搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

刚性对称陀螺分子Stark效应的精确解

陈昌远 孙国华 王晓华 孙东升 尤源 陆法林 董世海

引用本文:
Citation:

刚性对称陀螺分子Stark效应的精确解

陈昌远, 孙国华, 王晓华, 孙东升, 尤源, 陆法林, 董世海

Exact solutions to Stark effect of rigid symmetric-top molecules

Chen Chang-Yuan, Sun Guo-Hua, Wang Xiao-Hua, Sun Dong-Sheng, You Yuan, Lu Fa-Lin, Dong Shi-Hai
PDF
HTML
导出引用
  • 提出了一种精确求解位于外电场中刚性对称陀螺分子转动能级和相应解析波函数的新方法. 首先利用不同形式的函数变换和变量代换将位于外电场中对称陀螺分子的极角θ方向的方程转化为合流Heun微分方程, 然后根据合流Heun微分方程和合流Heun函数具有的特点, 找到描述同一本征态的线性相关的两个解, 构造Wronskian (朗斯基)行列式, 得到精确的能谱方程. 最后利用Maple软件计算出不同量子态的本征值, 再将得到的本征值代入本征函数进行归一化运算最终得到用合流Heun函数表示的解析的归一化本征函数. 这些结果可为深入研究对称陀螺分子的Stark效应提供有益的帮助.
    In this work a new scheme is proposed to accurately calculate the rotational energy level of the rigid symmetric-top molecule subjected to the external electric field, and also to obtain the corresponding analytical wave functions. For this purpose, first we use the different forms of function transformation and variable substitution to transform the differential equation of the polar angle θ into a confluent Heun differential equation, and then we use the characteristics of the confluent Heun differential equation and the confluent Heun function to find two linearly dependent solutions of the same eigenstates, which are used to construct the Wronskian determinant to obtain the exact energy spectrum equation. Finally, with the aid of the Maple software, we calculate the eigenvalues for different quantum states, and then substitute the obtained eigenvalues into the unnormalized eigenfunction to obtain the analytical normalized eigenfunction expressed by the confluent Heun function. These results are conducive to the in-depth study of the Stark effect of symmetric-top molecules.
      通信作者: 陈昌远, chency@yctu.edu.cn ; 董世海, dongsh2@yahoo.com
    • 基金项目: 国家自然科学基金(批准号: 11975196)和墨西哥国立理工大学基金(批准号: 20210414)资助的课题
      Corresponding author: Chen Chang-Yuan, chency@yctu.edu.cn ; Dong Shi-Hai, dongsh2@yahoo.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11975196) and the SIP, Instituto Politécnico Nacional (IPN), Mexico (Grant No. 20210414)
    [1]

    Townes C H, Schawlow A L 1975 Microwave Spectroscopy (New York: Dover Publications, Inc.) pp60−62, 248−251

    [2]

    Wollrab J E 1967 Rotational Spectra and Molecular Structure (New York: Academic Press) pp15−18, 247−250

    [3]

    Shirley J H 1963 J. Chem. Phys. 38 2896Google Scholar

    [4]

    Tomutza L, Mizushima M 1972 J. Quant. Spectrosc. Radiat. Transfer. 12 925Google Scholar

    [5]

    Roeggen I 1972 Atomic Date 4 289Google Scholar

    [6]

    Maergoiz A I, Troe J 1993 J. Chem. Phys. 99 3218Google Scholar

    [7]

    Maergoiz A I, Troe J, Weiss Ch 1994 J. Chem. Phys. 101 1885Google Scholar

    [8]

    Fernández F M 1995 J. Math. Chem. 18 197Google Scholar

    [9]

    Burrowst B L, Cohen M, Feldmann T 1995 J. Phys. B 28 4249Google Scholar

    [10]

    Andreev S N, Makarov V P 2008 Radiophys. Quantum Electron. 51 718Google Scholar

    [11]

    Sun G H, Chen C Y, Taud H, Yáñez-Márquez C, Dong S H 2020 Phys. Lett. A 384 126480Google Scholar

    [12]

    Chen C Y, Wang X H, You Y, Sun G H, Dong S H 2020 Int. J. Quantum Chem. 120 e26336Google Scholar

    [13]

    Chen C Y, You Y, Wang X H, Lu F L, Sun D S, Dong S H 2021 Results Phys. 24 104115Google Scholar

    [14]

    Chen C Y, Sun D S, Sun G H, Wang X H, You Y, Dong S H 2021 Int. J. Quantum Chem. 121 e26546Google Scholar

    [15]

    Fiziev P P 2010 J. Phys. A 43 035203Google Scholar

    [16]

    Downing C A 2013 J. Math. Phys. 54 072101Google Scholar

    [17]

    Al-Gwaiz M A 2008 Sturm-Liouville Theory and its Applications (London: Springer-Verlag London Limited) pp45−46, 55−59

    [18]

    程建春 2016 数学物理方程及其近似方法(第2版) (北京: 科学出版社) 第109−111, 133−135页

    Cheng J C 2016 The Equations for Mathematical Physics and Their Approximate Methods (2nd Ed.) (Beijing: Science Press) pp109−111, 133−135 (in Chinese)

    [19]

    Wang H Y 2017 Mathematics for Physicists (Beijing: Science Press) pp130−146

  • 图 1  对称陀螺分子的$ f(\lambda ) $λ的变化曲线 (a) $ b = 1, \;K = 0, \;M = 0\, , \;1\, , \;2\, , \;3, \, 4 $; (b) $ b = 5, \;K = 1, \;M = 0\, , \;1\, , \;2\, , \;3, \, 4 $; (c) $b = $$ 10, \;K = 2, \;M = 0\, , - 1\, , - 2\, , - 3$; (d) $ b = 20, \;K = 3, \;M = 0\, , - 1\, , - 2\, , - 3 $

    Fig. 1.  Plot of $ f(\lambda ) $ as the function of λ for the symmetric-top molecules: (a) $ b = 1, \;K = 0, \;M = 0\, , \;1\, , \;2\, , \;3, \, 4 $; (b) $b = 5, $$ \;K = 1, \;M = 0\, , \;1\, , \;2\, , \;3, \, 4$; (c) $ b = 10, \;K = 2, \;M = 0\, , - 1\, , - 2\, , - 3 $; (d) $ b = 20, \;K = 3, \;M = 0\, , - 1\, , - 2\, , - 3 $.

    图 2  $ {N_1}{\varTheta _1}(x) $$ {( - 1)^n}{N_2}{\varTheta _2}(x) $是线性相关的 (a) $ b = 1\, , \;J = 1\, , \;K = 1\, , \;M = 1\, , \;n = 0 $; (b) $b = 1\, , \;J = 1\, , \;K = 1\, , \;M = $$ - 1\, , \;n = 0$; (c) $ b = 10\, , \;J = 3\, , \;K = 1\, , \;M = 1\, , \;n = 2 $; (d) $ b = 1\, 0, \;J = 3\, , \;K = 1\, , \;M = 2\, , \;n = 1 $

    Fig. 2.  Linear dependence relation between $ {N_1}{\varTheta _1}(x) $ and $ {( - 1)^n}{N_2}{\varTheta _2}(x) $: (a) $ b = 1\, , \;J = 1\, , \;K = 1\, , \;M = 1\, , \;n = 0 $; (b) $b = $$ 1\, , \;J = 1\, , \;K = 1\, , \;M = - 1\, , \;n = 0$; (c) $ b = 10\, , \;J = 3\, , \;K = 1\, , \;M = 1\, , \;n = 2 $; (d) $ b = 1\, 0, \;J = 3\, , \;K = 1\, , \;M = 2\, , \;n = 1 $.

    表 1  对称陀螺分子λ的精确值

    Table 1.  Precise values of λ for the symmetric-top molecules.

    JK(K, M)nb = 1b = 5b = 10b = 20
    00(0, 0)0–0.15766348–2.36561388–6.04507511–14.18676623
    10(0, 0)12.090760652.638747031.72333341–2.64067155
    (0, 1) (0, –1)01.950333910.90475071–1.52336944–7.83391897
    1(1, 1) (–1, –1)01.46550429–1.13615048–4.90088894–13.09274467
    (1, 0) (–1, 0)01.950333910.90475071–1.52336944–7.83391897
    (1, –1) (–1, 1)02.459307913.252409822.28859798–2.10241580
    20(0, 0)26.024031666.645462487.879327297.59702750
    (0, 1) (0, –1)16.011577936.149323345.869205893.21233397
    (0, 2) (0, –2)05.976230805.427707993.91145991–0.75028417
    1(1, 2) (–1, –2)05.646101433.879658481.11394605–5.42557601
    (1, 1) (–1, –1)15.834447995.023085993.42628660–1.26151418
    (1, 0) (–1, 0)16.011577936.149323345.869205893.21233397
    (1, –1) (–1, 1)16.173034597.176945398.522415018.17688040
    (1, –2) (–1, 2)06.311597337.080376786.959723944.30076661
    2(2, 2) (–2, –2)05.320807262.40921111–1.50915355–9.82205218
    (2, 1) (–2, –1)05.646101433.879658481.11394605–5.42557601
    (2, 0) (–2, 0)05.976230805.427707993.91145991–0.75028417
    (2, –1) (–2, 1)06.311597337.080376786.959723944.30076661
    (2, –2) (–2, 2)06.652669588.8901055510.436905509.90220896
    30(0, 0)312.0111225612.2860932613.2385170216.01072933
    (0, 1) (0, –1)212.0083261412.2018560412.6810976313.00122422
    (0, 2) (0, –2)111.9999651011.9805177711.7651602610.12548434
    (0, 3) (0, –3)011.9861196211.6579058610.685183797.32389600
    1(1, 3) (–1, –3)011.7371467510.447109648.384879203.22650134
    (1, 2) (–1, –2)111.8317670111.087912499.874213336.36151132
    (1, 1) (–1, –1)211.9222634411.6811748411.325104139.60625434
    (1, 0) (–1, 0)212.0083261412.2018560412.6810976313.00122422
    (1, –1) (–1, 1)212.0896404612.6088636913.7799881116.66271656
    (1, –2) (–1, 2)112.1658990812.8407506113.6633627514.14238561
    (1, –3) (–1, 3)012.2368218412.9082152413.1095479411.68530530
    2(2, 3) (–2, –3)011.489840809.269971676.18154889–0.66884422
    (2, 2) (–2, –2)111.6616332810.181318268.011323142.77663392
    (2, 1) (–2, –1)111.8317670111.087912499.874213336.36151132
    (2, 0) (–2, 0)111.9999651011.9805177711.7651602610.12548434
    (2, –1) (–2, 1)112.1658990812.8407506113.6633627514.14238561
    (2, –2) (–2, 2)112.3291758913.6264772315.4798953418.60143861
    (2, –3) (–2, 3)012.4893203614.2061570415.7040303516.41950037
    3(3, 3) (–3, –3)011.244143418.122080694.05742691–4.40185593
    (3, 2) (–3, –2)011.489840809.269971676.18154889–0.66884422
    (3, 1) (–3, –1)011.7371467510.447109648.384879203.22650134
    (3, 0) (–3, 0)011.9861196211.6579058610.685183797.32389600
    (3, –1) (–3, 1)012.2368218412.9082152413.1095479411.68530530
    (3, –2) (–3, 2)012.4893203614.2061570415.7040303516.41950037
    (3, –3) (–3, 3)012.7436872115.5636856118.5635330021.76261674
    下载: 导出CSV

    表 2  对称陀螺分子(4, 0, 0)态的λ

    Table 2.  Values of λ of the state (4, 0, 0) for the symmetric-top molecules.

    bPerturbationMaergoiz[7]This workbMaergoiz[7]This work
    0.120.0000649420.0000649410015.69615.69559837
    120.0064935120.00649533200–31.200–31.20010397
    520.1623376620.16420.16352072300–90.598–90.59767902
    1020.6493506520.67120.67080282400–156.41–156.40991571
    2022.5974026022.97522.97522235500–226.31–226.30840320
    5036.2337662327.68127.68132358750–412.26–412.26234718
    下载: 导出CSV
  • [1]

    Townes C H, Schawlow A L 1975 Microwave Spectroscopy (New York: Dover Publications, Inc.) pp60−62, 248−251

    [2]

    Wollrab J E 1967 Rotational Spectra and Molecular Structure (New York: Academic Press) pp15−18, 247−250

    [3]

    Shirley J H 1963 J. Chem. Phys. 38 2896Google Scholar

    [4]

    Tomutza L, Mizushima M 1972 J. Quant. Spectrosc. Radiat. Transfer. 12 925Google Scholar

    [5]

    Roeggen I 1972 Atomic Date 4 289Google Scholar

    [6]

    Maergoiz A I, Troe J 1993 J. Chem. Phys. 99 3218Google Scholar

    [7]

    Maergoiz A I, Troe J, Weiss Ch 1994 J. Chem. Phys. 101 1885Google Scholar

    [8]

    Fernández F M 1995 J. Math. Chem. 18 197Google Scholar

    [9]

    Burrowst B L, Cohen M, Feldmann T 1995 J. Phys. B 28 4249Google Scholar

    [10]

    Andreev S N, Makarov V P 2008 Radiophys. Quantum Electron. 51 718Google Scholar

    [11]

    Sun G H, Chen C Y, Taud H, Yáñez-Márquez C, Dong S H 2020 Phys. Lett. A 384 126480Google Scholar

    [12]

    Chen C Y, Wang X H, You Y, Sun G H, Dong S H 2020 Int. J. Quantum Chem. 120 e26336Google Scholar

    [13]

    Chen C Y, You Y, Wang X H, Lu F L, Sun D S, Dong S H 2021 Results Phys. 24 104115Google Scholar

    [14]

    Chen C Y, Sun D S, Sun G H, Wang X H, You Y, Dong S H 2021 Int. J. Quantum Chem. 121 e26546Google Scholar

    [15]

    Fiziev P P 2010 J. Phys. A 43 035203Google Scholar

    [16]

    Downing C A 2013 J. Math. Phys. 54 072101Google Scholar

    [17]

    Al-Gwaiz M A 2008 Sturm-Liouville Theory and its Applications (London: Springer-Verlag London Limited) pp45−46, 55−59

    [18]

    程建春 2016 数学物理方程及其近似方法(第2版) (北京: 科学出版社) 第109−111, 133−135页

    Cheng J C 2016 The Equations for Mathematical Physics and Their Approximate Methods (2nd Ed.) (Beijing: Science Press) pp109−111, 133−135 (in Chinese)

    [19]

    Wang H Y 2017 Mathematics for Physicists (Beijing: Science Press) pp130−146

  • [1] 万建杰, 赵鑫婷, 李冀光, 董晨钟. Stark效应诱导的类氢离子2s1/2-1s1/2跃迁几率的理论研究. 物理学报, 2021, 70(17): 173201. doi: 10.7498/aps.70.20210181
    [2] 段春泱, 李娜, 赵岩, 李昌勇. 利用静电场中光电离效率谱精确确定1,3-二乙氧基苯分子的电离能. 物理学报, 2021, 70(5): 053301. doi: 10.7498/aps.70.20201273
    [3] 董慧杰, 王新宇, 李昌勇, 贾锁堂. 镓原子的Stark能级结构. 物理学报, 2015, 64(9): 093201. doi: 10.7498/aps.64.093201
    [4] 王丽梅, 张好, 李昌勇, 赵建明, 贾锁堂. 铯Rydberg原子Stark态的避免交叉. 物理学报, 2013, 62(1): 013201. doi: 10.7498/aps.62.013201
    [5] 李昌勇, 张临杰, 赵建明, 贾锁堂. 铯原子里德堡态Stark能量及电偶极矩的测量和理论计算. 物理学报, 2012, 61(16): 163202. doi: 10.7498/aps.61.163202
    [6] 常秀英, 窦秀明, 孙宝权, 熊永华, 倪海桥, 牛智川. 电场调谐InAs单量子点的发光光谱. 物理学报, 2010, 59(6): 4279-4282. doi: 10.7498/aps.59.4279
    [7] 胡先权, 崔立鹏, 罗光, 马燕. 幂函数叠加势的径向薛定谔方程的解析解. 物理学报, 2009, 58(4): 2168-2173. doi: 10.7498/aps.58.2168
    [8] 宋晓书, 余春日, 闫安英, 程新路, 杨向东. 对称陀螺分子NH3的高温谱线强度研究. 物理学报, 2009, 58(1): 223-228. doi: 10.7498/aps.58.223
    [9] 高嵩, 徐学友, 周慧, 张延惠, 林圣路. 电场中里德伯原子动力学性质的半经典理论研究. 物理学报, 2009, 58(3): 1473-1479. doi: 10.7498/aps.58.1473
    [10] 吴海燕, 张 亮, 谭言科, 周小滔. 三类非线性演化方程新的Jacobi椭圆函数精确解. 物理学报, 2008, 57(6): 3312-3318. doi: 10.7498/aps.57.3312
    [11] 宋晓书, 令狐荣锋, 吕 兵, 程新路, 杨向东. 渐近非对称陀螺分子H122C16O的高温光谱. 物理学报, 2008, 57(6): 3440-3445. doi: 10.7498/aps.57.3440
    [12] 张 敏, 班士良. 压力下应变异质结中施主杂质态的Stark效应. 物理学报, 2008, 57(7): 4459-4465. doi: 10.7498/aps.57.4459
    [13] 吴国将, 张 苗, 史良马, 张文亮, 韩家骅. 扩展的Jacobi椭圆函数展开法和Zakharov方程组的新的精确周期解. 物理学报, 2007, 56(9): 5054-5059. doi: 10.7498/aps.56.5054
    [14] 黄定江, 张鸿庆. 扩展的双曲函数法和Zakharov方程组的新精确孤立波解. 物理学报, 2004, 53(8): 2434-2438. doi: 10.7498/aps.53.2434
    [15] 李德生, 张鸿庆. 改进的tanh函数方法与广义变系数KdV和MKdV方程新的精确解. 物理学报, 2003, 52(7): 1569-1573. doi: 10.7498/aps.52.1569
    [16] 张善卿, 李志斌. 非线性耦合SchrOdinger-KdV方程组新的精确解析解. 物理学报, 2002, 51(10): 2197-2201. doi: 10.7498/aps.51.2197
    [17] 李志斌, 姚若侠. 非线性耦合微分方程组的精确解析解. 物理学报, 2001, 50(11): 2062-2067. doi: 10.7498/aps.50.2062
    [18] 陈昌远, 刘友文. 非谐振子势的精确解和双波函数描述. 物理学报, 1998, 47(4): 536-541. doi: 10.7498/aps.47.536
    [19] 孙家钟, 蒋栋成. 非对称陀螺分子间的范德瓦耳斯引力问题. 物理学报, 1961, 17(12): 559-568. doi: 10.7498/aps.17.559
    [20] 吴大猷. 硷金属原子之Stark效应. 物理学报, 1936, 2(1): 15-21. doi: 10.7498/aps.2.15
计量
  • 文章访问数:  4318
  • PDF下载量:  91
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-01-28
  • 修回日期:  2021-05-05
  • 上网日期:  2021-06-07
  • 刊出日期:  2021-09-20

/

返回文章
返回