搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

CaZrO3改性(Na, K)NbO3基无铅陶瓷电学性能的温度稳定性

陈小明 王明焱 唐木智明 李国荣

引用本文:
Citation:

CaZrO3改性(Na, K)NbO3基无铅陶瓷电学性能的温度稳定性

陈小明, 王明焱, 唐木智明, 李国荣

Temperature-stable electrical properties of CaZrO3-modified (Na, K)NbO3-based lead-free piezoceramics

Chen Xiao-Ming, Wang Ming-Yan, Karaki Tomoaki, Li Guo-Rong
PDF
HTML
导出引用
  • 压电陶瓷广泛用于驱动器、传感器等电子领域, 但是目前主要使用的压电陶瓷是铅基陶瓷. 基于保护环境和社会可持续发展的需要, 无铅压电陶瓷的研发变得迫切. 无铅压电陶瓷(K,Na)NbO3(KNN)因具有较高压电常数和居里温度, 而受到广泛关注. 然而较差的温度稳定性限制了其应用. 本文通过二步合成法制备了电学性能温度稳定的(1–x)(Na0.52K0.48)0.95Li0.05NbO3-xCaZrO3(NKLN-xCZ)陶瓷, 研究了CaZrO3对KNN基陶瓷微结构及电学性能的作用. 研究结果表明: 适量CaZrO3改善了样品烧结性能, 得到了致密陶瓷. 随CaZrO3增加, NKLN-CZ陶瓷的三方相(R)-四方相(T)共存出现在组分为 $0.05\leqslant x \leqslant 0.06.$ x = 0.05时, 陶瓷样品不但具有高居里温度(Tc = 373 ℃), 而且表现出良好电学性能(d33 = 198 pC/N, kp = 39%, εr = 1140, tanδ =0.034, Pr = 21 μC/cm2, Ec = 18.2 kV/cm). 此外, 该陶瓷由于存在弥散R-T相变, 导致其相变温度区间拓宽, 因此, 该陶瓷具有较好的电学性能温度稳定: 在温度范围为–50—150 ℃, NKLN–0.05CZ陶瓷的kp保持在34%—39% (kp变化量 $\leqslant13\%$).
    Piezoelectric ceramics are mainly used in the electronic fields such as actuators, sensors, etc. However, at present the piezoelectric ceramics widely used are lead-based ceramics, which are detrimental to the environment. Based on the needs of environmental protection and social sustainable development, the research of lead-free piezoelectric ceramics becomes urgent. (K, Na) NbO3 (KNN) lead-free piezoelectric ceramics have attracted much attention due to their high piezoelectric coefficient and Curie temperature. However, temperature stability of ceramics is poor, which limits their applications. In this work, (1–x)(Na0.52K0.48)0.95Li0.05NbO3-xCaZrO3(NKLN-xCZ) ceramics with temperature stability are prepared by two-step synthesis. The effects of CaZrO3 on the phase structure, microstructure and electrical properties of KNN-based ceramics are studied. The results show that the appropriate introduction of CaZrO3 can improve the sintering properties of the samples and obtain dense ceramics. All the samples have typical perovskite structure without impurity. With the increase of CaZrO3, the temperature of orthorhombic(O)-Tetragonal (T) phase transition (TO-T) and Curie temperature (TC) move from high temperature to low temperature, while the transition temperature (TO-R) moves from low temperature to room temperature, and then, tetragonal (T) phase and rhombohedral (R) phase coexist in NKLN-xCZ ceramics as $0.05 \leqslant x \leqslant0.06 $. When x = 0.05, the ceramics have high Curie temperature (Tc = 373 ℃), and show good piezoelectric and ferroelectric properties (piezoelectric constant d33 = 198 pC/N, planar electromechanical coupling coefficient kp = 39%, εr = 1140, tanδ = 0.034, Pr = 21 μC/cm2, Ec = 18.2 kV/cm) because of the density of ceramics and existence of R-T phase boundary around room temperature. In addition, the relative permittivity of ceramics changes with the increase of frequency, which shows a certain relaxation behavior. The relaxation characteristics can be expressed by the modified Curie-Weiss law (1/εr–1/εr,m) = C(TTm)α. With the increase of CZ content, the dispersion coefficient α of ceramics increases (x = 0.07, α = 1.96), which can be ascribed to A-site cation disorder induced by the addition of CZ. The temperature range of phase transition is widened because of the diffused R-T phase transition. Therefore, the ceramics have temperature-stable electrical properties: the kp of NKLN-0.05CZ ceramics is kept at 34%–39% (variation of kp $\leqslant 13\% $) in a temperature range of –50–150 ℃. It provides methods and ideas for further exploring the temperature stability of KNN-based ceramics.
      通信作者: 陈小明, chen-xm123@163.com
    • 基金项目: 国家自然科学基金地区科学基金(批准号: 52162015)、贵州省科学技术基金项目(批准号: [2020]1Y204)、贵州省教育厅基金项目(批准号: KY[2018]253)和贵州理工学院博士启动基金(批准号: XJGC20190920)资助的课题
      Corresponding author: Chen Xiao-Ming, chen-xm123@163.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 52162015), the Science and Technology Fund of Education Bureau of Guizhou Province, China (Grant No. [2020]1Y204), the Natural Science Foundation of Department of Education of Guizhou Province, China (Grant No. KY [2018]253), and the Doctor Starting Foundation of Guizhou Institute of Technology, China (Grant No. XJGC20190920)
    [1]

    Uchinoin K 1997 Piezoelectric Actuators and Ultrasonic Motors (Boston: Springer US) pp265−273

    [2]

    Jaffe B, Cook W R, Jaffe H 1971 Piezoelectric ceramics (New York: Academic Press) pp1−5

    [3]

    Guo R, Cross L E, Park S E, Noheda B, Cox D E, Shirane G 2000 Phys. Rev. Lett. 84 5423Google Scholar

    [4]

    Wang K, Shen Z Y, Zhang B P, Li J F 2014 J. Inorg. Mater. 29 13Google Scholar

    [5]

    Xiao D Q, Wu J G, Wu L, Zhu J G, Yu P, Lin D M, Liao Y W, Sun Y 2009 J. Mater. Sci. 44 5408Google Scholar

    [6]

    Zhang S, Xia R, Shrout T R 2007 J. Electroceram. 19 251Google Scholar

    [7]

    Rödel J, Jo W, Seifert K T, Anton E M, Granzow T, Damjanovic D 2009 J. Am. Ceram. Soc. 92 1153Google Scholar

    [8]

    Saito Y, Takao H, Tani T, Nonoyama T, Takatori K, Homma T, Nagaya T, Nakamura M 2004 Nature 432 84Google Scholar

    [9]

    Chen K, Xu G, Yang D, Wang X, Li J 2007 J. Appl. Phys. 101 044103Google Scholar

    [10]

    陈超, 江向平, 卫巍, 李小红, 魏红斌, 宋福生 2011 物理学报 60 107704Google Scholar

    Chen C, Jiang X P, Wei W, Li X H, Wei H B, Song F S 2011 Acta Phys. Sin 60 107704Google Scholar

    [11]

    Liang W, Wu W, Xiao D, Zhu J 2011 J. Am. Ceram. Soc. 94 4317Google Scholar

    [12]

    Zhang Y, Li L Y, Bai W F, Shen B, Zhai J W, Li B 2015 Rsc Adv. 5 19647Google Scholar

    [13]

    Zheng T, Wu J, Xiao D, Zhu J, Wang X, Xin L, Lou X 2015 ACS Appl. Mater. Interfaces 7 5927Google Scholar

    [14]

    Zhang Y, Shen B, Zhai J W, Zeng H R 2016 J. Am. Ceram. Soc. 99 752Google Scholar

    [15]

    邢洁, 谭智, 郑婷, 吴家刚, 肖定全, 朱建国 2020 物理学报 69 127707Google Scholar

    Xing J, Tan Z, Zheng T, Wu J G, Zhu J G 2020 Acta Phys. Sin. 69 127707Google Scholar

    [16]

    Zhang S J, Xia R, Shrout T R 2007 Appl. Phys. Lett. 91 132913Google Scholar

    [17]

    Yao F Z, Wang K, Jo W, Webber K G, Comyn T P, Ding J X, Xu B, Cheng L Q, Zheng M P, Hou Y D, Li J F 2016 Adv. Funct. Mater. 26 1217Google Scholar

    [18]

    Zhang M H, Wang K, Du Y J, Dai G, Sun W, Li G, Hu D, Thong H C, Zhao C, Xi X Q, Yue Z X, Li J F 2017 J. Am. Chem. Soc. 139 3889Google Scholar

    [19]

    Tao H, Wu H, Liu Y, Zhang Y, Wu J, Li F, Lyu X, Zhao C, Xiao D, Zhu J, Pennycook S J 2019 J. Am. Chem. Soc. 141 13987Google Scholar

    [20]

    Onoe M, Jumonji H 1967 J. Acoust. Soc. Am. 41 974Google Scholar

    [21]

    Liang W, Wu W, Xiao D, Zhu J, Wu J 2011 J. Mater. Sci. 46 6871Google Scholar

    [22]

    Zhang B, Wu J, Wang X, Cheng X, Zhu J, Xiao D 2013 Curr. Appl Phys. 13 1647Google Scholar

    [23]

    Zuo R, Fang X, Ye C, Li L 2007 J. Am. Ceram. Soc. 90 2424Google Scholar

    [24]

    Chen X, Zeng J, Kim D, Zheng L, Lou Q, Hong Park C, Li G 2019 Mater. Chem. Phys. 231 173Google Scholar

    [25]

    Chen X, Ruan X, Zhao K, He X, Zeng J, Li Y, Zheng L, Park C H, Li G 2015 J. Alloys Compd. 632 103Google Scholar

    [26]

    Zhao P, Zhang B P, Li J F 2007 Appl. Phys. Lett. 90 242909Google Scholar

    [27]

    Uchino K, Nomura S 1982 Ferroelectrics 44 55

  • 图 1  NKLN-xCZ陶瓷的表面形貌 (a) x = 0; (b) x = 0.04; (c) x = 0.05; (d) x = 0.09

    Fig. 1.  SEM surface micrographs of NKLN-xCZ ceramics: (a) x = 0; (b) x = 0.04; (c) x = 0.05; (d) x = 0.09.

    图 2  NKLN-xCZ陶瓷密度

    Fig. 2.  Density of the NKLN-xCZ ceramics.

    图 3  (a) NKLN-xCZ陶瓷晶相结构; (b) NKLN-xCZ陶瓷在40°−50°特征峰

    Fig. 3.  (a) X-ray diffraction patterns of NKLN-xCZ ceramics; (b) the magnification for NKLN-CZ ceramics in the range of 40°−50°.

    图 4  在–100到200 ℃温度范围内NKLN-xCZ陶瓷的介温曲线(1 kHz)

    Fig. 4.  Temperature dependence of dielectric constant and dielectric loss for NKLN-.CZ ceramics measured at 1 kHz in the temperature range from –100 to 200 ℃.

    图 5  (a)−(c)在30到500 ℃温度范围内NKLN-xCZ陶瓷介温曲线; (d) NKLN-xCZ陶瓷ln(1/εr–1/εm)与ln(TTm)关系曲线

    Fig. 5.  (a)−(c) Temperature dependence of dielectric constant for NKLN-xCZ ceramics in the temperature range from 30 to 500 ℃; (d) plots of ln(1/εr–1/εm) as a function of ln(TTm) for the NKLN-xCZ ceramics.

    图 6  NKLN-xCZ陶瓷的相图

    Fig. 6.  Phase diagram of NKLN-xCZ ceramics.

    图 7  NKLN-xCZ陶瓷的铁电性能

    Fig. 7.  Ferroelectric properties of NKLN-xCZ ceramics

    图 8  NKLN-xCZ陶瓷的压电与介电性能

    Fig. 8.  piezoelectric and dielectric properties of NKLN-xCZ ceramics.

    图 9  (a)NKLN-0.05 CZ陶瓷性能温度稳定性; (b)−(f) NKLN–0.05 CZ陶瓷谐振-反谐振图谱(T = –50, 25, 50, 100, 150 ℃)

    Fig. 9.  (a) The temperature-stable electrical properties of NKLN-0.05 CZ ceramics; (b)−(f) impedance as a function of frequency of NKLN-0.05 CZ ceramics (T = –50, 25, 50, 100, 150 ℃).

  • [1]

    Uchinoin K 1997 Piezoelectric Actuators and Ultrasonic Motors (Boston: Springer US) pp265−273

    [2]

    Jaffe B, Cook W R, Jaffe H 1971 Piezoelectric ceramics (New York: Academic Press) pp1−5

    [3]

    Guo R, Cross L E, Park S E, Noheda B, Cox D E, Shirane G 2000 Phys. Rev. Lett. 84 5423Google Scholar

    [4]

    Wang K, Shen Z Y, Zhang B P, Li J F 2014 J. Inorg. Mater. 29 13Google Scholar

    [5]

    Xiao D Q, Wu J G, Wu L, Zhu J G, Yu P, Lin D M, Liao Y W, Sun Y 2009 J. Mater. Sci. 44 5408Google Scholar

    [6]

    Zhang S, Xia R, Shrout T R 2007 J. Electroceram. 19 251Google Scholar

    [7]

    Rödel J, Jo W, Seifert K T, Anton E M, Granzow T, Damjanovic D 2009 J. Am. Ceram. Soc. 92 1153Google Scholar

    [8]

    Saito Y, Takao H, Tani T, Nonoyama T, Takatori K, Homma T, Nagaya T, Nakamura M 2004 Nature 432 84Google Scholar

    [9]

    Chen K, Xu G, Yang D, Wang X, Li J 2007 J. Appl. Phys. 101 044103Google Scholar

    [10]

    陈超, 江向平, 卫巍, 李小红, 魏红斌, 宋福生 2011 物理学报 60 107704Google Scholar

    Chen C, Jiang X P, Wei W, Li X H, Wei H B, Song F S 2011 Acta Phys. Sin 60 107704Google Scholar

    [11]

    Liang W, Wu W, Xiao D, Zhu J 2011 J. Am. Ceram. Soc. 94 4317Google Scholar

    [12]

    Zhang Y, Li L Y, Bai W F, Shen B, Zhai J W, Li B 2015 Rsc Adv. 5 19647Google Scholar

    [13]

    Zheng T, Wu J, Xiao D, Zhu J, Wang X, Xin L, Lou X 2015 ACS Appl. Mater. Interfaces 7 5927Google Scholar

    [14]

    Zhang Y, Shen B, Zhai J W, Zeng H R 2016 J. Am. Ceram. Soc. 99 752Google Scholar

    [15]

    邢洁, 谭智, 郑婷, 吴家刚, 肖定全, 朱建国 2020 物理学报 69 127707Google Scholar

    Xing J, Tan Z, Zheng T, Wu J G, Zhu J G 2020 Acta Phys. Sin. 69 127707Google Scholar

    [16]

    Zhang S J, Xia R, Shrout T R 2007 Appl. Phys. Lett. 91 132913Google Scholar

    [17]

    Yao F Z, Wang K, Jo W, Webber K G, Comyn T P, Ding J X, Xu B, Cheng L Q, Zheng M P, Hou Y D, Li J F 2016 Adv. Funct. Mater. 26 1217Google Scholar

    [18]

    Zhang M H, Wang K, Du Y J, Dai G, Sun W, Li G, Hu D, Thong H C, Zhao C, Xi X Q, Yue Z X, Li J F 2017 J. Am. Chem. Soc. 139 3889Google Scholar

    [19]

    Tao H, Wu H, Liu Y, Zhang Y, Wu J, Li F, Lyu X, Zhao C, Xiao D, Zhu J, Pennycook S J 2019 J. Am. Chem. Soc. 141 13987Google Scholar

    [20]

    Onoe M, Jumonji H 1967 J. Acoust. Soc. Am. 41 974Google Scholar

    [21]

    Liang W, Wu W, Xiao D, Zhu J, Wu J 2011 J. Mater. Sci. 46 6871Google Scholar

    [22]

    Zhang B, Wu J, Wang X, Cheng X, Zhu J, Xiao D 2013 Curr. Appl Phys. 13 1647Google Scholar

    [23]

    Zuo R, Fang X, Ye C, Li L 2007 J. Am. Ceram. Soc. 90 2424Google Scholar

    [24]

    Chen X, Zeng J, Kim D, Zheng L, Lou Q, Hong Park C, Li G 2019 Mater. Chem. Phys. 231 173Google Scholar

    [25]

    Chen X, Ruan X, Zhao K, He X, Zeng J, Li Y, Zheng L, Park C H, Li G 2015 J. Alloys Compd. 632 103Google Scholar

    [26]

    Zhao P, Zhang B P, Li J F 2007 Appl. Phys. Lett. 90 242909Google Scholar

    [27]

    Uchino K, Nomura S 1982 Ferroelectrics 44 55

  • [1] 徐吉元, 张家滕, 孟睿阳, 陈红升, 方以坤, 董生智, 李卫. 烧结Nd25.5Dy6.5Co13FebalM1.05B0.98磁体温度稳定性和力学性能研究. 物理学报, 2023, 72(7): 077502. doi: 10.7498/aps.72.20222045
    [2] 杜金花, 李雍, 孙宁宁, 赵烨, 郝喜红. (1–x)K0.5Na0.5NbO3-xBi(Mg0.5Ti0.5)O3无铅弛豫铁电陶瓷的介电、铁电和高储能行为. 物理学报, 2020, 69(12): 127703. doi: 10.7498/aps.69.20200213
    [3] 徐泽, 娄路遥, 赵纯林, 汤浩正, 刘亦轩, 李昭, 齐晓梅, 张波萍, 李敬锋, 龚文, 王轲. Mn掺杂对KNbO3和(K0.5Na0.5)NbO3无铅钙钛矿陶瓷铁电压电性能的影响. 物理学报, 2020, 69(12): 127705. doi: 10.7498/aps.69.20200277
    [4] 邢洁, 谭智, 郑婷, 吴家刚, 肖定全, 朱建国. 铌酸钾钠基无铅压电陶瓷的高压电活性研究进展. 物理学报, 2020, 69(12): 127707. doi: 10.7498/aps.69.20200288
    [5] 景奇, 李晓娟. 多孔钛酸钡陶瓷制备及其增强的压电灵敏性. 物理学报, 2019, 68(5): 057701. doi: 10.7498/aps.68.20181790
    [6] 袁野, 田博博, 段纯刚. 四方相多铁BiMnO3电控磁性的理论研究. 物理学报, 2018, 67(15): 157511. doi: 10.7498/aps.67.20180946
    [7] 朱振业. 无铅四方相钙钛矿短周期超晶格压电效应机理研究. 物理学报, 2018, 67(7): 077701. doi: 10.7498/aps.67.20172710
    [8] 沈杰, 周静, 石国强, 杨文才, 刘韩星, 陈文. CaTiO3基微波介质陶瓷的频率温度稳定性. 物理学报, 2013, 62(11): 117702. doi: 10.7498/aps.62.117702
    [9] 刘士余, 余大书, 吕跃凯, 李德军, 曹茂盛. 四方和正交以及单斜相K0.5Na0.5NbO3的结构稳定性和电子结构的第一性原理研究. 物理学报, 2013, 62(17): 177102. doi: 10.7498/aps.62.177102
    [10] 邵庆生, 刘士余, 赵辉, 余大书, 曹茂盛. 三方和四方相PbZr0.5Ti0.5O3 的结构稳定性和电子结构的第一性原理研究. 物理学报, 2012, 61(4): 047103. doi: 10.7498/aps.61.047103
    [11] 赵静波, 杜红亮, 屈绍波, 张红梅, 徐卓. A位等价与非等价取代对(K0.5Na0.5)NbO3陶瓷极化的影响. 物理学报, 2011, 60(10): 107701. doi: 10.7498/aps.60.107701
    [12] 陈超, 江向平, 卫巍, 李小红, 魏红斌, 宋福生. (K0.45Na0.55)NbO3无铅压电晶体的生长形态与介电性能研究. 物理学报, 2011, 60(10): 107704. doi: 10.7498/aps.60.107704
    [13] 刘柏年, 马颖, 周益春. 四方相BaTiO3缺陷性质的第一性原理计算. 物理学报, 2010, 59(5): 3377-3383. doi: 10.7498/aps.59.3377
    [14] 郭子政, 宣志国, 张院生, 安彩虹. 铁磁纳米阵列膜温度稳定性的损伤扩散研究. 物理学报, 2008, 57(10): 6571-6576. doi: 10.7498/aps.57.6571
    [15] 明保全, 王矜奉, 臧国忠, 王春明, 盖志刚, 杜 鹃, 郑立梅. 铌酸钾钠基无铅压电陶瓷的X射线衍射与相变分析. 物理学报, 2008, 57(9): 5962-5967. doi: 10.7498/aps.57.5962
    [16] 赵苏串, 李国荣, 张丽娜, 王天宝, 丁爱丽. Na0.25K0.25Bi0.5TiO3无铅压电陶瓷的介电特性研究. 物理学报, 2006, 55(7): 3711-3715. doi: 10.7498/aps.55.3711
    [17] 薛卫东, 陈召勇, 杨 春, 李言荣. 四方相BaTiO3铁电性的第一性原理研究. 物理学报, 2005, 54(2): 857-862. doi: 10.7498/aps.54.857
    [18] 赵明磊, 王春雷, 王矜奉, 陈洪存, 钟维烈. 溶胶-凝胶法制备的高压电常数(Bi0.5Na0.5)1-xBaxTiO3系无铅压电陶瓷. 物理学报, 2004, 53(7): 2357-2362. doi: 10.7498/aps.53.2357
    [19] 初宝进, 李国荣, 殷庆瑞, 张望重, 陈大任. 非化学计量和掺杂对(Na1/2Bi1/2)0.92Ba0.08TiO3陶瓷电性能的影响. 物理学报, 2001, 50(10): 2012-2016. doi: 10.7498/aps.50.2012
    [20] 蒋毅坚, 李建中, 曾令之. 四方相BaTiO3结构的中子衍射. 物理学报, 1988, 37(4): 680-682. doi: 10.7498/aps.37.680
计量
  • 文章访问数:  5103
  • PDF下载量:  82
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-08
  • 修回日期:  2021-06-02
  • 上网日期:  2021-06-07
  • 刊出日期:  2021-10-05

/

返回文章
返回