搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

对钙钛矿CsPbX3的X光波段外光电效应的研究

黎宇坤 董建军 陈韬 宋仔锋 王强强 邓克立 邓博 曹柱荣 王峰

引用本文:
Citation:

对钙钛矿CsPbX3的X光波段外光电效应的研究

黎宇坤, 董建军, 陈韬, 宋仔锋, 王强强, 邓克立, 邓博, 曹柱荣, 王峰

External photoelectric effect of CsPbX3 perovskite in X-ray region

Li Yu-Kun, Dong Jian-Jun, Chen Tao, Song Zai-Feng, Wang Qiang-Qiang, Deng Ke-Li, Deng Bo, Cao Zhu-Rong, Wang Feng
PDF
HTML
导出引用
  • 钙钛矿材料CsPbX3作为新兴半导体材料, 具有X光吸收系数高、制备工艺简单等优点, 是一种优秀的X光光电探测材料. 为了探索CsPbX3在X光真空光电器件领域的应用前景, 对其在X光波段的外光电效应进行了研究. 制备了厚度为230 nm的CsPbI2Br薄膜样品, 并标定了其在2000—5500 eV的响应灵敏度和量子效率, 响应灵敏度达到5.1 × 10–5 A/W以上, 量子效率达到23%以上. 采用Monte-Carlo方法对CsPbI2Br的外光电效应灵敏度和量子效率进行了计算, 计算数据与标定数据的一致性较好, 表明Monte-Carlo方法适用于CsPbX3在X光波段外光电效应的模拟. 在此基础上计算了不同CsPbX3钙钛矿材料在X光波段的响应灵敏度和量子效率, 其计算值均接近于传统X光光电材料CsI, 表明CsPbX3是很有潜力的X光真空光电发射材料. 进一步对CsPbX3材料厚度与灵敏度的关系进行了研究, 其结果显示为获得最佳灵敏度, CsPbX3的厚度应不低于150 nm.
    As a novel low-cost semiconductor with extraordinary photoelectric property, the inorganic CsPbX3 perovskites have become emerging materials for the next generation of X-ray detectors in the past decade. However, most of recent studies of CsPbX3 perovskite X-ray detectors are based on their internal photoelectric effect. Though it is also important and widely used in vacuum X-ray detectors, the external photoelectric effect of CsPbX3 perovskite has been rarely studied by now. Thus, the response sensitivity of the CsPbX3 perovskite’s external photoelectric effect in the X-ray region is studied in the present paper. First, a 230-nm-thick CsPbI2Br membrane is prepared on a metal substrate by a conventional one-step deposition method, with a precursor solution used. Then the external photoelectric responsivity and quantum efficiency of the CsPbI2Br membrane are calibrated in a range from 2000 to 5500 eV at Beijing Synchrotron Radiation Facility. The responsivity is over 5.1 × 10–5 A/W in the range and the quantum efficiency is over 23%. These calibration data are close to those of a traditional X-ray photoelectric material CsI. The Monte-Carlo method is utilized to simulate the external photoelectric effect of CsPbI2Br perovskite, and the external photoelectric responsivity is calculated. The calculated data match well with the calibration, proving the Monte-Carlo method feasible for the external photoelectric effect simulation of CsPbX3 perovskite. Then the external photoelectric responsivities and quantum efficiencies of CsPbX3 perovskites are calculated via the Monte-Carlo method in the X-ray range from 2000 to 10000 eV. The calculated responsivities of different CsPbX3 perovskites are all close to the responsivity of CsI, and an order of magnitude higher than that of Au, and the CsPbX3 quantum efficiencies also follow a similar scenario. This indicates that CsPbX3 perovskites have good external photoelectric properties and potential applications in X-ray vacuum detectors such as photocathode and photomultiplier. The influence of thickness on CsPbX3 photoelectric response is also studied in this paper via Monte-Carlo simulation. The results show that the responsivity increases with the material thickness increasing, which is due to the increased X-ray absorption. The responsivities all reach their upper limits at a material thickness of about 150 nm, which means that the electrons generated at 150 nm can hardly escape from the material surface. It is indicated that the thickness of CsPbX3 should be no less than 150 nm to obtain the optimal photoelectric response.
      通信作者: 黎宇坤, lychate@126.com
    • 基金项目: 国家自然科学基金(批准号: 11805180) 资助的课题
      Corresponding author: Li Yu-Kun, lychate@126.com
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11805180)
    [1]

    Kojima A, Teshima K, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6050Google Scholar

    [2]

    Chen Y N, He M H, Peng J J, Sun Y, Liang Z Q 2016 Adv. Sci. 3 1500392Google Scholar

    [3]

    Quinten A A, Gabriele R, Maksym V K, Liberato M 2018 Nat. Mater. 17 394Google Scholar

    [4]

    Dong Y H, Zou Y S, Song J Z, Song X F, Zeng H B 2017 J. Mater. Chem. C 5 11369Google Scholar

    [5]

    Constantinos C S, Christos D M, John A P, Liu Z F, Maria S, Jino I, Thomas C C, Arief C W, Duck Y C, Arthur J F, Bruce W W, Mercouri G K 2013 Cryst. Growth Des. 13 2722

    [6]

    Sergii Y, Mykhailo S, Dominik K, Shreetu S, Moses R, Gebhard J M, Hamed A, Christoph J B, Julian S, Maksym V K, Wolfgang H 2015 Nat. Photonics 9 444Google Scholar

    [7]

    Pan W C, Wu H D, Luo J J, Deng Z Z, Ge C, Chen C, Jiang X W, Yin W, Niu G D, Zhu L J, Yin L X, Zhou Y, Xie Q G, Ke X X, Sui M L, Tang J 2017 Nat. Photonics 11 726Google Scholar

    [8]

    Pan W C, Yang B, Niu G D, Xue K, Du X Y, Yin L X, Zhang M Y, Wu H D, Miao X, Tang J 2019 Adv. Mater. 31 1904405Google Scholar

    [9]

    Li X M, Meng C F, Huang B, Yang D D, Xu X B, Zeng H B 2020 Adv. Opt. Mater. 8 2000273

    [10]

    Gao L, Yan Q F 2020 Sol. RRL 4 1900210Google Scholar

    [11]

    Loredana P, Sergii Y, Maryna I B, Franziska K, Riccarda C, Christopher H H, Yang R X, Aron W, Maksym V K 2015 Nano Lett. 15 3692

    [12]

    Wang H, Kim D H 2017 Chem. Soc. Rev. 46 5204Google Scholar

    [13]

    Chen W J, Li X Q, Li Y W, Li Y F 2020 Energy Environ. Sci. 13 1971Google Scholar

    [14]

    Jiang Y Z, Yuan J, Ni Y X, Yang J E, Wang Y, Jiu T G, Yuan M H, Chen J 2018 Joule 2 1Google Scholar

    [15]

    Chen W J, Chen H Y, Xu G Y, Xue R M, Wang S H, Li Y W, Li Y F 2019 Joule 3 191Google Scholar

    [16]

    Fan Y Y, Fang J J, Chang X M, Tang M C, Dounya B, Xu Z, Jiang Z W, Wen J L, Zhao H, Niu T Q, Detlerf-M S, Jin S Y, Liu Z K, Li E Q, Aram A, Liu S Z, Zhao K 2019 Joule 3 2485Google Scholar

    [17]

    Duan C Y, Cui J, Zhang M M, Han Y, Yang S M, Zho H, Bian H T, Yao J X, Zhao K, Liu Z K, Liu S Z 2020 Adv. Energy Mater. 10 2000691Google Scholar

    [18]

    易荣清, 宋天明, 赵屹东, 郑雷, 马陈燕 2013 核聚变与等离子体物理 4 320Google Scholar

    Yi R Q, Song T M, Zhao Y D, Zheng L, Ma C Y 2013 Nucl. Fusion Plasma Phys. 4 320Google Scholar

    [19]

    曾鹏, 袁铮, 邓博, 袁永腾, 李志超, 刘慎业, 赵屹东, 洪才浩, 郑雷, 崔明启 2012 物理学报 61 155209Google Scholar

    Zeng P, Yuan Z, Deng B, Yuan Y T, Li Z C, Liu S Y, Zhao Y D, Hong C H, Zheng L, Cui M Q 2012 Acta Phys. Sin. 61 155209Google Scholar

    [20]

    Spicer W E, Herrera-Gomez A 1993 Proc. SPIE. 2022 18Google Scholar

    [21]

    Akkerman A, Gibrekhterman A, Breskin A, Chechik R 1992 J. Appl. Phys. 72 5429Google Scholar

    [22]

    Li X, Gu L, Zong F K, Zhang J J, Yang Q L 2015 J. Appl. Phys. 118 083105Google Scholar

    [23]

    李敏, 尼启良, 陈波 2009 物理学报 58 6894Google Scholar

    Li M, Ni Q L, Chen B 2009 Acta Phys. Sin. 58 6894Google Scholar

  • 图 1  不同材料在X光波段的线性吸收系数

    Fig. 1.  Absorption coefficient of different materials as a function of photon energy.

    图 2  (a) CsPbI2Br薄膜样品照片以及响应灵敏度测试排布示意图; (b) CsPbI2Br薄膜X射线衍射分析数据及扫描电镜照片

    Fig. 2.  (a) Photo of a CsPbI2Br membrane sample and the layout of spectral responsivity calibration; (b) XRD data and SEM photo of CsPbI2Br membrane sample.

    图 3  (a) CsPbI2Br, CsI和Au样品的谱响应灵敏度标定数据; (b) 相应的量子效率数据

    Fig. 3.  (a) Spectral response sensitivity calibration data of CsPbI2Br, CsI and Au; (b) quantum efficiency data of CsPbI2Br, CsI and Au,

    图 4  CsPbI2Br的MC模拟数据与实验数据对比

    Fig. 4.  Comparison of MC simulation and calibration data of CsPbI2Br.

    图 5  采用MC方法计算的CsPbX3响应灵敏度和量子效率 (a) CsPbI3; (b) CsPbI2Br; (c) CsPbBr3; (d) CsPbX3灵敏度模拟数据与CsI和Au测试数据的对比

    Fig. 5.  Spectral responsivity and quantum efficiency calculated via MC simulation: (a) CsPbI3; (b) CsPbI2Br; (c) CsPbBr3; (d) comparison of CsPbX3 response simulation with experimental datas of CsI and Au.

    图 6  材料厚度对CsPbX3的X光响应灵敏度的影响 (a) CsPbI3; (b) CsPbI2Br; (c) CsPbBr3

    Fig. 6.  Influence of thickness on CsPbX3 X-ray responsivity: (a) CsPbI3; (b) CsPbI2Br; (c) CsPbBr3.

  • [1]

    Kojima A, Teshima K, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6050Google Scholar

    [2]

    Chen Y N, He M H, Peng J J, Sun Y, Liang Z Q 2016 Adv. Sci. 3 1500392Google Scholar

    [3]

    Quinten A A, Gabriele R, Maksym V K, Liberato M 2018 Nat. Mater. 17 394Google Scholar

    [4]

    Dong Y H, Zou Y S, Song J Z, Song X F, Zeng H B 2017 J. Mater. Chem. C 5 11369Google Scholar

    [5]

    Constantinos C S, Christos D M, John A P, Liu Z F, Maria S, Jino I, Thomas C C, Arief C W, Duck Y C, Arthur J F, Bruce W W, Mercouri G K 2013 Cryst. Growth Des. 13 2722

    [6]

    Sergii Y, Mykhailo S, Dominik K, Shreetu S, Moses R, Gebhard J M, Hamed A, Christoph J B, Julian S, Maksym V K, Wolfgang H 2015 Nat. Photonics 9 444Google Scholar

    [7]

    Pan W C, Wu H D, Luo J J, Deng Z Z, Ge C, Chen C, Jiang X W, Yin W, Niu G D, Zhu L J, Yin L X, Zhou Y, Xie Q G, Ke X X, Sui M L, Tang J 2017 Nat. Photonics 11 726Google Scholar

    [8]

    Pan W C, Yang B, Niu G D, Xue K, Du X Y, Yin L X, Zhang M Y, Wu H D, Miao X, Tang J 2019 Adv. Mater. 31 1904405Google Scholar

    [9]

    Li X M, Meng C F, Huang B, Yang D D, Xu X B, Zeng H B 2020 Adv. Opt. Mater. 8 2000273

    [10]

    Gao L, Yan Q F 2020 Sol. RRL 4 1900210Google Scholar

    [11]

    Loredana P, Sergii Y, Maryna I B, Franziska K, Riccarda C, Christopher H H, Yang R X, Aron W, Maksym V K 2015 Nano Lett. 15 3692

    [12]

    Wang H, Kim D H 2017 Chem. Soc. Rev. 46 5204Google Scholar

    [13]

    Chen W J, Li X Q, Li Y W, Li Y F 2020 Energy Environ. Sci. 13 1971Google Scholar

    [14]

    Jiang Y Z, Yuan J, Ni Y X, Yang J E, Wang Y, Jiu T G, Yuan M H, Chen J 2018 Joule 2 1Google Scholar

    [15]

    Chen W J, Chen H Y, Xu G Y, Xue R M, Wang S H, Li Y W, Li Y F 2019 Joule 3 191Google Scholar

    [16]

    Fan Y Y, Fang J J, Chang X M, Tang M C, Dounya B, Xu Z, Jiang Z W, Wen J L, Zhao H, Niu T Q, Detlerf-M S, Jin S Y, Liu Z K, Li E Q, Aram A, Liu S Z, Zhao K 2019 Joule 3 2485Google Scholar

    [17]

    Duan C Y, Cui J, Zhang M M, Han Y, Yang S M, Zho H, Bian H T, Yao J X, Zhao K, Liu Z K, Liu S Z 2020 Adv. Energy Mater. 10 2000691Google Scholar

    [18]

    易荣清, 宋天明, 赵屹东, 郑雷, 马陈燕 2013 核聚变与等离子体物理 4 320Google Scholar

    Yi R Q, Song T M, Zhao Y D, Zheng L, Ma C Y 2013 Nucl. Fusion Plasma Phys. 4 320Google Scholar

    [19]

    曾鹏, 袁铮, 邓博, 袁永腾, 李志超, 刘慎业, 赵屹东, 洪才浩, 郑雷, 崔明启 2012 物理学报 61 155209Google Scholar

    Zeng P, Yuan Z, Deng B, Yuan Y T, Li Z C, Liu S Y, Zhao Y D, Hong C H, Zheng L, Cui M Q 2012 Acta Phys. Sin. 61 155209Google Scholar

    [20]

    Spicer W E, Herrera-Gomez A 1993 Proc. SPIE. 2022 18Google Scholar

    [21]

    Akkerman A, Gibrekhterman A, Breskin A, Chechik R 1992 J. Appl. Phys. 72 5429Google Scholar

    [22]

    Li X, Gu L, Zong F K, Zhang J J, Yang Q L 2015 J. Appl. Phys. 118 083105Google Scholar

    [23]

    李敏, 尼启良, 陈波 2009 物理学报 58 6894Google Scholar

    Li M, Ni Q L, Chen B 2009 Acta Phys. Sin. 58 6894Google Scholar

  • [1] 严涌飚, 李霜, 丁双双, 张冰雪, 孙浩, 鞠泉浩, 姚露. 基质${\text{VO}}_4^{3 - }$与掺杂离子Pr3+荧光强度比的新型高灵敏度光学测温研究. 物理学报, 2024, 73(9): 097801. doi: 10.7498/aps.73.20240012
    [2] 韩小萱, 孙光祖, 郝丽萍, 白素英, 焦月春. 基于里德伯原子Stark效应射频电场测量灵敏度研究. 物理学报, 2024, 73(9): 093202. doi: 10.7498/aps.73.20240162
    [3] 何小安, 杨家敏, 黎宇坤, 李晋, 熊刚. 软X射线条纹相机CsI光阴极响应灵敏度的理论计算. 物理学报, 2023, 72(24): 245203. doi: 10.7498/aps.72.20231043
    [4] 陈博, 汪宏年, 杨守文, 殷长春. 海洋可控源三维电磁响应显式灵敏度矩阵的快速算法. 物理学报, 2021, 70(6): 069101. doi: 10.7498/aps.70.20201282
    [5] 张露露, 白乐乐, 杨煜林, 杨永彪, 王彦华, 温馨, 何军, 王军民. 采用反抽运光改善光泵铷原子磁强计的灵敏度. 物理学报, 2021, 70(23): 230702. doi: 10.7498/aps.70.20210920
    [6] 吴甜, 姚梦丽, 龙孟秋. 钙钛矿CsPbX3(X=Cl, Br, I)与五环石墨烯范德瓦耳斯异质结的界面相互作用和光电性能的第一性原理研究. 物理学报, 2021, 70(5): 056301. doi: 10.7498/aps.70.20201246
    [7] 杨晨, 左冠华, 田壮壮, 张玉驰, 张天才. 线极化Bell-Bloom测磁系统中抽运光对磁场灵敏度的影响. 物理学报, 2019, 68(9): 090701. doi: 10.7498/aps.68.20190030
    [8] 黎宇坤, 陈韬, 李晋, 杨志文, 胡昕, 邓克立, 曹柱荣. CsI光阴极在10100 keV X射线能区的响应灵敏度计算. 物理学报, 2018, 67(8): 085203. doi: 10.7498/aps.67.20180029
    [9] 王俊平, 戚苏阳, 刘士钢. 基于版图优化的综合灵敏度模型. 物理学报, 2014, 63(12): 128503. doi: 10.7498/aps.63.128503
    [10] 逯丹凤, 祁志美. 高灵敏度集成光偏振干涉仪特性及生化传感应用研究. 物理学报, 2012, 61(11): 114212. doi: 10.7498/aps.61.114212
    [11] 曾鹏, 袁铮, 邓博, 袁永腾, 李志超, 刘慎业, 赵屹东, 洪才浩, 郑雷, 崔明启. 软X射线条纹相机透射式Au与CsI阴极谱响应灵敏度标定. 物理学报, 2012, 61(15): 155209. doi: 10.7498/aps.61.155209
    [12] 蔡元学, 掌蕴东, 党博石, 吴昊, 王金芳, 袁萍. 基于Ⅲ-Ⅴ与Ⅱ-Ⅵ族半导体材料色散特性的高灵敏度慢光干涉仪. 物理学报, 2011, 60(4): 040701. doi: 10.7498/aps.60.040701
    [13] 袁铮, 刘慎业, 曹柱荣, 李云峰, 陈韬, 黎航, 张海鹰, 陈铭. 金阴极的选择性光电效应. 物理学报, 2010, 59(7): 4967-4971. doi: 10.7498/aps.59.4967
    [14] 赵慧杰, 何世禹, 孙彦铮, 孙强, 肖志斌, 吕伟, 黄才勇, 肖景东, 吴宜勇. 100 keV质子辐照对空间GaAs/Ge太阳电池光电效应的影响. 物理学报, 2009, 58(1): 404-410. doi: 10.7498/aps.58.404
    [15] 任利春, 周林, 李润兵, 刘敏, 王谨, 詹明生. 不同序列拉曼光脉冲对原子重力仪灵敏度的影响. 物理学报, 2009, 58(12): 8230-8235. doi: 10.7498/aps.58.8230
    [16] 章法强, 杨建伦, 李正宏, 钟耀华, 叶 凡, 秦 义, 陈法新, 应纯同, 刘广均. 高灵敏度的快中子照相系统. 物理学报, 2007, 56(1): 583-588. doi: 10.7498/aps.56.583
    [17] 刘 迎, 王利军, 郭云峰, 张小娟, 高宗慧, 田会娟. 空间分辨漫反射的高阶参量灵敏度. 物理学报, 2007, 56(4): 2119-2123. doi: 10.7498/aps.56.2119
    [18] 邵 杰, 高晓明, 袁怿谦, 杨 颙, 曹振松, 裴世鑫, 张为俊. 信号处理改善波长调制光谱灵敏度的实验研究. 物理学报, 2005, 54(10): 4638-4642. doi: 10.7498/aps.54.4638
    [19] 潘少华. 关于腔内光谱机理和灵敏度的分析. 物理学报, 1981, 30(9): 1270-1274. doi: 10.7498/aps.30.1270
    [20] 张幼文. 对各种红外系统的灵敏度方程的修正. 物理学报, 1980, 29(7): 813-828. doi: 10.7498/aps.29.813
计量
  • 文章访问数:  4724
  • PDF下载量:  110
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-08
  • 修回日期:  2021-05-17
  • 上网日期:  2021-06-07
  • 刊出日期:  2021-10-05

/

返回文章
返回