搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

三维数值模拟射频热等离子体的物理场分布

朱海龙 李雪迎 童洪辉

引用本文:
Citation:

三维数值模拟射频热等离子体的物理场分布

朱海龙, 李雪迎, 童洪辉

Three-dimensional numerical simulation of physical field distribution of radio frequency thermal plasma

Zhu Hai-Long, Li Xue-Ying, Tong Hong-Hui
PDF
HTML
导出引用
  • 射频热等离子体的产生包含了丰富、复杂的物理场分布, 正确认识这些物理场分布对射频热等离子体在工业领域的应用有指导作用. 本文建立了三维射频热等离子体的热-电-磁-流动强耦合数学物理模型, 考虑了感应线圈的真实螺线管结构, 开发了用于计算三维射频热等离子体复杂电磁场的C++程序代码, 计算了射频热等离子体重要物理场, 如温度场、流场和电磁场的分布情况. 结果表明, 射频热等离子体各物理场分布具有三维非对称效应, 感应线圈结构对温度场和流场的空间分布有重要影响. 研究结果对优化、控制射频热等离子体的实际应用过程有重要的指导意义.
    Radio frequency (RF) thermal plasma involves abundant and complex physics. The understanding of the physical field distributions of the RF thermal plasma is helpful to its applications in industrial field. In this paper, an electro-thermal-magnetic-flow strong coupling mathematical and physical model of three-dimensional RF thermal plasma is established, the actual solenoid structure of the induction coil is considered, and a C++ code is developed for calculating the complex electromagnetic field in a customized version of the computational fluid dynamics commercial code FLUENT. The physical fields of RF thermal plasma, such as temperature field, flow field and electromagnetic field are studied. The electrical conductivity, thermal conductivity and viscosity distribution of the plasma are investigated. The results show that the physical field distribution of RF thermal plasma has an important non-axisymmetric three-dimensional effect due to the actual shape of the non-axisymmetric induction coil structure. The plasma discharge presents an annular distribution with a certain deflection angle. The distribution of plasma flow field shows a non-axisymmetric electromagnetic pump effect which is different from that of the two-dimensional model. The results have great guiding significance for optimizing and controlling the RF thermal plasma in various application areas.
      通信作者: 朱海龙, zhuhl@sxu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11875039, 11535003)资助的课题
      Corresponding author: Zhu Hai-Long, zhuhl@sxu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11875039, 11535003)
    [1]

    Murphy A B, Uhrlandt D 2018 Plasma Sources Sci. Technol. 27 063001Google Scholar

    [2]

    Mostaghimi J, Boulos M I 2015 Plasma Chem. Plasma Process. 35 421Google Scholar

    [3]

    Yu C F, Zhou X, Wang D Z, Linh N Van, Liu W 2018 Plasma Sci. Technol. 20 14019Google Scholar

    [4]

    Zhu H L, Tong H H, Cheng C M, Liu N 2017 Int. J. Refract. Met. Hard Mater. 66 76Google Scholar

    [5]

    Li J L, Hu R J, Qu H, Su Y, Wang N, Su H Q, Gu X J 2019 Appl. Catal. B 249 63Google Scholar

    [6]

    Oh J W, Na H, Cho Y S, Choi H 2018 Nanoscale Res. Lett. 13 1Google Scholar

    [7]

    Hou H D, Veilleux J, Gitzhofer F, Wang Q S 2020 Surf. Coat. Technol. 393 125803Google Scholar

    [8]

    Kulacki F A 2017 Handbook of Thermal Science and Engineering (Berlin: Springer) pp2923−3005

    [9]

    Altenberend J, Chichignoud G, Delannoy Y 2012 Plasma Sources Sci. Technol. 21 045011Google Scholar

    [10]

    Razzak M A, Kondo K, Uesugi Y, Ohno N, Takamura S 2004 J. Appl. Phys. 95 427Google Scholar

    [11]

    朱海龙 2014 博士学位论文(成都: 核工业西南物理研究院)

    Zhu H L 2014 Ph. D. Dissertation (Chengdu: Southwestern Institute of Physics) (in Chinese)

    [12]

    Xue S W, Proulx P, Boulos M I 2001 J. Phys. D: Appl. Phys. 34 1897Google Scholar

    [13]

    Bernardi D, Colombo V, Ghedini E, Mentrelli A 2003 Eur. Phys. J. D 27 55Google Scholar

    [14]

    Watanabe T, Atsuchi N, Shigeta M 2007 Thin Solid Films 515 4209Google Scholar

    [15]

    Tanaka Y 2004 J. Phys. D: Appl. Phys. 37 1190Google Scholar

    [16]

    Bernardi D, Colombo V, Ghedini E, Mentrelli A 2003 Eur. Phys. J. D 25 271Google Scholar

    [17]

    Bernardi D, Colombo V, Ghedini E, Mentrelli A 2003 Eur. Phys. J. D 25 279Google Scholar

    [18]

    Miller R C, Ayen R J 1969 J. Appl. Chem. 40 5260

    [19]

    ANSYS FLUENT 15 Documentation, Theory Guide 2013 (Canonsburg, PA: ANSYS. Inc.)

    [20]

    Boulos M I, Fauchais P, Pfender E 1994 Thermal Plasmas Fundamentals and Applications (Vol. 1) (New York: Plenum Press) p162

    [21]

    Boulos M I 1985 Pure Appl. Chem. 57 1321Google Scholar

    [22]

    Chen L J, Chen W B, Liu C D, Tong H H, Zhao Q 2019 Plasma Sci. Technol. 21 074006Google Scholar

    [23]

    Punjabi S B, Das T K, Joshi N K, Mangalvedekar H A, Lande B K, Das A K 2010 J. Phys. Conf. Ser. 208 012048Google Scholar

    [24]

    Bernardi D, Colombo V, Ghedini E, Mentrelli A 2005 Pure Appl. Chem. 77 359Google Scholar

    [25]

    陈熙 2009 热等离子体传热与流动 (北京: 科学出版社) 第28页

    Chen X 2009 Heat Transfer and Flow of Thermal Plasma (Beijing: Science Press) p28 (in Chinese)

    [26]

    Schreuders C 2006 Ph. D. Dissertation (Limoges: University of limoges)

    [27]

    Raizer Y P 1987 Gas Discharge Physics (Berlin: Springer-Verlag) p14

    [28]

    Boulos M I 1991 IEEE Trans. Plasma Sci. 19 1078Google Scholar

    [29]

    Kong P C, Lau Y C 1990 Pure Appl. Chem. 62 1809Google Scholar

    [30]

    Mauer G, Vaβen R, Stöver D, Kirner S, Marqués J L, Zimmermann S, Forster G, Schein J 2011 J. Therm. Spray Technol. 20 3Google Scholar

    [31]

    Yu M H, Yamada K, Takahashi Y, Liu K, Zhao T 2016 Phys. Plasmas 23 123523Google Scholar

  • 图 1  等离子体炬及腔室 (a)几何结构示意图; (b)计算域和网格结构

    Fig. 1.  Plasma torch system: (a) Geometric structure; (b) computational domain and grid.

    图 2  射频电源电路框图

    Fig. 2.  Diagram of radio frequency power supply circuit.

    图 3  磁矢势Ax分布图 (a)实部; (b)虚部

    Fig. 3.  Distribution of magnetic vector potential Ax: (a) Real part; (b) imaginary part.

    图 4  磁矢势Ay分布图 (a)实部; (b)虚部

    Fig. 4.  Distribution of magnetic vector potential Ay: (a) Real part; (b) imaginary part.

    图 5  磁矢势Az分布图 (a)实部; (b)虚部

    Fig. 5.  Distribution of magnetic vector potential Az: (a) Real part; (b) imaginary part.

    图 6  YZ平面上的磁感应强度B分布 (a)实部; (b)虚部

    Fig. 6.  Distribution of magnetic flux density on YZ plane: (a) Real part; (b) imaginary part.

    图 7  XY平面上的电场E分布, z = 180 mm

    Fig. 7.  Electric field distribution on the XY plane, z = 180 mm.

    图 8  温度场场分布图 (a) YZ平面; (b) XZ平面; (c) XY平面, z = 180 mm

    Fig. 8.  Temperature field distribution: (a) YZ plane; (b) XZ plane; (c) XY plane, z = 180 mm.

    图 9  (a)焦耳热分布; (b) XY 平面上的焦耳热, z = 180 mm; (c)焓值分布

    Fig. 9.  (a) Joule heat distribution; (b) Joule heat distribution on the XY plane, z = 180 mm; (c) enthalpy distribution.

    图 10  (a)电导率分布; (b)热导率分布; (c)黏性系数分布

    Fig. 10.  (a) Electrical conductivity distribution; (b) thermal conductivity distribution; (c) viscosity distribution.

    图 11  (a)速度场Vz; (b)流场; (c)二维流场[4]

    Fig. 11.  (a) Velocity field Vz; (b) flow field; (c) two dimensional flow field[4].

    图 12  射频热等离子体流场放大图

    Fig. 12.  Magnified view of radio frequency thermal plasma flow field.

    图 13  洛伦兹力Fx矢量分布图

    Fig. 13.  Lorentz force distribution(Fx).

    表 1  等离子体炬及腔室几何尺寸表

    Table 1.  Dimensions of the plasma system sketched in Fig. 1

    参数名称数值
    陶瓷约束管内半径/外半径/长度/mm25/29.5/252
    送气管内半径/外半径/长度/mm15.5/19/120
    送料枪内半径/外半径/长度/mm1.5/4.5/186
    线圈半径/轴向节距/mm37/15
    线圈螺线管半径/mm5
    线圈匝数5
    下载: 导出CSV
  • [1]

    Murphy A B, Uhrlandt D 2018 Plasma Sources Sci. Technol. 27 063001Google Scholar

    [2]

    Mostaghimi J, Boulos M I 2015 Plasma Chem. Plasma Process. 35 421Google Scholar

    [3]

    Yu C F, Zhou X, Wang D Z, Linh N Van, Liu W 2018 Plasma Sci. Technol. 20 14019Google Scholar

    [4]

    Zhu H L, Tong H H, Cheng C M, Liu N 2017 Int. J. Refract. Met. Hard Mater. 66 76Google Scholar

    [5]

    Li J L, Hu R J, Qu H, Su Y, Wang N, Su H Q, Gu X J 2019 Appl. Catal. B 249 63Google Scholar

    [6]

    Oh J W, Na H, Cho Y S, Choi H 2018 Nanoscale Res. Lett. 13 1Google Scholar

    [7]

    Hou H D, Veilleux J, Gitzhofer F, Wang Q S 2020 Surf. Coat. Technol. 393 125803Google Scholar

    [8]

    Kulacki F A 2017 Handbook of Thermal Science and Engineering (Berlin: Springer) pp2923−3005

    [9]

    Altenberend J, Chichignoud G, Delannoy Y 2012 Plasma Sources Sci. Technol. 21 045011Google Scholar

    [10]

    Razzak M A, Kondo K, Uesugi Y, Ohno N, Takamura S 2004 J. Appl. Phys. 95 427Google Scholar

    [11]

    朱海龙 2014 博士学位论文(成都: 核工业西南物理研究院)

    Zhu H L 2014 Ph. D. Dissertation (Chengdu: Southwestern Institute of Physics) (in Chinese)

    [12]

    Xue S W, Proulx P, Boulos M I 2001 J. Phys. D: Appl. Phys. 34 1897Google Scholar

    [13]

    Bernardi D, Colombo V, Ghedini E, Mentrelli A 2003 Eur. Phys. J. D 27 55Google Scholar

    [14]

    Watanabe T, Atsuchi N, Shigeta M 2007 Thin Solid Films 515 4209Google Scholar

    [15]

    Tanaka Y 2004 J. Phys. D: Appl. Phys. 37 1190Google Scholar

    [16]

    Bernardi D, Colombo V, Ghedini E, Mentrelli A 2003 Eur. Phys. J. D 25 271Google Scholar

    [17]

    Bernardi D, Colombo V, Ghedini E, Mentrelli A 2003 Eur. Phys. J. D 25 279Google Scholar

    [18]

    Miller R C, Ayen R J 1969 J. Appl. Chem. 40 5260

    [19]

    ANSYS FLUENT 15 Documentation, Theory Guide 2013 (Canonsburg, PA: ANSYS. Inc.)

    [20]

    Boulos M I, Fauchais P, Pfender E 1994 Thermal Plasmas Fundamentals and Applications (Vol. 1) (New York: Plenum Press) p162

    [21]

    Boulos M I 1985 Pure Appl. Chem. 57 1321Google Scholar

    [22]

    Chen L J, Chen W B, Liu C D, Tong H H, Zhao Q 2019 Plasma Sci. Technol. 21 074006Google Scholar

    [23]

    Punjabi S B, Das T K, Joshi N K, Mangalvedekar H A, Lande B K, Das A K 2010 J. Phys. Conf. Ser. 208 012048Google Scholar

    [24]

    Bernardi D, Colombo V, Ghedini E, Mentrelli A 2005 Pure Appl. Chem. 77 359Google Scholar

    [25]

    陈熙 2009 热等离子体传热与流动 (北京: 科学出版社) 第28页

    Chen X 2009 Heat Transfer and Flow of Thermal Plasma (Beijing: Science Press) p28 (in Chinese)

    [26]

    Schreuders C 2006 Ph. D. Dissertation (Limoges: University of limoges)

    [27]

    Raizer Y P 1987 Gas Discharge Physics (Berlin: Springer-Verlag) p14

    [28]

    Boulos M I 1991 IEEE Trans. Plasma Sci. 19 1078Google Scholar

    [29]

    Kong P C, Lau Y C 1990 Pure Appl. Chem. 62 1809Google Scholar

    [30]

    Mauer G, Vaβen R, Stöver D, Kirner S, Marqués J L, Zimmermann S, Forster G, Schein J 2011 J. Therm. Spray Technol. 20 3Google Scholar

    [31]

    Yu M H, Yamada K, Takahashi Y, Liu K, Zhao T 2016 Phys. Plasmas 23 123523Google Scholar

  • [1] 吕程烨, 陈英炜, 谢牧廷, 李雪阳, 于宏宇, 钟阳, 向红军. 外加电磁场下周期性体系的第一性原理计算方法. 物理学报, 2023, 72(23): 237102. doi: 10.7498/aps.72.20231313
    [2] 殷佳鹏, 刘圣广. 用单发电子束探测激光等离子体内电磁场演化实验研究. 物理学报, 2022, 71(1): 012901. doi: 10.7498/aps.71.20211374
    [3] 王艳红, 王磊, 武京治. 神经微管振动产生纳米尺度内电磁场作用. 物理学报, 2021, 70(15): 158703. doi: 10.7498/aps.70.20210421
    [4] 崔岁寒, 吴忠振, 肖舒, 陈磊, 李体军, 刘亮亮, 傅劲裕, 田修波, 朱剑豪, 谭文长. 外扩型电磁场控制筒形阴极内等离子体放电输运特性的仿真研究. 物理学报, 2019, 68(19): 195204. doi: 10.7498/aps.68.20190583
    [5] 夏舸, 杨立, 寇蔚, 杜永成. 基于变换热力学的三维任意形状热斗篷设计. 物理学报, 2017, 66(10): 104401. doi: 10.7498/aps.66.104401
    [6] 吴文华, 翟薇, 胡海豹, 魏炳波. 液体材料超声处理过程中声场和流场的分布规律研究. 物理学报, 2017, 66(19): 194303. doi: 10.7498/aps.66.194303
    [7] 喻晓, 沈杰, 钟昊玟, 张洁, 张高龙, 张小富, 颜莎, 乐小云. 强脉冲电子束辐照材料表面形貌演化的模拟. 物理学报, 2015, 64(21): 216102. doi: 10.7498/aps.64.216102
    [8] 王平, 尹玉真, 沈胜强. 三维有序排列多孔介质对流换热的数值研究. 物理学报, 2014, 63(21): 214401. doi: 10.7498/aps.63.214401
    [9] 汪宇, 李晓东, 余量, 严建华. 滑动弧低温等离子体放电特性的数值模拟研究. 物理学报, 2011, 60(3): 035203. doi: 10.7498/aps.60.035203
    [10] 支蓉, 龚志强, 王启光, 熊开国. 时间滞后对全球温度场关联性的影响. 物理学报, 2011, 60(8): 089202. doi: 10.7498/aps.60.089202
    [11] 冯爱霞, 龚志强, 黄琰, 王启光. 全球温度场信息熵的时空特征分析. 物理学报, 2011, 60(9): 099204. doi: 10.7498/aps.60.099204
    [12] 刘冬, 严建华, 王飞, 黄群星, 池涌, 岑可法. 火焰烟黑三维温度场和浓度场同时重建实验研究. 物理学报, 2011, 60(6): 060701. doi: 10.7498/aps.60.060701
    [13] 韩奇钢, 马红安, 肖宏宇, 李瑞, 张聪, 李战厂, 田宇, 贾晓鹏. 基于有限元法分析宝石级金刚石的合成腔体温度场. 物理学报, 2010, 59(3): 1923-1927. doi: 10.7498/aps.59.1923
    [14] 黄金哲, 王宏, 常彦琴, 沈涛, Andreev Y. M., Shaiduko A. V.. BBO晶体倍频中的温度场与光场耦合模拟. 物理学报, 2010, 59(9): 6243-6249. doi: 10.7498/aps.59.6243
    [15] 吴迪, 宫野, 雷明凯, 刘金远, 王晓钢, 刘悦, 马腾才. 高功率离子束辐照膜基双层靶温度场的数值研究. 物理学报, 2010, 59(7): 4826-4830. doi: 10.7498/aps.59.4826
    [16] 张科营, 郭红霞, 罗尹虹, 何宝平, 姚志斌, 张凤祁, 王园明. 静态随机存储器单粒子翻转效应三维数值模拟. 物理学报, 2009, 58(12): 8651-8656. doi: 10.7498/aps.58.8651
    [17] 朱昌盛, 冯力, 王智平, 肖荣振. 三维枝晶生长的相场法数值模拟研究. 物理学报, 2009, 58(11): 8055-8061. doi: 10.7498/aps.58.8055
    [18] 刘明强, 李斌成. 光学薄膜样品的温度场和形变场分析. 物理学报, 2008, 57(6): 3402-3409. doi: 10.7498/aps.57.3402
    [19] 张 勤, 班春燕, 崔建忠, 巴启先, 路贵民, 张北江. CREM法半连铸Al合金过程中电磁场对溶质元素固溶的影响机理. 物理学报, 2003, 52(10): 2642-2648. doi: 10.7498/aps.52.2642
    [20] 吴奇学. 有旋电子在电磁场及二维谐振子场中运动的双波描述. 物理学报, 2000, 49(11): 2118-2122. doi: 10.7498/aps.49.2118
计量
  • 文章访问数:  5851
  • PDF下载量:  151
  • 被引次数: 0
出版历程
  • 收稿日期:  2020-12-15
  • 修回日期:  2021-03-19
  • 上网日期:  2021-06-07
  • 刊出日期:  2021-08-05

/

返回文章
返回