搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

铷原子簇自发磁矩的实验观测及理论分析

邸淑红 张阳 杨会静 伞星原 刘会媛 张素恒 李繁麟 太军君 周春丽

引用本文:
Citation:

铷原子簇自发磁矩的实验观测及理论分析

邸淑红, 张阳, 杨会静, 伞星原, 刘会媛, 张素恒, 李繁麟, 太军君, 周春丽

Experimental observation and theoretical analysis of spontaneous magnetic moment of Rb atom clusters

Di Shu-Hong, Zhang Yang, Yang Hui-Jing, San Xing-Yuan, Liu Hui-Yuan, Zhang Su-Heng, Li Fan-Lin, Tai Jun-Jun, Zhou Chun-Li
PDF
HTML
导出引用
  • 在碱金属原子簇磁性的研究中, 存在自由原子簇含有的原子个数及其磁矩难以准确确定的问题, 本文采用光磁共振光谱检测手段, 对工作温度约为328 K的饱和铷蒸汽样品中单原子分子87Rb1和14种簇粒子 (87Rb)${}_ {n'}$ ($ {n'} $ = 2, 3, ···, 15)的磁矩进行了深入研究. 实验结果表明: 在同一外磁场下, 14种簇粒子(87Rb)${}_ {n'} $的共振频率$f_ {n'}$87Rb1的共振频率f *之间存在$f_ {n'} = f^*/{n'}$的数值关系, 并且各簇粒子的磁矩值与振幅值均随$ n'  $的大小和奇、偶性呈现不同性质的变化规律. 运用分子轨态理论通过87Rbn = 87Rbn – 1 + 87Rb联合原子簇构造模式, 给出14种簇粒子87Rbn (n = 2, 3, ···, 15)的基态和最低激发态的电子组态和分子态项型, 分析了各分子态的稳定性和发生可见塞曼效应的可能性. 进一步基于双原子分子磁矩公式计算, 发现当n = ${n'} $87Rbn的磁矩值与(87Rb)${}_ {n'} $的磁矩值严格吻合(平均相对误差仅为0.6765%), 证实了(87Rb)${}_ {n'} $87Rbn的对应关系.
    For the magnetism of alkali metal clusters, it is difficult to determine the number of atoms and the magnetic moment of isolated atoms cluster. In this paper, we investigate the magnetic moment of single atomic molecule 87Rb1 and 14 kinds of cluster particles (87Rb)${}_{n'} $ ($n' $= 2, 3, 4, ···, 15) in a saturated rubidium vapor sample at about 328 K, by using optical magnetic resonance spectroscopy. The experimental results show that there is a relationship f${}_{n'} $ = f */$n' $ between the resonant frequencies f${}_{n'} $ of 14 kinds of cluster particles (87Rb)${}_{n'} $ and the resonant frequencies f * of 87Rb1. The magnetic moment and their resonance amplitudes show two different relationships with the ${n'} $ odevity. When the particles have an odd number of 5s electrons, they must have spontaneous magnetic moment, and the value of magnetic moment increases with n and decreases inverse proportionally with the combined angular momentum F of the cluster particles. The amplitude obtained from resonance spectrum complies with the variation law of magnetic moment value. On the other hand, for the cluster particles with n being even number, the magnetic moment value becomes 0 and the amplitude is also 0 in the most cases, except for the cluster particles 87Rb2 with n = 2 i.e. two 5s electrons, which is caused by the Jahn-Teller effect of the linear molecules, and the magnetic moment value is consistent with the calculation results of the odd number particles. When n > 2, the coupling effect between the magnetic moments of the Rb cluster shows a long-range ordered antiferromagnetic property with the increase of the number of 5s valence electrons n. The electron configuration and molecular state of the ground state and the lowest excited state of 14 kinds of 2—15 atoms cluster particles 87Rbn, as well as the stability of each molecular state and the possibility of visible Zeeman effect are obtained by using the molecular orbital-state theory analysis and constructing the 87Rbn–1 + 87Rbn atomic cluster model. Furthermore, based on the magnetic moment of diatomic molecules ruler, it is found that when n = ${n'} $, the magnetic moment of (87Rb)${}_{n'} $ and 87Rbn are in strict consistency (the average relative error is only 0.6765%), confirming the corresponding relationship between (87Rb)${}_{n'} $ and 87Rbn. This research will be of great value in the magnetic research of cluster particles.
      通信作者: 邸淑红, 792423642@qq.com ; 张阳, 185540891@qq.com ; 杨会静, yanghj619@126.com
      Corresponding author: Di Shu-Hong, 792423642@qq.com ; Zhang Yang, 185540891@qq.com ; Yang Hui-Jing, yanghj619@126.com
    [1]

    Kodaira T, Nozue Y, Ohwashi S, Togashi N, Terasaki O 1994 Stud. Surf. Sci. Catal. 84 837

    [2]

    Kubo R 1962 J. Phys. Soc. Jpn. 1 7975

    [3]

    Rao B K, Khanna S N, Jena P 1987 Phys. Rev. B 36 953Google Scholar

    [4]

    Khanna S N, Rao B K, Jena P, Martin J L1987 Physics and Chemistry of Small Clusters (New York : New York and London Published in Cooperation with NATO Scientific Affairs Division Plenum Press) p435

    [5]

    Nozue Y, Kodaira T, Goto T 1992 Phys. Rev. Lett. 68 3789Google Scholar

    [6]

    Nozue Y, Kodaira T, Ohwashi S, Goto T, Terasaki O 1993 Phys. Rev. B 48 12253Google Scholar

    [7]

    Kodaira T, Ikemoto Y, Nozue Y 2000 Mol. Cryst. Liq. Cryst. 341 461Google Scholar

    [8]

    Kodaira T, IkemotoY, NozueY 1999 Eur. Phys. J. D 9 505Google Scholar

    [9]

    Nakano T, Ikemoto Y, NozueY 2000 Physica B 281-282 688Google Scholar

    [10]

    Nozue Y, Kodaira T, Ohwashi S, Togashi N, Terasaki O 1996 Surf. Rev. Lett. 3 701Google Scholar

    [11]

    Nakano T, Ikemoto Y, NozueY 2001 J. Magn. Magn. Maters. 226-230 238Google Scholar

    [12]

    Duan T C, Nakano T, Nozue Y 2007 J. Magn. Magn. Maters. 310 1013Google Scholar

    [13]

    吴思成, 王祖铨 1999 近代物理实验 (北京: 北京大学出版社) 第348页

    Wu S C, Wang Z Q 1999 Modern Physics Experiment (Beijing: BeijingUniversity Press) p348 (in Chinese)

    [14]

    格哈德 H (王鼎昌 译) 1983 分子光谱与分子结构 (第1卷) (北京: 科学出版社) 第4页

    Gerhard H (translated by Wang D C) 1983 Molecules Spectroscopy and Molecules Structures (Vol. 1) (Beijing: Science Press) p4 (in Chinese)

    [15]

    王义遒, 王庆吉, 傅济时, 董太乾 1986 量子频标原理 (北京: 科学出版社) 第366页

    Wang Y Q, Wang Q J, Fu J S, Dong T Q 1986 Physics of Quantum Frequency Standards (Beijing: Science Press) p366 (in Chinese)

    [16]

    徐元植, 姚加 2017 电子磁共振波谱学 (北京: 清华大学出版社) 第136页

    Xu Y Z, Yao J 2017 Electron Magnetic Resonance Pectroscopy (Beijing: Qinghua University Press) p136 (in Chinese)

    [17]

    周公度, 叶宪曾 2012 化学元素综论 (北京: 科学出版社) 第270页

    Zhou G D, Ye X Z 2012 Chemical Elements Survey (Beijing: Science Press) p270 (in Chinese)

    [18]

    鲍林L (卢嘉锡等 译) 1981 化学键的本质 (上海: 上海科学技术出版社) 第 330页

    Pauling L (translated by Lu J X) 1981 The Nature of the Chemical Bond (ShangHai: Science and Technology Press) p330(in Chinese)

    [19]

    苏长荣, 李家明 2002 中国科学A辑: 数学 32 103

    Su C R, Li J M 2002 Sci. China Mater. 32 103

    [20]

    周公度, 段连运 2011 结构化学基础 (北京: 北京大学出版社) 第216页

    ZhouG D, Duan L Y 2011 Fundamentals of Structural Chemical (Beijing: Beijing University Press) p216 (in Chinese)

    [21]

    关洪 2000 量子力学基础 (北京: 高等教育出版社) 第168页

    Guan H 2000 Basic Quantum Mechanics (Beijing: Higher Education Press) p168 (in Chinese)

    [22]

    孙汉文 2002 原子光谱分析 (北京: 高等教育出版社) 第172页

    Sun H W 2002 Atomic Spectral Analysis (Beijing: Higher Education Press) p172 (in Chinese)

    [23]

    Jahn H A, Teller E 1937 Proc. Roy. Soc. A 161 220

    [24]

    Jahn H A 1938 Proc. Roy. Soc. A 164 117

  • 图 1  实验测量的${n'} $ = 1—15的铷簇粒子共振光谱振幅及形态示意图

    Fig. 1.  Schematic illustration of the resonance spectral amplitudes and shape of the 1−15 kinds of Rb cluster particles derived from experiments.

    图 2  (a), (b)铷簇颗粒的TEM图片; (c), (d)铷元素分布图

    Fig. 2.  (a), (b) TEM images of the Rb cluster particles; (c), (d) the distribution of rubidium by EDS mappings.

    图 3  实验测得的 (87Rb)${}_{n'} $的9种簇粒子的共振频率$\bar f$与磁场H0的关系曲线(${n'} $ = 1, 2, 3, 5, 7, 9, 11, 13, 15)

    Fig. 3.  Magnetic field strength H0 dependence of resonance frequency $\bar f$ for the 9 kinds of Rb cluster particles (87Rb)${}_{n'} $ (${n'} $ = 1, 2, 3, 5, 7, 9, 11, 13, 15).

    表 1  实验获得的(87Rb)${}_{n'} $各粒子的平均${\bar g_{n'}}$, $\bar \mu {}_{n'}$, ${\bar A_{n'}}$

    Table 1.  The ${\bar g_{n'}}$, $\bar \mu {}_{n'}$, ${\bar A_{n'}}$ of the 15 kinds of cluster particles (87Rb)${}_{n'} $.

    ${n'} $为奇数粒子${n'} $${\bar g_{n'}}$$\bar \mu {}_{n'}$/μB${\bar A_{n'}}$/mV${n'} $为偶数粒子${n'} $${\bar g_{n'}}$$\bar \mu {}_{n'}$/μB${\bar A_{n'}}$/mV
    87Rb110.4943370.4943371574.50(87Rb)2′20.2469840.246984105.75
    (87Rb)3′30.1645980.164598883.07(87Rb)4′4000
    (87Rb)5′50.0987890.098789383.47(87Rb)6′6000
    (87Rb)7′70.0706350.070635188.70(87Rb)8′8000
    (87Rb)9′90.0549530.05495384.92(87Rb)10′10000
    (87Rb)11′110.0449750.04497548.62(87Rb)12′12000
    (87Rb)13′130.0380600.03806031.55(87Rb)14′14000
    (87Rb)15′150.0329780.03297812.63
    下载: 导出CSV

    表 2  15种原子簇分子87Rbn的基态和最低激发态的电子组态和分子态项型表

    Table 2.  Electron configuration and molecular state of the ground state and the lowest excited state of 15 kinds of cluster particles 87Rbn.

    团簇分子, 参考分子基态电子组态和分子态及$ {\lambda }_{\text{合}}$和S最低激发电子组态及其$ {\lambda }_{\text{合}}$和S (Hund(a)
    情形跃迁规则$\Delta \lambda =0, \pm 1$, $g\;\, \leftrightarrow u$,
    $ \Delta n = 0, \;\; \pm 1, ~\Delta S = 0$
    基态X与最低激发态A
    稳定性比较${P_{\rm{a}}} - {P_{\rm{b}}}$
    87Rb1$ {\rm{KLMN}}_{\rm{spd}}(\sigma {}_{\rm{g}}\rm{5}\rm{s})$
    ${}^2{\Sigma _{\rm{u} } },$${\lambda }_{\text{合} }=0,$$S = 1/2$
    $ {\rm{KLMN}}_{\rm{spd}}({\text{π}}{}_{\rm{u}}{4}{\rm{d}})$
    ${}^2{\Pi _{\rm{u} } },$${\lambda }_{\text{合} }=1,$$S = 1/2$
    X: ${P_{\rm{a} } } - {P_{\rm{b} } } = 1/2$
    A: ${P_{\rm{a} } } - {P_{\rm{b} } } = 1/2$
    87Rb2
    85Rb2[14]
    ${({\rm{\sigma } }{}_{\rm{g} }5{\rm{s} })^2},$ ${}^1{{\Sigma } }_{\rm{g} }^ +,$ ${\lambda }_{\text{合} }=0,$$S = {{0}}$或
    [${\rm{(\sigma } }{}_{\rm{g} }{\rm{5s} })({ {\rm{\sigma } }_{\rm{u} } }{\rm{5 s)} } ,$ ${}^3{ {\Sigma } }_{\rm{u} }^{ + },$${\lambda }_{\text{合} }=0 ,$$S = {{1}}$]
    ${\rm{(\sigma }}{}_{\rm{g}}{\rm{5 s}})({{\text{π}}_{\rm{u}}}{\rm{4 d)}},$ ${}^1{{\Pi}_{\rm{u}}},$$ {\lambda }_{\text{合}}=1,$$S = {{0}}$或
    [${\rm{(\sigma } }{}_{\rm{u} }{\rm{5s} })({ {\text{π} }_{\rm{u} } }{\rm{4 d)} },$${}^3{{\Pi}_{\rm{g}}},$${\lambda }_{\text{合} }=1,$$S = {{1}}$]
    X: ${P_{\rm{a}}} - {P_{\rm{b}}} = 1 - 0 = 1$
    A: ${P_{\rm{a}}} - {P_{\rm{b}}} = 1 - 0 = 1$
    [X: ${P_{\rm{a} } } - {P_{\rm{b} } } = 1/2 - 1/2 = { {0} }$
    A: ${P_{\rm{a} } } - {P_{\rm{b} } } = 1/2 - 1/2 = { {0} }$]
    87Rb3${({\rm{\sigma } }{}_{\rm{g} }{\rm{5 s} })^{ {2} } }({ {\rm{\sigma } }_{\rm{u} } }{\rm{5 s)} } ,$
    ${}^2{{\Sigma } }_{\rm{u} }^ +,$${\lambda }_{\text{合} }=0,$$S = 1/2$
    ${\rm{(\sigma } }{}_{\rm{g} }{\rm{5 s)(} }{ {\rm{\sigma } }_{\rm{u} } }{\rm{5 s)(} }{ {\text{π} }_{\rm{u} } }{\rm{4 d)} },$
    ${}^2{ {\Pi}_{\rm{g} } },$${\lambda }_{\text{合} }=1,$$S = 1/2$
    X: ${P_{\rm{a} } } - {P_{\rm{b} } } = 1 - 1/2 = 1/2$
    A: ${P_{\rm{a} } } - {P_{\rm{b} } } = 1 - 1/2 = 1/2$
    87Rb4${({\rm{\sigma } }{}_{\rm{g} }{\rm{5 s)} }^{ {2} } }{({ {\rm{\sigma } }_{\rm{u} } }{\rm{5 s)} }^{ {2} } },$
    ${}^1{{\Sigma } }_{\rm{g} }^ +,$${\lambda }_{\text{合} }=0,$$S = {{0}}$
    ${\rm{(\sigma } }{}_{\rm{g} }{\rm{5 s)(} }{ {\rm{\sigma } }_{\rm{u} } }{\rm{5 s} }{ {\rm{)} }^{ {2} } }{\rm{(\pi } }{}_{\rm{u} }{\rm{4 d)} },$
    ${}^1{ {\Pi}_{\rm{u} } },$${\lambda }_{\text{合} }=1,$$S = {{0}}$
    X: ${P_{\rm{a}}} - {P_{\rm{b}}} = 1 - 1 = 0$
    A: ${P_{\rm{a}}} - {P_{\rm{b}}} = 1 - 1 = 0$
    87Rb5${ {\rm{(\sigma } }{}_{\rm{g} }{\rm{5 s)} }^2}{({ {\rm{\sigma } }_{\rm{u} } }{\rm{5 s)} }^2}({ {\rm{\sigma } }_{\rm{g} } }{\rm{4 d)} } ,$
    ${}^2{{\Sigma } }_{\rm{g} }^ + ,$${\lambda }_{\text{合} }=0,$$S = 1/2$
    ${ {\rm{(\sigma } }{}_{\rm{g} }{\rm{5 s)} }^2}{({ {\rm{\sigma } }_{\rm{u} } }{\rm{5 s)} }^2}{({ {\text{π} }_{\rm{u} } }{\rm{4 d)} }^1},$
    ${}^2{ {\Pi}_{\rm{u} } },$${\lambda }_{\text{合} }=1,$$S = 1/2$
    X: ${P_{\rm{a} } } - {P_{\rm{b} } } = 1\frac{1}{2} - 1 = 1/2$
    A: ${P_{\rm{a} } } - {P_{\rm{b} } } = 1\frac{1}{2} - 1 = 1/2$
    87Rb6${ {\rm{(\sigma } }{}_{\rm{g} }{\rm{5 s)} }^2}{({ {\rm{\sigma } }_{\rm{u} } }{\rm{5 s)} }^2}{({ {\rm{\sigma } }_{\rm{g} } }{\rm{4 d)} }^2},$
    ${}^1{{\Sigma } }_{\rm{g} }^ +,$${\lambda }_{\text{合} }=0,$$S = {{0}}$
    ${ {\rm{(\sigma } }{}_{\rm{g} }{\rm{5 s)} }^2}{({ {\rm{\sigma } }_{\rm{u} } }{\rm{5 s)} }^2}({ {\rm{\sigma } }_{\rm{g} } }{\rm{4 d)(} }{ {\text{π} }_{\rm{u} } }{\rm{4 d)} },$
    ${}^1{ {\Pi}_{\rm{u} } } ,$${\lambda }_{\text{合} }=1,$$S = {{0}}$
    X: ${P_{\rm{a}}} - {P_{\rm{b}}} = 2 - 1 = 1$
    A: ${P_{\rm{a}}} - {P_{\rm{b}}} = 2 - 1 = 1$
    87Rb7${ {\rm{(\sigma } }{}_{\rm{g} }{\rm{5 s)} }^2}{({ {\rm{\sigma } }_{\rm{u} } }{\rm{5 s)} }^2}{({ {\rm{\sigma } }_{\rm{g} } }{\rm{4 d)} }^2}({ {\text{π} }_{\rm{u} } }{\rm{4 d)} },$
    ${}^2{ {\Pi}_{\rm{u} } },$${\lambda }_{\text{合} }=1,$$S = 1/2$
    ${({\rm{\sigma } }{}_{\rm{g} }{\rm{5 s} })^2}{({ {\rm{\sigma } }_{\rm{u} } }{\rm{5 s)} }^2}{({ {\rm{\sigma } }_{\rm{g} } }{\rm{4 d)} }^1}{({ {\text{π} }_{\rm{u} } }{\rm{4 d)} }^2} ,$
    ${}^2{ {\Sigma } }_{\rm{g} }^ +,$${\lambda }_{\text{合} }=0,$$S = 1/2$; ${}^2{ { {\Delta } }_{\rm{g} } },$ ${\lambda }_{\text{合} }=2, S =1/2$
    X: ${P_{\rm{a} } } - {P_{\rm{b} } } = 2\frac{1}{2} - 1 = 1\frac{1}{2}$
    A: ${P_{\rm{a} } } - {P_{\rm{b} } } = 2\frac{1}{2} - 1 = 1\frac{1}{2}$
    87Rb8${({\rm{\sigma } }{}_{\rm{g} }{\rm{5 s} })^2}{({ {\rm{\sigma } }_{\rm{u} } }{\rm{5 s)} }^2}{({ {\rm{\sigma } }_{\rm{g} } }{\rm{4 d)} }^2}{({ {\text{π} }_{\rm{u} } }{\rm{4 d)} }^2},$
    ${}^1{{\Sigma } }_{\rm{g} }^ +,$${\lambda }_{\text{合} }=0,$$S = {{0}}$
    ${ {\rm{(\sigma } }{}_{\rm{g} }{\rm{5 s} })^2}{({ {\rm{\sigma } }_{\rm{u} } }{\rm{5 s)} }^2}{({ {\rm{\sigma } }_{\rm{g} } }{\rm{4 d)} }^1}{({ {\text{π} }_{\rm{u} } }{\rm{4 d)} }^3},$
    ${}^1{ {\Pi}_{\rm{u} } },$${\lambda }_{\text{合} }=1,$$S = {{0}}$
    X: ${P_{\rm{a}}} - {P_{\rm{b}}} = 3 - 1 = 2$
    A: ${P_{\rm{a}}} - {P_{\rm{b}}} = 3 - 1 = 2$
    87Rb9${ {\rm{(\sigma } }{}_{\rm{g} }{\rm{5 s} })^2}{({ {\rm{\sigma } }_{\rm{u} } }{\rm{5 s)} }^2}{({ {\rm{\sigma } }_{\rm{g} } }{\rm{4 d)} }^2}{({ {\text{π} }_{\rm{u} } }{\rm{4 d)} }^3},$
    ${}^2{ {\Pi}_{\rm{u} } } ,$${\lambda }_{\text{合} }=1,$$S = 1/2$
    ${ {\rm{(\sigma } }{}_{\rm{g} }{\rm{5 s} })^2}{({ {\rm{\sigma } }_{\rm{u} } }{\rm{5 s)} }^2}{({ {\rm{\sigma } }_{\rm{g} } }{\rm{4 d)} }^1}{({ {\text{π} }_{\rm{u} } }{\rm{4 d)} }^4},$
    ${}^2{{\Sigma } }_{\rm{g} }^ + ,$${\lambda }_{\text{合} }=0,$$S = 1/2$; ${}^2{ { {\Delta } }_{\rm{g} } },$ ${\lambda }_{\text{合} }=2, S = 1/2$
    X: ${P_{\rm{a} } } - {P_{\rm{b} } } = 3\frac{1}{2} - 1 = 2\frac{1}{2}$
    A: ${P_{\rm{a} } } - {P_{\rm{b} } } = 3\frac{1}{2} - 1 = 2\frac{1}{2}$
    87Rb10${({\rm{\sigma } }{}_{\rm{g} }{\rm{5 s} })^2}{({ {\rm{\sigma } }_{\rm{u} } }{\rm{5 s)} }^2}{({ {\rm{\sigma } }_{\rm{g} } }{\rm{4 d)} }^2}{({ {\text{π} }_{\rm{u} } }{\rm{4 d)} }^4},$
    ${}^1{{\Sigma } }_{\rm{g} }^ +,$${\lambda }_{\text{合} }=0,$$S = {{0}}$
    ${ {\rm{(\sigma } }{}_{\rm{g} }{\rm{5 s} })^2}{({ {\rm{\sigma } }_{\rm{u} } }{\rm{5 s)} }^1}{({ {\rm{\sigma } }_{\rm{g} } }{\rm{4 d)} }^2}{({ {\text{π} }_{\rm{u} } }{\rm{4 d)} }^4}{({ {\text{π} }_{\rm{g} } }{\rm{4 d)} }^1},$
    ${}^1{ {\Pi}_{\rm{u} } },$${\lambda }_{\text{合} }=1,$$S = {{0}}$
    X: ${P_{\rm{a}}} - {P_{\rm{b}}} = 4 - 1 = 3$
    A: ${P_{\rm{a}}} - {P_{\rm{b}}} = {\rm{4 - 1}} = {\rm{3}}$
    87Rb11${ {\rm{(\sigma } }{}_{\rm{g} }{\rm{5 s} })^2}{({ {\rm{\sigma } }_{\rm{u} } }{\rm{5 s)} }^2}{({ {\rm{\sigma } }_{\rm{g} } }{\rm{4 d)} }^2}{({ {\text{π} }_{\rm{u} } }{\rm{4 d)} }^4}{({ {\text{π} }_{\rm{g} } }{\rm{4 d)} }^1},$
    ${}^2{ {\Pi}_{\rm{g} } },$${\lambda }_{\text{合} }=1,$$S = 1/2$
    ${ {\rm{(\sigma } }{}_{\rm{g} }{\rm{5 s} })^2}{({ {\rm{\sigma } }_{\rm{u} } }{\rm{5 s)} }^1}{({ {\rm{\sigma } }_{\rm{g} } }{\rm{4 d)} }^2}{({ {\text{π} }_{\rm{u} } }{\rm{4 d)} }^4}{({ {\text{π} }_{\rm{g} } }{\rm{4 d)} }^2},$
    ${}^2{{\Sigma } }_{\rm{u} }^ + ,$${\lambda }_{\text{合} }=0,$$S = 1/2$; ${}^2{ { {\Delta } }_{\rm{g} } },$${\lambda }_{\text{合} }=2,$ $S = 1/2$
    X: ${P_{\rm{a} } } - {P_{\rm{b} } } = 4 - 1\frac{1}{2} = 2\frac{1}{2}$
    A: ${P_{\rm{a} } } - {P_{\rm{b} } } = 4 - 1\frac{1}{2} = 2\frac{1}{2}$
    87Rb12${ {\rm{(\sigma } }{}_{\rm{g} }{\rm{5 s} })^2}{({ {\rm{\sigma } }_{\rm{u} } }{\rm{5 s)} }^2}{({ {\rm{\sigma } }_{\rm{g} } }{\rm{4 d)} }^2}{({ {\text{π} }_{\rm{u} } }{\rm{4 d)} }^4}{({ {\text{π} }_{\rm{g} } }{\rm{4 d)} }^2} ,$
    ${}^1{{\Sigma } }_{\rm{g} }^ +,$${\lambda }_{\text{合} }=0,$$S = {{0}}$
    ${ {\rm{(\sigma } }{}_{\rm{g} }{\rm{5 s} })^2}{({ {\rm{\sigma } }_{\rm{u} } }{\rm{5 s)} }^1}{({ {\rm{\sigma } }_{\rm{g} } }{\rm{4 d)} }^2}{({ {\text{π} }_{\rm{u} } }{\rm{4 d)} }^4}{({ {\text{π} }_{\rm{g} } }{\rm{4 d)} }^3},$
    ${}^1{ {\Pi}_{\rm{u} } },$${\lambda }_{\text{合} }=1,$$S = {{0}}$
    X: ${P_{\rm{a}}} - {P_{\rm{b}}} = 4 - 2 = 2$
    A: ${P_{\rm{a}}} - {P_{\rm{b}}} = {\rm{4 - 2}} = {{2}}$
    87Rb13${ {\rm{(\sigma } }{}_{\rm{g} }{\rm{5 s} })^2}{({ {\rm{\sigma } }_{\rm{u} } }{\rm{5 s)} }^2}{({ {\rm{\sigma } }_{\rm{g} } }{\rm{4 d)} }^2}{({ {\text{π} }_{\rm{u} } }{\rm{4 d)} }^4}{({ {\text{π} }_{\rm{g} } }{\rm{4 d)} }^3},$
    ${}^2{ {\Pi}_{\rm{g} } },$${\lambda }_{\text{合} }=1,$$S = 1/2$
    ${ {\rm{(\sigma } }{}_{\rm{g} }{\rm{5 s} })^2}{({ {\rm{\sigma } }_{\rm{u} } }{\rm{5 s)} }^1}{({ {\rm{\sigma } }_{\rm{g} } }{\rm{4 d)} }^2}{({ {\text{π} }_{\rm{u} } }{\rm{4 d)} }^4}{({ {\text{π} }_{\rm{g} } }{\rm{4 d)} }^4},$
    ${}^2{ {\Pi}_{\rm{u} } } ,$${\lambda }_{\text{合} }=1,$$S = 1/2$
    X: ${P_{\rm{a} } } - {P_{\rm{b} } } = 4 - 2\frac{1}{2} = 1\frac{1}{2}$
    A: ${P_{\rm{a} } } - {P_{\rm{b} } } = 4 - 2\frac{1}{2} = 1\frac{1}{2}$
    87Rb14${ {\rm{(\sigma } }{}_{\rm{g} }{\rm{5 s} })^2}{({ {\rm{\sigma } }_{\rm{u} } }{\rm{5 s)} }^2}{({ {\rm{\sigma } }_{\rm{g} } }{\rm{4 d)} }^2}{({ {\text{π} }_{\rm{u} } }{\rm{4 d)} }^4}{({ {\text{π} }_{\rm{g} } }{\rm{4 d)} }^4},$
    ${}^1{{\Sigma } }_{\rm{g} }^ +,$${\lambda }_{\text{合} }=0,$$S = {{0}}$
    ${ {\rm{(\sigma } }{}_{\rm{g} }{\rm{5 s} })^2}{({ {\rm{\sigma } }_{\rm{u} } }{\rm{5 s)} }^2}{({ {\rm{\sigma } }_{\rm{g} } }{\rm{4 d)} }^2}{({ {\text{π} }_{\rm{u} } }{\rm{4 d)} }^4}{({ {\text{π} }_{\rm{g} } }{\rm{4 d)} }^3} ({ {\rm{\sigma } }_{\rm{u} } }{\rm{4 d)} },$
    ${}^1{ {\Pi}_{\rm{u} } },$${\lambda }_{\text{合} }=1,$$S = {{0}}$
    X: ${P_{\rm{a}}} - {P_{\rm{b}}} = 4 - 3 = 1$
    A: ${P_{\rm{a}}} - {P_{\rm{b}}} = 4 - 3 = 1$
    87Rb15${({\rm{\sigma } }{}_{\rm{g} }{\rm{5 s)} }^2}{({ {\rm{\sigma } }_{\rm{u} } }{\rm{5 s)} }^2}{({ {\rm{\sigma } }_{\rm{g} } }{\rm{4 d)} }^2}{({ {\text{π} }_{\rm{u} } }{\rm{4 d)} }^4}{({ {\text{π} }_{\rm{g} } }{\rm{4 d)} }^4}({ {\rm{\sigma } }_{\rm{u} } }{\rm{4 d)} },$
    ${}^2{{\Sigma } }_{\rm{u} }^ +,$${\lambda }_{\text{合} }=0,$$S = 1/2$
    ${({\rm{\sigma } }{}_{\rm{g} }{\rm{5 s} })^2}{({ {\rm{\sigma } }_{\rm{u} } }{\rm{5 s)} }^2}{({ {\rm{\sigma } }_{\rm{g} } }{\rm{4 d)} }^2}{({ {\text{π} }_{\rm{u} } }{\rm{4 d)} }^4}{({ {\text{π} }_{\rm{g} } }{\rm{4 d)} }^3}{({ {\rm{\sigma } }_{\rm{u} } }{\rm{4 d)} }^2},$${}^2{ {\Pi}_{\rm{g} } },$${\lambda }_{\text{合} }=1,$$S = 1/2$X: ${P_{\rm{a} } } - {P_{\rm{b} } } = 4-3\frac{1}{2} = \frac{1}{2}$
    A: ${P_{\rm{a} } } - {P_{\rm{b} } } = 4-3\frac{1}{2} = \frac{1}{2}$
    注: 表中电子组态仅87Rb1的基态和激发态标出了闭壳层KLMNspd, 其他粒子没有重复标出闭壳层KLMNspd.
    下载: 导出CSV

    表 3  87Rbn簇的磁距${\bar \mu _n}$和朗德因子${\bar g_{{n}}}$的理论计算结果

    Table 3.  Theoretical calculation results of $\bar \mu {}_n$ and ${\bar g_n}$ of Rb clusters87Rbn.

    n为奇数
    的簇分子
    n为奇数的
    分子项
    5s价电子
    个数
    $\bar \mu {}_n$/μB${\bar g_n}$n为偶数
    的簇分子
    n为偶数的
    分子项
    5s价电
    子个数
    $\bar \mu {}_n$/μB${\bar g_n}$
    87Rb1${}^2{\Pi _{\rm{u}}}$1$1/2$$1/2$87Rb2${}^2{\Pi _{\rm{g}}}$2$1/4$$1/4$
    87Rb3${}^2{\Pi _{\rm{g}}}$3$1/6$$1/6$87Rb4${}^2{\Pi _{\rm{u}}}$400
    87Rb5${}^2{\Pi _{\rm{u}}}$5$1/10$$1/10$87Rb6${}^2{\Pi _{\rm{u}}}$600
    87Rb7${}^2{\Pi _{\rm{u}}}$7$1/14$$1/14$87Rb8${}^1{\Pi _{\rm{u}}}$800
    87Rb9${}^2{\Pi _{\rm{u}}}$9$1/18$$1/18$87Rb10${}^2{\Pi _{\rm{u}}}$1000
    87Rb11${}^2{\Pi _{\rm{g}}}$11$1/22$$1/22$87Rb12${}^2{\Pi _{\rm{u}}}$1200
    87Rb13${}^2{\Pi _{\rm{g}}}$13$1/26$$1/26$87Rb14${}^2{\Pi _{\rm{u}}}$1400
    87Rb15${}^2{\Pi _{\rm{g}}}$15$1/30$$1/30$
    下载: 导出CSV

    表 4  87Rbn与 (87Rb)${}_{n'} $的平均磁矩和振幅值的对比

    Table 4.  Comparison of average magnetic moment and amplitude of 87Rbn and (87Rb)${}_{n'} $

    团簇
    87Rbn
    n$\bar \mu {}_n$/μB团簇
    (87Rb)${}_{n'} $
    $n'$$\bar \mu {}_{n'}$/μB磁矩的相对误差%${\bar A_{n'} }$/mV${\bar A_{n'}}$与${\bar A_n}$
    比较
    87Rb11$1/2$87Rb110.4943371.13261574.50一致
    87Rb22$1/4$(87Rb)2′20.2469841.2063105.75线性分子简并态
    87Rb33$1/6$(87Rb)3′30.1645981.2411883.07一致
    87Rb440(87Rb)4′40000
    87Rb55$1/10$(87Rb)5′50.0987891.2110383.47一致
    87Rb660(87Rb)6′60000
    87Rb77$1/14$(87Rb)7′70.0706351.1042188.70一致
    87Rb880(87Rb)8′80000
    87Rb99$1/18$(87Rb)9′90.0549531.084384.92一致
    87Rb10100(87Rb)10′100000
    87Rb1111$1/22$(87Rb)11′110.0449751.055648.62一致
    87Rb12120(87Rb)12′120000
    87Rb1313$1/26$(87Rb)13′130.0380601.046731.55一致
    87Rb14140(87Rb)14′140000
    87Rb1515$1/30$(87Rb)15′150.0329781.065812.63一致
    15种簇粒子(87Rb)${}_{n'} $与87Rbn的磁矩相对误差均值为: 0.6765%
    9种磁矩不为0的簇粒子(87Rb)${}_{n'} $与87Rbn的磁矩相对误差均值为: 1.1275%
    下载: 导出CSV
  • [1]

    Kodaira T, Nozue Y, Ohwashi S, Togashi N, Terasaki O 1994 Stud. Surf. Sci. Catal. 84 837

    [2]

    Kubo R 1962 J. Phys. Soc. Jpn. 1 7975

    [3]

    Rao B K, Khanna S N, Jena P 1987 Phys. Rev. B 36 953Google Scholar

    [4]

    Khanna S N, Rao B K, Jena P, Martin J L1987 Physics and Chemistry of Small Clusters (New York : New York and London Published in Cooperation with NATO Scientific Affairs Division Plenum Press) p435

    [5]

    Nozue Y, Kodaira T, Goto T 1992 Phys. Rev. Lett. 68 3789Google Scholar

    [6]

    Nozue Y, Kodaira T, Ohwashi S, Goto T, Terasaki O 1993 Phys. Rev. B 48 12253Google Scholar

    [7]

    Kodaira T, Ikemoto Y, Nozue Y 2000 Mol. Cryst. Liq. Cryst. 341 461Google Scholar

    [8]

    Kodaira T, IkemotoY, NozueY 1999 Eur. Phys. J. D 9 505Google Scholar

    [9]

    Nakano T, Ikemoto Y, NozueY 2000 Physica B 281-282 688Google Scholar

    [10]

    Nozue Y, Kodaira T, Ohwashi S, Togashi N, Terasaki O 1996 Surf. Rev. Lett. 3 701Google Scholar

    [11]

    Nakano T, Ikemoto Y, NozueY 2001 J. Magn. Magn. Maters. 226-230 238Google Scholar

    [12]

    Duan T C, Nakano T, Nozue Y 2007 J. Magn. Magn. Maters. 310 1013Google Scholar

    [13]

    吴思成, 王祖铨 1999 近代物理实验 (北京: 北京大学出版社) 第348页

    Wu S C, Wang Z Q 1999 Modern Physics Experiment (Beijing: BeijingUniversity Press) p348 (in Chinese)

    [14]

    格哈德 H (王鼎昌 译) 1983 分子光谱与分子结构 (第1卷) (北京: 科学出版社) 第4页

    Gerhard H (translated by Wang D C) 1983 Molecules Spectroscopy and Molecules Structures (Vol. 1) (Beijing: Science Press) p4 (in Chinese)

    [15]

    王义遒, 王庆吉, 傅济时, 董太乾 1986 量子频标原理 (北京: 科学出版社) 第366页

    Wang Y Q, Wang Q J, Fu J S, Dong T Q 1986 Physics of Quantum Frequency Standards (Beijing: Science Press) p366 (in Chinese)

    [16]

    徐元植, 姚加 2017 电子磁共振波谱学 (北京: 清华大学出版社) 第136页

    Xu Y Z, Yao J 2017 Electron Magnetic Resonance Pectroscopy (Beijing: Qinghua University Press) p136 (in Chinese)

    [17]

    周公度, 叶宪曾 2012 化学元素综论 (北京: 科学出版社) 第270页

    Zhou G D, Ye X Z 2012 Chemical Elements Survey (Beijing: Science Press) p270 (in Chinese)

    [18]

    鲍林L (卢嘉锡等 译) 1981 化学键的本质 (上海: 上海科学技术出版社) 第 330页

    Pauling L (translated by Lu J X) 1981 The Nature of the Chemical Bond (ShangHai: Science and Technology Press) p330(in Chinese)

    [19]

    苏长荣, 李家明 2002 中国科学A辑: 数学 32 103

    Su C R, Li J M 2002 Sci. China Mater. 32 103

    [20]

    周公度, 段连运 2011 结构化学基础 (北京: 北京大学出版社) 第216页

    ZhouG D, Duan L Y 2011 Fundamentals of Structural Chemical (Beijing: Beijing University Press) p216 (in Chinese)

    [21]

    关洪 2000 量子力学基础 (北京: 高等教育出版社) 第168页

    Guan H 2000 Basic Quantum Mechanics (Beijing: Higher Education Press) p168 (in Chinese)

    [22]

    孙汉文 2002 原子光谱分析 (北京: 高等教育出版社) 第172页

    Sun H W 2002 Atomic Spectral Analysis (Beijing: Higher Education Press) p172 (in Chinese)

    [23]

    Jahn H A, Teller E 1937 Proc. Roy. Soc. A 161 220

    [24]

    Jahn H A 1938 Proc. Roy. Soc. A 164 117

  • [1] 邸淑红, 张阳, 杨会静, 崔乃忠, 李艳坤, 刘会媛, 李伶利, 石凤良, 贾玉璇. 铷簇同位素效应的量化研究. 物理学报, 2023, 72(18): 182101. doi: 10.7498/aps.72.20230778
    [2] 曹奔, 关利南, 古华光. 兴奋性作用诱发神经簇放电个数不增反降的分岔机制. 物理学报, 2018, 67(24): 240502. doi: 10.7498/aps.67.20181675
    [3] 邢伟, 孙金锋, 施德恒, 朱遵略. AlH+离子5个-S态和10个态的光谱性质以及激光冷却的理论研究. 物理学报, 2018, 67(19): 193101. doi: 10.7498/aps.67.20180926
    [4] 王梦, 白金海, 裴丽娅, 芦小刚, 高艳磊, 王如泉, 吴令安, 杨世平, 庞兆广, 傅盘铭, 左战春. 铷原子耦合光频率近共振时的电磁感应透明. 物理学报, 2015, 64(15): 154208. doi: 10.7498/aps.64.154208
    [5] 尹柏强, 何怡刚, 吴先明. 心磁信号广义S变换域奇异值分解滤波方法. 物理学报, 2013, 62(14): 148702. doi: 10.7498/aps.62.148702
    [6] 杨艳, 姬中华, 元晋鹏, 汪丽蓉, 赵延霆, 马杰, 肖连团, 贾锁堂. 超冷铷铯极性分子振转光谱的实验研究. 物理学报, 2012, 61(21): 213301. doi: 10.7498/aps.61.213301
    [7] 韩光, 羌建兵, 王清, 王英敏, 夏俊海, 朱春雷, 全世光, 董闯. 源于团簇-共振模型的理想金属玻璃电子化学势均衡. 物理学报, 2012, 61(3): 036402. doi: 10.7498/aps.61.036402
    [8] 张秀荣, 吴礼清, 饶倩. (OsnN)0,(n=16)团簇电子结构与光谱性质的理论研究. 物理学报, 2011, 60(8): 083601. doi: 10.7498/aps.60.083601
    [9] 张秀荣, 高从花, 吴礼清, 唐会帅. WnNim(n+m≤7; m=1, 2)团簇电子结构与光谱性质的理论研究. 物理学报, 2010, 59(8): 5429-5438. doi: 10.7498/aps.59.5429
    [10] 刘世炳, 刘院省, 何润, 陈涛. 纳秒激光诱导铜等离子体中原子激发态 5s' 4D7/2的瞬态特性研究. 物理学报, 2010, 59(8): 5382-5386. doi: 10.7498/aps.59.5382
    [11] 金晓林, 黄桃, 廖平, 杨中海. 电子回旋共振放电中电子与微波互作用特性的粒子模拟和蒙特卡罗碰撞模拟. 物理学报, 2009, 58(8): 5526-5531. doi: 10.7498/aps.58.5526
    [12] 杨 柳, 殷春浩, 焦 扬, 张 雷, 宋 宁, 茹瑞鹏. 掺入Ni元素的LiCoO2晶体光谱结构及电子顺磁共振g因子. 物理学报, 2006, 55(4): 1991-1996. doi: 10.7498/aps.55.1991
    [13] 方 芳, 蒋 刚, 王红艳. PdnPbm(n+m≤5)混合团簇的结构与光谱性质. 物理学报, 2006, 55(5): 2241-2248. doi: 10.7498/aps.55.2241
    [14] 陈 卓, 何 威, 蒲以康. 电子回旋共振氩等离子体中亚稳态粒子数密度及电子温度的测量. 物理学报, 2005, 54(5): 2153-2157. doi: 10.7498/aps.54.2153
    [15] 陈张海, 胡灿明, 陈建新, 史国良, 刘普霖, 沈学础, 李爱珍. 赝形InxGa1-xAs/In0.52Al0.48As异质结构中二维电子气的回旋共振光谱研究. 物理学报, 1998, 47(6): 1018-1025. doi: 10.7498/aps.47.1018
    [16] 张 群, 束继年, 谢鲤荔, 戴静华, 张立敏, 李全新. SF2自由基3d,5s里德伯态的实验确认. 物理学报, 1998, 47(11): 1776-1782. doi: 10.7498/aps.47.1776
    [17] 林尊琪, 陈文华, 余文炎, 谭维翰, 郑玉霞, 王关志, 顾敏, 章辉煌, 程瑞华, 崔季秀, 邓锡铭. MgⅪ 1s3p-1s4p能级间平均高温及高密度条件下的粒子数反转. 物理学报, 1988, 37(8): 1236-1243. doi: 10.7498/aps.37.1236
    [18] 孙鑫, 陆埮, 罗辽复. “磁氢原子”的光谱. 物理学报, 1978, 27(4): 430-438. doi: 10.7498/aps.27.430
    [19] 罗辽复, 陆埮. 高能正负电子对的湮没与超窄共振ψ粒子的作用. 物理学报, 1975, 24(2): 145-150. doi: 10.7498/aps.24.145
    [20] 方守贤, 魏开煜. 螺旋线迴旋加速器中粒子流通过非线性共振线(Qρ=(6/5))的研究. 物理学报, 1964, 20(7): 636-642. doi: 10.7498/aps.20.636
计量
  • 文章访问数:  5664
  • PDF下载量:  47
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-06
  • 修回日期:  2021-01-25
  • 上网日期:  2021-06-17
  • 刊出日期:  2021-06-20

/

返回文章
返回