搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

“天光一号”驱动的聚苯乙烯高压状态方程测量

田宝贤 王钊 胡凤明 高智星 班晓娜 李静

引用本文:
Citation:

“天光一号”驱动的聚苯乙烯高压状态方程测量

田宝贤, 王钊, 胡凤明, 高智星, 班晓娜, 李静

Equation-of-state measurements for polystyrene under high presure driven by HEAVEN-I laser facility

Tian Bao-Xian, Wang Zhao, Hu Feng-Ming, Gao Zhi-Xing, Ban Xiao-Na, Li Jing
PDF
HTML
导出引用
  • 聚苯乙烯等CH材料的高压状态方程研究对于ICF聚变点火具有重要意义. 本文基于“天光一号”长脉冲激光装置开展了聚苯乙烯高压状态方程研究, 理论模拟了靶内的冲击动力学过程, 采用侧向阴影成像技术实验测量了不同厚度的聚苯乙烯平面靶和飞片靶, 获得了靶内的冲击波速度与粒子速度等状态方程参数. 结果表明: 长脉冲激光驱动下CH平面靶内经历了明显的准等熵加载过程, 并逐渐演化为弱冲击加载. 实验测量平面靶压力12 GPa, 飞片撞击靶压力34 GPa, 与模拟结果基本相符.
    The equation of state (EOS) for CH material used as an ablator layer at high pressure is important in the study of implosion dynamics and target design for inertial confinement fusion (ICF). At present, most of EOS data are on the Hugoniot line under shock compression. The EOS data below Hugoniot line need further studying for low-entropy pre- compression. In the present article, the EOS of polystyrene is established under quasi-isentropic compression driven by HEAVEN-I KrF laser facility with a long rising edge (~20 ns). The shock dynamic behaviors of three kinds of CH targets are simulated, which are 100 μm CH planar target, Al-coated CH planar target (10 μm Al, 50 or 150 μm CH), and flyer-impact target composed of flyer (Al-coated CH), 100 μm vacuum layer, and 100 μm CH layer. The planar targets and flyer-impact targets with different thickness are irradiated by six-focused laser beams with total energy of 50–100J, and the free surface velocity and wave average transit velocity are measured by side-on shadowgraph technique. The simulation results indicate that the initial loading process is quasi-isentropic compression process, and then evolves into a weak shock compression process for the CH planar target in the rising edge stage. Comparing with the CH planar target, the reflected rarefaction waves from the Al-CH interface of Al-coated CH target can suppress the enhancement of compression wave, and delay the formation of shock wave when laser directly irradiates the Al layer. The shock pressure of the CH target layer (the third layer) is significantly higher than those of the former two targets in the flyer-impact target. However, the chasing rarefaction wave can unload the compression state incompletely and reduce the pressure when the CH target layer is much thicker than Al layer. The final pressure is about 15 GPa in the CH planar target, while the final pressure is about 30 GPa in flyer-impact target: both of them are less than the pressure threshold of opacity change for the transparent polystyrene. The quasi-isentropic dynamical process is difficult to measure by the velocity interferometer system for any reflector technique. The experimental results show that the average wave transit velocity is significantly less than the final shock velocity derived from the free surface velocities in the CH and Al-coated CH planar target side-on shadow experiments. They indicate that the compression wave enhancement and quasi-isentropic compression process occur in the propagation of wave front. The shock pressure is about 12 GPa in the CH planar target, and about 34 GPa under shock load in the flyer-impact target. The experimental data and shock dynamic processes are basically consistent with the simulation results.
      通信作者: 田宝贤, tianbaoxian@163.com
    • 基金项目: 国家财政部稳定支持研究经费(批准号: WDJC-2019-02, BJ20002501)资助的课题
      Corresponding author: Tian Bao-Xian, tianbaoxian@163.com
    • Funds: Project supported by the Continuous Basic Scientific Research Project from Ministry of Finance of China (Grant Nos. WDJC-2019-02, BJ20002501)
    [1]

    Lindl J, Landen O, Edwards J, Moses E 2014 Phys. Plasmas 21 020501Google Scholar

    [2]

    Ma T, Hurricane O A, Callahan D A, et al. 2015 Phys. Rev. Lett. 114 145004Google Scholar

    [3]

    He X T, Li J W, Fan Z F, Wang L F, Liu J, Lan K, Wu J F, Ye W H 2016 Phys. Plasmas 23 082706Google Scholar

    [4]

    Campbell E M, Goncharov V N, Sangster T C, et al. 2017 Matter Radiat. Extrem. 2 37Google Scholar

    [5]

    Barrios M A, Hicks D G, Boehly T R, Fratauduono D E, Eggert J H 2010 Phys. Plasmas 17 056307Google Scholar

    [6]

    Barrios M A, Boehly T R, Hicks D G, Fratauduono D E, Eggert J H, Collins G W, Meyerhofer D D 2012 J. Appl. Phys. 111 093515Google Scholar

    [7]

    Aglitskiy Y, Velikovich A L, Karasik M, et al. 2018 Phys. Plasmas 25 032705Google Scholar

    [8]

    黄秀光, 傅思祖, 舒桦, 叶君建, 吴江, 谢志勇, 方智恒, 贾果, 罗平庆, 龙滔, 何钜华, 顾援, 王世绩 2010 物理学报 59 6394Google Scholar

    Huang X G, Fu S Z, Shu H, Ye J J, Wu J, Xie Z Y, Fang Z H, Jia G, Luo P Q, Long T, He J H, Gu Y, Wang S J 2010 Acta Phys. Sin. 59 6394Google Scholar

    [9]

    Shu H, Huang X G, Ye J J, Wu J, Jia G, Fang Z H, Xie Z Y, Zhou H Z, Fu S Z 2015 Eur. Phys. J. D 69 259Google Scholar

    [10]

    Bradley D K, Eggert J H, Smith R F, Prisbrey S T, Hicks D G, Braun D G, Biener J, Hamza A, Rudd R E, Collins G 2009 Phys. Rev. Lett. 102 075503Google Scholar

    [11]

    Smith R F, Eggert J H, Jeanloz R, Duffy T S, Braun D G, Patterson J R, Rudd R E, Biener J, Lazicki A E, Hamza A V, Wang J, Braun T, Benedict L X, Celliers P M, Collins G W 2014 Nature 511 330Google Scholar

    [12]

    薛全喜, 江少恩, 王哲斌, 王峰, 赵学庆, 易爱平, 丁永坤, 刘晶儒 2018 物理学报 67 045202Google Scholar

    Xue Q X, Jiang S E, Wang Z B, Wang F, Zhao X Q, Yi A P, Ding Y K, Liu J R 2018 Acta Phys. Sin. 67 045202Google Scholar

    [13]

    Zhang P L, Tang X Z, Li Y J, Wang Z, Tian B X, Yin Q, Lu Z, Xiang Y H, Gao Z X, Li J 2015 Chin. Phys. Lett. 32 075201Google Scholar

    [14]

    张品亮, 王钊, 李宇, 田宝贤, 李业军, 殷倩, 汤秀章 2018 原子能科学技术 52 2038Google Scholar

    Zhang P L, Wang Z, Li Y, Tian B X, Li Y J, Yin Q, Tang X Z 2018 At. Energy Sci. Technol. 52 2038Google Scholar

    [15]

    向益淮, 高智星, 佟小惠, 戴辉, 汤秀章, 单玉生 2006 强激光与粒子束 18 795

    Xiang Y H, Gao Z X, Tong X H, Dai H, Tang X Z, Shan Y S 2006 High Power Laser Part. Beams 18 795

    [16]

    Zvorykin V D, Lebo I G 1999 Laser Part. Beams 17 69Google Scholar

    [17]

    田宝贤, 梁晶, 王钊, 李业军, 汤秀章 2012 原子能科学技术 46 39Google Scholar

    Tian B X, Liang J, Wang Z, Li Y J, Tang X Z 2012 At. Energy Sci. Technol. 46 39Google Scholar

    [18]

    Larsen J T, Lane S M 1994 J. Quant. Spectrosc. Radiat. Transfer 51 179Google Scholar

    [19]

    江少恩, 李三伟 2009 物理学报 58 8440Google Scholar

    Jiang S E, Li S W 2009 Acta Phys. Sin. 58 8440Google Scholar

    [20]

    经福谦 1999 实验物态方程导引 (北京: 科学出版社) 第2, 211页

    Jing F Q 1999 Introduction to Experimental Equation of State (Beijing: Science Press) p2, 211 (in Chinese)

    [21]

    Fu S Z, Huang X G, Ma M X, Shu H, Wu J, Ye J J, He J H, Gu Y, Luo P Q, Long T, Zhang Y H 2007 J. Appl. Phys. 101 043517Google Scholar

  • 图 1  CH材料状态方程侧向阴影 (a)实验布局; (b)原理示意图

    Fig. 1.  CH EOS side-on shadow experiments: (a) experimental layout; (b) schematics.

    图 2  (a) “天光一号”的典型脉冲时间波形; (b)六束聚焦叠加光斑的空间分布

    Fig. 2.  (a) Heaven-I laser pulse shape; (b) spatial profile of six-beam focusing spot.

    图 3  CH靶结构示意图 (a)纯CH平面靶; (b) 镀膜CH靶; (c)飞片撞击靶

    Fig. 3.  Structure schematics of CH targets: (a) Planar CH target without Al foil; (b) planar CH target with Al foil; (c) flyer-impact target.

    图 4  纯CH平面靶的冲击动力学过程 (a) 冲击波与界面作用的的t-x波系图; (b)不同时刻的压力空间分布; (c)不同膜层的压力加载演化史; (d)不同功率密度下的压力分布

    Fig. 4.  Shock dynamic processes in CH planar target: (a) t-x schematic diagram of wave propagation; (b) spatial distribution of loading pressure at different time; (c) loading pressure history for different layers; (d) spatial distribution of loading pressure for different laser intensities.

    图 5  镀膜CH靶内的冲击动力学过程 (a)冲击波与界面作用的t-x波系图; (b) 阻抗梯度 p-u图; (c) 辐照面为Al层的压力空间分布; (d) 辐照面为CH层的压力空间分布

    Fig. 5.  Shock dynamic processes in CH planar target coated with Al: (a) t-x schematic diagram of wave propagation; (b) p-u schematic diagram; (c) spatial distribution of loading pressure when laser directly irradiates Al layer; (d) spatial distribution of loading pressure when laser directly irradiates CH film.

    图 6  飞片撞击靶内的冲击动力学过程 (a)靶内冲击波与界面相互作用t-x波系图; (b) 不同时刻靶内加载压力的空间分布; (c) Al层自由面、CH靶前后表面速度曲线

    Fig. 6.  Shock dynamic processes in flyer-impact target: (a) t-x schematic diagram of wave propagation; (b) space distribution of loading pressure at different time; (c) velocity histories of the back-surface velocity of Al layer (Al uBs), the front-surface (CH uFs) and back-surface (CH uBs) velocities of CH target layer.

    图 7  条纹相机侧向阴影动态图像 (a) 纯CH平面靶; (b) Al + CH平面靶; (c)飞片撞击靶

    Fig. 7.  Side-on shadowgraph images of streak camera: (a) CH planar target; (b) Al + CH planar taget; (c) flyer-impact target.

    图 8  不同靶型的D-u实验数据的比较

    Fig. 8.  Shock and particle velocities (D-u) of different targets.

    表 1  HYADES程序输入参数

    Table 1.  Input parameters of HYADES program.

    激光条件靶结构靶材料空间网格时间步长
    波长248 nm100 μm CH (纯CH)CH: Sesame EOS_32CH: 1/3 μm0.1 ns
    脉宽28 ns10 μm Al + 50 μm CH (镀膜CH)Al: Sesame EOS_42Al: 1/5 μm
    波形类高斯10 μm Al + 150 μm CH (镀膜CH)
    功率密度/(1012 W·cm–2)150 μm CH + 10 μm Al
    + 100 μm vacuum + 100 μm CH (飞片靶)
    下载: 导出CSV

    表 2  长脉冲激光驱动下的CH靶状态方程数据

    Table 2.  EOS parameters of CH target driven by long pulse laser.

    靶参数/μmElaser/Jufs/(km·s–1)uPfs/(km·s–1)Dfs/(km·s–1)Dav/(km·s–1)Pfs/GPaPsim/GPa
    180 CH544.26 ± 0.122.13 ± 0.065.52 ± 0.085.31 ± 0.0812.23 ± 0.3915.5
    110 CH52.14.01 ± 0.102.01 ± 0.055.36 ± 0.074.13 ± 0.0811.20 ± 0.3114.1
    4.71 Al + 75 CH72.53.34 ± 0.101.67 ± 0.054.92 ± 0.07 × 8.58 ± 0.388.43
    150 CH + 10 Al + 空腔 + 100 CH858.14 ± 0.334.07 ± 0.168.06 ± 0.215.46 ± 0.1034.25 ± 1.6130.7
    下载: 导出CSV
  • [1]

    Lindl J, Landen O, Edwards J, Moses E 2014 Phys. Plasmas 21 020501Google Scholar

    [2]

    Ma T, Hurricane O A, Callahan D A, et al. 2015 Phys. Rev. Lett. 114 145004Google Scholar

    [3]

    He X T, Li J W, Fan Z F, Wang L F, Liu J, Lan K, Wu J F, Ye W H 2016 Phys. Plasmas 23 082706Google Scholar

    [4]

    Campbell E M, Goncharov V N, Sangster T C, et al. 2017 Matter Radiat. Extrem. 2 37Google Scholar

    [5]

    Barrios M A, Hicks D G, Boehly T R, Fratauduono D E, Eggert J H 2010 Phys. Plasmas 17 056307Google Scholar

    [6]

    Barrios M A, Boehly T R, Hicks D G, Fratauduono D E, Eggert J H, Collins G W, Meyerhofer D D 2012 J. Appl. Phys. 111 093515Google Scholar

    [7]

    Aglitskiy Y, Velikovich A L, Karasik M, et al. 2018 Phys. Plasmas 25 032705Google Scholar

    [8]

    黄秀光, 傅思祖, 舒桦, 叶君建, 吴江, 谢志勇, 方智恒, 贾果, 罗平庆, 龙滔, 何钜华, 顾援, 王世绩 2010 物理学报 59 6394Google Scholar

    Huang X G, Fu S Z, Shu H, Ye J J, Wu J, Xie Z Y, Fang Z H, Jia G, Luo P Q, Long T, He J H, Gu Y, Wang S J 2010 Acta Phys. Sin. 59 6394Google Scholar

    [9]

    Shu H, Huang X G, Ye J J, Wu J, Jia G, Fang Z H, Xie Z Y, Zhou H Z, Fu S Z 2015 Eur. Phys. J. D 69 259Google Scholar

    [10]

    Bradley D K, Eggert J H, Smith R F, Prisbrey S T, Hicks D G, Braun D G, Biener J, Hamza A, Rudd R E, Collins G 2009 Phys. Rev. Lett. 102 075503Google Scholar

    [11]

    Smith R F, Eggert J H, Jeanloz R, Duffy T S, Braun D G, Patterson J R, Rudd R E, Biener J, Lazicki A E, Hamza A V, Wang J, Braun T, Benedict L X, Celliers P M, Collins G W 2014 Nature 511 330Google Scholar

    [12]

    薛全喜, 江少恩, 王哲斌, 王峰, 赵学庆, 易爱平, 丁永坤, 刘晶儒 2018 物理学报 67 045202Google Scholar

    Xue Q X, Jiang S E, Wang Z B, Wang F, Zhao X Q, Yi A P, Ding Y K, Liu J R 2018 Acta Phys. Sin. 67 045202Google Scholar

    [13]

    Zhang P L, Tang X Z, Li Y J, Wang Z, Tian B X, Yin Q, Lu Z, Xiang Y H, Gao Z X, Li J 2015 Chin. Phys. Lett. 32 075201Google Scholar

    [14]

    张品亮, 王钊, 李宇, 田宝贤, 李业军, 殷倩, 汤秀章 2018 原子能科学技术 52 2038Google Scholar

    Zhang P L, Wang Z, Li Y, Tian B X, Li Y J, Yin Q, Tang X Z 2018 At. Energy Sci. Technol. 52 2038Google Scholar

    [15]

    向益淮, 高智星, 佟小惠, 戴辉, 汤秀章, 单玉生 2006 强激光与粒子束 18 795

    Xiang Y H, Gao Z X, Tong X H, Dai H, Tang X Z, Shan Y S 2006 High Power Laser Part. Beams 18 795

    [16]

    Zvorykin V D, Lebo I G 1999 Laser Part. Beams 17 69Google Scholar

    [17]

    田宝贤, 梁晶, 王钊, 李业军, 汤秀章 2012 原子能科学技术 46 39Google Scholar

    Tian B X, Liang J, Wang Z, Li Y J, Tang X Z 2012 At. Energy Sci. Technol. 46 39Google Scholar

    [18]

    Larsen J T, Lane S M 1994 J. Quant. Spectrosc. Radiat. Transfer 51 179Google Scholar

    [19]

    江少恩, 李三伟 2009 物理学报 58 8440Google Scholar

    Jiang S E, Li S W 2009 Acta Phys. Sin. 58 8440Google Scholar

    [20]

    经福谦 1999 实验物态方程导引 (北京: 科学出版社) 第2, 211页

    Jing F Q 1999 Introduction to Experimental Equation of State (Beijing: Science Press) p2, 211 (in Chinese)

    [21]

    Fu S Z, Huang X G, Ma M X, Shu H, Wu J, Ye J J, He J H, Gu Y, Luo P Q, Long T, Zhang Y H 2007 J. Appl. Phys. 101 043517Google Scholar

  • [1] 郑雅欣, 那仁满都拉. 可压缩液体中气泡的声空化特性. 物理学报, 2022, 71(1): 014301. doi: 10.7498/aps.71.20211266
    [2] 郑雅欣, 那仁满都拉. 可压缩液体中气泡的声空化特性. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211266
    [3] 薛全喜, 江少恩, 王哲斌, 王峰, 赵学庆, 易爱平, 丁永坤, 刘晶儒. 基于神光III原型装置开展的激光直接驱动准等熵压缩研究进展. 物理学报, 2018, 67(4): 045202. doi: 10.7498/aps.67.20172159
    [4] 张其黎, 张弓木, 赵艳红, 刘海风. 氘、氦及其混合物状态方程第一原理研究. 物理学报, 2015, 64(9): 094702. doi: 10.7498/aps.64.094702
    [5] 贾果, 黄秀光, 谢志勇, 叶君建, 方智恒, 舒桦, 孟祥富, 周华珍, 傅思祖. 液氘状态方程实验数据测量. 物理学报, 2015, 64(16): 166401. doi: 10.7498/aps.64.166401
    [6] 周洪强, 于明, 孙海权, 何安民, 陈大伟, 张凤国, 王裴, 邵建立. 混合物状态方程的计算. 物理学报, 2015, 64(6): 064702. doi: 10.7498/aps.64.064702
    [7] 张志宇, 赵阳, 薛全喜, 王峰, 杨家敏. 激光驱动准等熵压缩透明窗口LiF的透明性. 物理学报, 2015, 64(20): 205202. doi: 10.7498/aps.64.205202
    [8] 赵继波, 孙承纬, 谷卓伟, 赵剑衡, 罗浩. 爆轰驱动固体套筒压缩磁场计算及准等熵过程分析. 物理学报, 2015, 64(8): 080701. doi: 10.7498/aps.64.080701
    [9] 韩勇, 龙新平, 郭向利. 一种简化维里型状态方程预测高温甲烷PVT关系. 物理学报, 2014, 63(15): 150505. doi: 10.7498/aps.63.150505
    [10] 舒桦, 傅思祖, 黄秀光, 叶君建, 周华珍, 谢志勇, 龙滔. 神光II装置上速度干涉仪的研制及应用. 物理学报, 2012, 61(11): 114102. doi: 10.7498/aps.61.114102
    [11] 袁都奇. Fermi气体在势阱中的最大囚禁范围与状态方程. 物理学报, 2011, 60(6): 060509. doi: 10.7498/aps.60.060509
    [12] 宋萍, 蔡灵仓. Grüneisen系数与铝的高温高压状态方程. 物理学报, 2009, 58(3): 1879-1884. doi: 10.7498/aps.58.1879
    [13] 江少恩, 李三伟. 辐射温度与其驱动Al冲击波速度的定标关系研究. 物理学报, 2009, 58(12): 8440-8447. doi: 10.7498/aps.58.8440
    [14] 王江华, 贺端威. 金刚石压砧内单轴应力场对物质状态方程测量的影响. 物理学报, 2008, 57(6): 3397-3401. doi: 10.7498/aps.57.3397
    [15] 张 超, 孙久勋, 田荣刚, 邹世勇. 氮化硅α,β和γ相的解析状态方程和热物理性质. 物理学报, 2007, 56(10): 5969-5973. doi: 10.7498/aps.56.5969
    [16] 过增元, 曹炳阳, 朱宏晔, 张清光. 声子气的状态方程和声子气运动的守恒方程. 物理学报, 2007, 56(6): 3306-3312. doi: 10.7498/aps.56.3306
    [17] 黄海军, 沈 强, 罗国强, 张联盟. 利用多层阻抗梯度飞片产生准等熵压缩的理论解析. 物理学报, 2007, 56(3): 1538-1542. doi: 10.7498/aps.56.1538
    [18] 田春玲, 刘福生, 蔡灵仓, 经福谦. 四体相互作用对固氦压缩特性的贡献. 物理学报, 2003, 52(5): 1218-1221. doi: 10.7498/aps.52.1218
    [19] 黄秀光, 罗平庆, 傅思祖, 顾援, 马民勋, 吴江, 何钜华. 一种激光驱动高压状态方程绝对测量方法的探索. 物理学报, 2002, 51(2): 337-341. doi: 10.7498/aps.51.337
    [20] 沈强, 王传彬, 张联盟, 华劲松, 谭华, 经福谦. 为实现准等熵压缩的波阻抗梯度飞片的实验研究. 物理学报, 2002, 51(8): 1759-1763. doi: 10.7498/aps.51.1759
计量
  • 文章访问数:  4483
  • PDF下载量:  71
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-02-01
  • 修回日期:  2021-06-01
  • 上网日期:  2021-09-18
  • 刊出日期:  2021-10-05

/

返回文章
返回