搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

用于内窥光学相干层析成像的小型化预标定Lissajous扫描光纤探头

吴彤 霍文麒 黄蕴智 王吉明 顾晓蓉 路元刚 赫崇君 刘友文

引用本文:
Citation:

用于内窥光学相干层析成像的小型化预标定Lissajous扫描光纤探头

吴彤, 霍文麒, 黄蕴智, 王吉明, 顾晓蓉, 路元刚, 赫崇君, 刘友文

A miniaturized pre-calibration based Lissajous scanning fiber probe for endoscopic optical coherence tomography

Wu Tong, Huo Wen-Qi, Huang Yun-Zhi, Wang Ji-Ming, Gu Xiao-Rong, Lu Yuan-Gang, He Chong-Jun, Liu You-Wen
PDF
HTML
导出引用
  • 基于非对称光纤悬臂结构的Lissajous扫描光纤探头可实现低电压驱动下的大范围扫描成像. 本文研究了全封装的小型化预标定Lissajous扫描光纤探头. 通过优化设计与数值仿真, 选择了能实现高填充率Lissajous扫描的正交谐振频率, 确定了非对称光纤悬臂的结构参数. 全封装探头在5 mm工作距离处的焦点直径为25 μm, 视场大小达到1.5 mm × 1.5 mm, 总刚性长度和外径分别为35 mm和3.5 mm. 研究了全封装探头扫描轨迹的稳定性、可重复性与扫描成像的旋转稳定性. 结合实验室搭建的50 kHz扫频光学相干层析(OCT)系统, 对硬币和生物组织进行高质量成像, 验证了用于内窥OCT成像的小型化预标定Lissajous扫描光纤探头具有良好的成像性能.
    In this paper we present a miniaturized pre-calibration based forward-viewing Lissajous scanning fiber probe for endoscopic optical coherence tomography (OCT). The probe is based on an asymmetric fiber cantilever driven by the piezoelectric bender to realize the two-dimensional (2D) Lissajous scanning, which can realize a relatively large scanning range under a low driving voltage. A capillary metal tube is mounted at the end of the main fiber to reduce the resonant frequency of the fiber cantilever. The relationship between the filling rate and the side-lobe number of the Lissajous scanning pattern is studied, and a method of selecting the orthogonal resonant frequency of the Lissajous scanning is proposed. Through the numerical simulation by COMSOL software, the structural parameters of the asymmetric fiber cantilever are determined. The orthogonal resonant frequencies of the asymmetric fiber cantilever are 169 Hz and 122 Hz. The lengths of the main imaging fiber, the auxiliary fiber and the metal capillary tube are 15.94 mm, 4.49 mm and 2 mm, respectively. The probe is fully packaged in a metal tube for endoscopic imaging. The focal spot and the working distance are 25 µm and 5 mm, respectively. The field of view is larger than 1.5 mm × 1.5 mm. The total rigid length and the outer diameter of the probe are 35 mm and 3.5 mm, respectively. The stability and repeatability of the Lissajous scanning trajectory, and the imaging stability with the rotation of the probe are investigated and verified. The probe is incorporated into a 50 kHz swept source OCT system. The axial resolution of the endoscopic OCT is 10.3 μm, and the imaging frame rate is 1 FPS (frames per second). The maximum signal-to-noise ratio of the imaging system is 110 dB. The imaging performance of the probe is validated by the 2D en-face and three-dimensional volumetric OCT imaging of the high scattering sample and the biological tissue. The probe can be used for the endoscopic imaging of the human tooth. From the result we can distinguish the dental enamel, dental essence and the dental calculus. The developed forward-viewing Lissajous scanning fiber probe is expected to be used in dental applications such as early calculus detection.
      通信作者: 吴彤, wutong@nuaa.edu.cn ; 刘友文, ywliu@nuaa.edu.cn
    • 基金项目: 中央高校基本科研业务费专项资金(批准号: NS2020067, NJ2020021)和南京航空航天大学空间光电探测与感知工业和信息化部重点实验室开放课题(批准号: NJ2020021-5)资助的课题
      Corresponding author: Wu Tong, wutong@nuaa.edu.cn ; Liu You-Wen, ywliu@nuaa.edu.cn
    • Funds: Project supported by the Fundamental Research Funds for the Central Universities, China (Grant Nos. NS2020067, NJ2020021) and the Open Project Funds for the Key Laboratory of Space Photoelectric Detection and Perception (Nanjing University of Aeronautics and Astronautics), Ministry of Industry and Information Technology, China (Grant No. NJ2020021-5)
    [1]

    Huang D, Swanson E A, Lin C P, Schuman J S, Stinson W G, Chang W, Hee M R, Flotte T, Gregory K, Puliafito C A, Fujimoto J G 1991 Science 254 1178Google Scholar

    [2]

    贾亚青, 梁艳梅, 朱晓农 2007 物理学报 56 3861Google Scholar

    Jia Y Q, Liang Y M, Zhu X N 2007 Acta Phys. Sin. 56 3861Google Scholar

    [3]

    黄良敏, 丁志华, 洪威, 王川 2011 物理学报 61 023401Google Scholar

    Huang L M, Ding Z H, Hong W, Wang C 2011 Acta Phys. Sin. 61 023401Google Scholar

    [4]

    Li X D, Chudoba C, Ko T, Pitris C, Fujimoto J G 2000 Opt. Lett. 25 1520Google Scholar

    [5]

    Wu J, Conry M, Gu C, Wang F, Yaqoob Z, Yang C 2006 Opt. Lett. 31 1265Google Scholar

    [6]

    Pan Y, Xie H, Fedder G K 2001 Opt. Lett. 26 1966Google Scholar

    [7]

    Park H C, Song C, Kang M, Jeong Y, Jeong K H 2012 Opt. Lett. 37 2673Google Scholar

    [8]

    Wang Y, Bachman M, Li G P, Guo S, Wong B J F, Chen Z 2005 Opt. Lett. 30 53Google Scholar

    [9]

    Min E J, Na J, Ryu S Y, Lee B H 2009 Opt. Lett. 34 1897Google Scholar

    [10]

    Zhang K, Huang Y, and Kang J U 2011 Opt. Eng. 50 119002Google Scholar

    [11]

    Liu X M, Cobb J, Chen Y, Kimmey M B, Li X 2004 Opt. Lett. 29 1763Google Scholar

    [12]

    Huo L, Xi J, Wu Y, Li X 2010 Opt. Express 18 14375Google Scholar

    [13]

    Min E J, Shin J G, Kim Y, Lee B H 2011 Opt. Lett. 36 1963Google Scholar

    [14]

    Zhang N, Tsai T H, Ahsen O O, Liang K, Lee H C, Xue P, Li X, Fujimoto J G 2014 Opt. Lett. 39 186Google Scholar

    [15]

    Vilches S, Kretschmer S, Çağlar A, Zappe H 2017 J. Micromech. Microeng. 27 105015Google Scholar

    [16]

    Hinnerk S H, Pfeiffer T, Eixmann T, Lohmann S, Ahrens M, Rehra J, Draxinger W, KÖNIG P, Huber R, Hüttmann G 2018 Opt. Lett. 43 4386Google Scholar

    [17]

    Helmchen F, Fee M S, Tank D W, Denk W 2001 Neuron 31 903Google Scholar

    [18]

    Wu T, Ding Z H, Wang K, Chen M, Wang C 2009 Opt. Express 17 13819Google Scholar

    [19]

    Moon S, Lee S, Rubinstein M, Wong B J F, Chen Z 2010 Opt. Express 18 21183Google Scholar

    [20]

    Park H C, Seo Y H, Jeong K H 2014 Opt. Express 22 5818Google Scholar

    [21]

    Seo Y H, Hwang K, Park H C, Jeong K H 2016 Opt. Express 24 3903Google Scholar

    [22]

    Liang W, Murari K, Zhang Y, Chen Y, Li M J, Li X 2012 J. Biomed. Opt. 17 021108Google Scholar

    [23]

    Hwang K, Seo Y H, Ahn J, Kim P, Jeong K H 2017 Sci. Rep. 7 14075Google Scholar

  • 图 1  (a)模拟的Lissajous扫描轨迹图; (b)考虑光斑大小的扫描填充情况; (c)填充率与波瓣数关系曲线

    Fig. 1.  (a) Simulated Lissajous scanning trajectory; (b) scanning pattern considering the spot size; (c) relation curve of filling rate vs. side-lobe number.

    图 2  (a)非对称光纤悬臂结构示意图; (b)非对称光纤悬臂受力分析图

    Fig. 2.  (a) Schematic of the asymmetric fiber cantilever; (b) force analysis of the asymmetric fiber cantilever.

    图 3  (a) COMSOL中仿真的非对称光纤悬臂结构示意图; (b)主光纤和附加光纤长度与正交谐振频率的关系图

    Fig. 3.  (a) Simulated probe structure in COMSOL; (b) the relationship between the length of the main fiber and the auxiliary fiber and the orthogonal resonance frequency.

    图 4  (a)全封装的Lissajous扫描光纤探头结构示意图; (b)全封装探头的实物照片

    Fig. 4.  (a) Schematic of the fully packaged Lissajous scanning fiber probe; (b) photograph of the fully packaged probe.

    图 5  内窥SS-OCT系统示意图

    Fig. 5.  Schematic of the endoscopic SS-OCT system.

    图 6  (a) Lissajous扫描光纤探头的振幅-频率响应曲线; (b)预标定的Lissajous扫描轨迹重建结果

    Fig. 6.  (a) Amplitude-frequency response curves of the Lissajous scanning fiber probe; (b) the reconstructed Lissajous scanning trajectory by pre-calibration.

    图 7  (a)—(f) 6次独立实验的前1500个点的扫描轨迹重建结果

    Fig. 7.  (a)–(f) Reconstructed scanning trajectory of the first 1500 points from the 6 independent experiments

    图 8  (a) 1元硬币及字母A的照片; (b)—(e)探头旋转0°, 90°, 180°和270°对字母A的OCT表面成像结果

    Fig. 8.  (a) Photograph of the 1 Yuan coin and the letter A; (b)–(e) the en-face OCT images of the letter A with the probe rotating to the angle of 0°, 90°, 180° and 270°.

    图 9  (a)橘子果粒的实物照片; (b)橘子果粒组织的二维OCT横向截面图像

    Fig. 9.  (a) Photograph of the orange grain; (b) two-dimensional OCT cross-sectional image of orange grain tissue.

    图 10  (a)磨牙的二维OCT横截面图像; (b)磨牙的三维OCT图像; (c)牙结石的二维OCT横截面图像; (d)牙结石的三维OCT图像

    Fig. 10.  (a) Two-dimensional OCT cross sectional image of the health molar tooth tissue; (b) three-dimensional OCT image of the health molar tooth tissue; (c) two-dimensional OCT cross sectional image of the dental calculus; (d) three-dimensional OCT image of the dental calculus.

  • [1]

    Huang D, Swanson E A, Lin C P, Schuman J S, Stinson W G, Chang W, Hee M R, Flotte T, Gregory K, Puliafito C A, Fujimoto J G 1991 Science 254 1178Google Scholar

    [2]

    贾亚青, 梁艳梅, 朱晓农 2007 物理学报 56 3861Google Scholar

    Jia Y Q, Liang Y M, Zhu X N 2007 Acta Phys. Sin. 56 3861Google Scholar

    [3]

    黄良敏, 丁志华, 洪威, 王川 2011 物理学报 61 023401Google Scholar

    Huang L M, Ding Z H, Hong W, Wang C 2011 Acta Phys. Sin. 61 023401Google Scholar

    [4]

    Li X D, Chudoba C, Ko T, Pitris C, Fujimoto J G 2000 Opt. Lett. 25 1520Google Scholar

    [5]

    Wu J, Conry M, Gu C, Wang F, Yaqoob Z, Yang C 2006 Opt. Lett. 31 1265Google Scholar

    [6]

    Pan Y, Xie H, Fedder G K 2001 Opt. Lett. 26 1966Google Scholar

    [7]

    Park H C, Song C, Kang M, Jeong Y, Jeong K H 2012 Opt. Lett. 37 2673Google Scholar

    [8]

    Wang Y, Bachman M, Li G P, Guo S, Wong B J F, Chen Z 2005 Opt. Lett. 30 53Google Scholar

    [9]

    Min E J, Na J, Ryu S Y, Lee B H 2009 Opt. Lett. 34 1897Google Scholar

    [10]

    Zhang K, Huang Y, and Kang J U 2011 Opt. Eng. 50 119002Google Scholar

    [11]

    Liu X M, Cobb J, Chen Y, Kimmey M B, Li X 2004 Opt. Lett. 29 1763Google Scholar

    [12]

    Huo L, Xi J, Wu Y, Li X 2010 Opt. Express 18 14375Google Scholar

    [13]

    Min E J, Shin J G, Kim Y, Lee B H 2011 Opt. Lett. 36 1963Google Scholar

    [14]

    Zhang N, Tsai T H, Ahsen O O, Liang K, Lee H C, Xue P, Li X, Fujimoto J G 2014 Opt. Lett. 39 186Google Scholar

    [15]

    Vilches S, Kretschmer S, Çağlar A, Zappe H 2017 J. Micromech. Microeng. 27 105015Google Scholar

    [16]

    Hinnerk S H, Pfeiffer T, Eixmann T, Lohmann S, Ahrens M, Rehra J, Draxinger W, KÖNIG P, Huber R, Hüttmann G 2018 Opt. Lett. 43 4386Google Scholar

    [17]

    Helmchen F, Fee M S, Tank D W, Denk W 2001 Neuron 31 903Google Scholar

    [18]

    Wu T, Ding Z H, Wang K, Chen M, Wang C 2009 Opt. Express 17 13819Google Scholar

    [19]

    Moon S, Lee S, Rubinstein M, Wong B J F, Chen Z 2010 Opt. Express 18 21183Google Scholar

    [20]

    Park H C, Seo Y H, Jeong K H 2014 Opt. Express 22 5818Google Scholar

    [21]

    Seo Y H, Hwang K, Park H C, Jeong K H 2016 Opt. Express 24 3903Google Scholar

    [22]

    Liang W, Murari K, Zhang Y, Chen Y, Li M J, Li X 2012 J. Biomed. Opt. 17 021108Google Scholar

    [23]

    Hwang K, Seo Y H, Ahn J, Kim P, Jeong K H 2017 Sci. Rep. 7 14075Google Scholar

  • [1] 张嘉禧, 李凌峰, 钟洪文, 肖嘉莹. 用于深层组织分子成像的小型化光声/超声内窥成像探头. 物理学报, 2024, 73(21): 214203. doi: 10.7498/aps.73.20241076
    [2] 陈纪辉, 王峰, 理玉龙, 张兴, 姚科, 关赞洋, 刘祥明. 针对微尺寸X射线源的非相干全息层析成像. 物理学报, 2023, 72(19): 195203. doi: 10.7498/aps.72.20230920
    [3] 钱黄河, 王迪, 韩涛, 丁志华. 基于复数主从光学相干层析成像相位信息的离散界面快速定位方法. 物理学报, 2022, 71(21): 214202. doi: 10.7498/aps.71.20220444
    [4] 吴彤, 孙帅帅, 王绪晖, 王吉明, 赫崇君, 顾晓蓉, 刘友文. 基于最优化线性波数光谱仪的谱域光学相干层析成像系统. 物理学报, 2018, 67(10): 104208. doi: 10.7498/aps.67.20172606
    [5] 胡喆皓, 上官紫微, 邱建榕, 杨珊珊, 鲍文, 沈毅, 李鹏, 丁志华. 基于受激辐射信号的谱域光学相干层析分子成像方法. 物理学报, 2018, 67(17): 174201. doi: 10.7498/aps.67.20171738
    [6] 王毅, 郭哲, 朱立达, 周红仙, 马振鹤. 基于谱域相位分辨光学相干层析的纳米级表面形貌成像. 物理学报, 2017, 66(15): 154202. doi: 10.7498/aps.66.154202
    [7] 樊金宇, 高峰, 孔文, 黎海文, 史国华. 多面转镜激光器扫频光学相干层析成像系统的全光谱重采样方法. 物理学报, 2017, 66(11): 114204. doi: 10.7498/aps.66.114204
    [8] 马振鹤, 窦世丹, 马毓姝, 刘健, 赵玉倩, 刘江红, 吕江涛, 王毅. 基于光学相干层析成像的早期鸡胚心脏径向应变测量. 物理学报, 2016, 65(23): 235202. doi: 10.7498/aps.65.235202
    [9] 上官紫微, 沈毅, 李鹏, 丁志华. 扫频光学相干层析成像系统的波数校正与相位测量研究. 物理学报, 2016, 65(3): 034201. doi: 10.7498/aps.65.034201
    [10] 潘聪, 郭立, 沈毅, 严雪过, 丁志华, 李鹏. 基于界面信号的扫频光学相干层析成像系统相位矫正方法. 物理学报, 2016, 65(1): 014201. doi: 10.7498/aps.65.014201
    [11] 严雪过, 沈毅, 潘聪, 李鹏, 丁志华. 基于拉锥结构的全光纤型内窥OCT探针研究. 物理学报, 2016, 65(2): 024201. doi: 10.7498/aps.65.024201
    [12] 唐弢, 赵晨, 陈志彦, 李鹏, 丁志华. 超高分辨光学相干层析成像技术与材料检测应用. 物理学报, 2015, 64(17): 174201. doi: 10.7498/aps.64.174201
    [13] 赵晨, 陈志彦, 丁志华, 李鹏, 沈毅, 倪秧. 线照明并行谱域光学相干层析成像系统与缺陷检测应用研究. 物理学报, 2014, 63(19): 194201. doi: 10.7498/aps.63.194201
    [14] 刘国忠, 周哲海, 邱钧, 王晓飞, 刘桂礼, 王瑞康. 幅值和相位配准技术及其在光学相干层析血流成像中的应用. 物理学报, 2013, 62(15): 158702. doi: 10.7498/aps.62.158702
    [15] 黄良敏, 丁志华, 洪威, 王川. 相关多普勒光学层析成像. 物理学报, 2012, 61(2): 023401. doi: 10.7498/aps.61.023401
    [16] 商在明, 丁志华, 王玲, 刘勇. 基于光程编码与相干合成的三维超分辨术. 物理学报, 2011, 60(12): 124204. doi: 10.7498/aps.60.124204
    [17] 杨亚良, 丁志华, 王凯, 吴凌, 吴兰. 全场光学相干层析成像系统的研制. 物理学报, 2009, 58(3): 1773-1778. doi: 10.7498/aps.58.1773
    [18] 陈湛旭, 唐志列, 万 巍, 何永恒. 基于声透镜成像系统的光声层析成像. 物理学报, 2006, 55(8): 4365-4370. doi: 10.7498/aps.55.4365
    [19] 陈建文, 高鸿奕, 朱化凤, 谢红兰, 李儒新, 徐至展. 中子相衬层析成像方法. 物理学报, 2005, 54(3): 1132-1135. doi: 10.7498/aps.54.1132
    [20] 向际鹰, 吴 震, 曾绍群, 骆清铭, 张 平, 黄德修. 弱相干扫描层析成像系统的三维传递函数分析. 物理学报, 1999, 48(10): 1831-1838. doi: 10.7498/aps.48.1831
计量
  • 文章访问数:  4910
  • PDF下载量:  96
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-22
  • 修回日期:  2021-03-02
  • 上网日期:  2021-06-07
  • 刊出日期:  2021-08-05

/

返回文章
返回