7498/aps.48.2364
    [20] 王德宁, 陈红, 王渭源. 多层衬底、高Tc超导薄膜热敏红外探测器的热导研究. 物理学报, 1992, 41(10): 1679-1985. doi: 10.7498/aps.41.1679
计量
  • 文章访问数:  25555
  • PDF下载量:  1243
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-14
  • 修回日期:  2020-12-23
  • 上网日期:  2020-12-29
  • 刊出日期:  2021-01-05

/

返回文章
返回