-
钙钛矿材料CsPbX3作为新兴半导体材料, 具有X光吸收系数高、制备工艺简单等优点, 是一种优秀的X光光电探测材料. 为了探索CsPbX3在X光真空光电器件领域的应用前景, 对其在X光波段的外光电效应进行了研究. 制备了厚度为230 nm的CsPbI2Br薄膜样品, 并标定了其在2000—5500 eV的响应灵敏度和量子效率, 响应灵敏度达到5.1 × 10–5 A/W以上, 量子效率达到23%以上. 采用Monte-Carlo方法对CsPbI2Br的外光电效应灵敏度和量子效率进行了计算, 计算数据与标定数据的一致性较好, 表明Monte-Carlo方法适用于CsPbX3在X光波段外光电效应的模拟. 在此基础上计算了不同CsPbX3钙钛矿材料在X光波段的响应灵敏度和量子效率, 其计算值均接近于传统X光光电材料CsI, 表明CsPbX3是很有潜力的X光真空光电发射材料. 进一步对CsPbX3材料厚度与灵敏度的关系进行了研究, 其结果显示为获得最佳灵敏度, CsPbX3的厚度应不低于150 nm.As a novel low-cost semiconductor with extraordinary photoelectric property, the inorganic CsPbX3 perovskites have become emerging materials for the next generation of X-ray detectors in the past decade. However, most of recent studies of CsPbX3 perovskite X-ray detectors are based on their internal photoelectric effect. Though it is also important and widely used in vacuum X-ray detectors, the external photoelectric effect of CsPbX3 perovskite has been rarely studied by now. Thus, the response sensitivity of the CsPbX3 perovskite’s external photoelectric effect in the X-ray region is studied in the present paper. First, a 230-nm-thick CsPbI2Br membrane is prepared on a metal substrate by a conventional one-step deposition method, with a precursor solution used. Then the external photoelectric responsivity and quantum efficiency of the CsPbI2Br membrane are calibrated in a range from 2000 to 5500 eV at Beijing Synchrotron Radiation Facility. The responsivity is over 5.1 × 10–5 A/W in the range and the quantum efficiency is over 23%. These calibration data are close to those of a traditional X-ray photoelectric material CsI. The Monte-Carlo method is utilized to simulate the external photoelectric effect of CsPbI2Br perovskite, and the external photoelectric responsivity is calculated. The calculated data match well with the calibration, proving the Monte-Carlo method feasible for the external photoelectric effect simulation of CsPbX3 perovskite. Then the external photoelectric responsivities and quantum efficiencies of CsPbX3 perovskites are calculated via the Monte-Carlo method in the X-ray range from 2000 to 10000 eV. The calculated responsivities of different CsPbX3 perovskites are all close to the responsivity of CsI, and an order of magnitude higher than that of Au, and the CsPbX3 quantum efficiencies also follow a similar scenario. This indicates that CsPbX3 perovskites have good external photoelectric properties and potential applications in X-ray vacuum detectors such as photocathode and photomultiplier. The influence of thickness on CsPbX3 photoelectric response is also studied in this paper via Monte-Carlo simulation. The results show that the responsivity increases with the material thickness increasing, which is due to the increased X-ray absorption. The responsivities all reach their upper limits at a material thickness of about 150 nm, which means that the electrons generated at 150 nm can hardly escape from the material surface. It is indicated that the thickness of CsPbX3 should be no less than 150 nm to obtain the optimal photoelectric response.
-
Keywords:
- CsPbX3 /
- X-ray /
- external photoelectric effect /
- responsivity
[1] Kojima A, Teshima K, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6050Google Scholar
[2] Chen Y N, He M H, Peng J J, Sun Y, Liang Z Q 2016 Adv. Sci. 3 1500392Google Scholar
[3] Quinten A A, Gabriele R, Maksym V K, Liberato M 2018 Nat. Mater. 17 394Google Scholar
[4] Dong Y H, Zou Y S, Song J Z, Song X F, Zeng H B 2017 J. Mater. Chem. C 5 11369Google Scholar
[5] Constantinos C S, Christos D M, John A P, Liu Z F, Maria S, Jino I, Thomas C C, Arief C W, Duck Y C, Arthur J F, Bruce W W, Mercouri G K 2013 Cryst. Growth Des. 13 2722
[6] Sergii Y, Mykhailo S, Dominik K, Shreetu S, Moses R, Gebhard J M, Hamed A, Christoph J B, Julian S, Maksym V K, Wolfgang H 2015 Nat. Photonics 9 444Google Scholar
[7] Pan W C, Wu H D, Luo J J, Deng Z Z, Ge C, Chen C, Jiang X W, Yin W, Niu G D, Zhu L J, Yin L X, Zhou Y, Xie Q G, Ke X X, Sui M L, Tang J 2017 Nat. Photonics 11 726Google Scholar
[8] Pan W C, Yang B, Niu G D, Xue K, Du X Y, Yin L X, Zhang M Y, Wu H D, Miao X, Tang J 2019 Adv. Mater. 31 1904405Google Scholar
[9] Li X M, Meng C F, Huang B, Yang D D, Xu X B, Zeng H B 2020 Adv. Opt. Mater. 8 2000273
[10] Gao L, Yan Q F 2020 Sol. RRL 4 1900210Google Scholar
[11] Loredana P, Sergii Y, Maryna I B, Franziska K, Riccarda C, Christopher H H, Yang R X, Aron W, Maksym V K 2015 Nano Lett. 15 3692
[12] Wang H, Kim D H 2017 Chem. Soc. Rev. 46 5204Google Scholar
[13] Chen W J, Li X Q, Li Y W, Li Y F 2020 Energy Environ. Sci. 13 1971Google Scholar
[14] Jiang Y Z, Yuan J, Ni Y X, Yang J E, Wang Y, Jiu T G, Yuan M H, Chen J 2018 Joule 2 1Google Scholar
[15] Chen W J, Chen H Y, Xu G Y, Xue R M, Wang S H, Li Y W, Li Y F 2019 Joule 3 191Google Scholar
[16] Fan Y Y, Fang J J, Chang X M, Tang M C, Dounya B, Xu Z, Jiang Z W, Wen J L, Zhao H, Niu T Q, Detlerf-M S, Jin S Y, Liu Z K, Li E Q, Aram A, Liu S Z, Zhao K 2019 Joule 3 2485Google Scholar
[17] Duan C Y, Cui J, Zhang M M, Han Y, Yang S M, Zho H, Bian H T, Yao J X, Zhao K, Liu Z K, Liu S Z 2020 Adv. Energy Mater. 10 2000691Google Scholar
[18] 易荣清, 宋天明, 赵屹东, 郑雷, 马陈燕 2013 核聚变与等离子体物理 4 320Google Scholar
Yi R Q, Song T M, Zhao Y D, Zheng L, Ma C Y 2013 Nucl. Fusion Plasma Phys. 4 320Google Scholar
[19] 曾鹏, 袁铮, 邓博, 袁永腾, 李志超, 刘慎业, 赵屹东, 洪才浩, 郑雷, 崔明启 2012 物理学报 61 155209Google Scholar
Zeng P, Yuan Z, Deng B, Yuan Y T, Li Z C, Liu S Y, Zhao Y D, Hong C H, Zheng L, Cui M Q 2012 Acta Phys. Sin. 61 155209Google Scholar
[20] Spicer W E, Herrera-Gomez A 1993 Proc. SPIE. 2022 18Google Scholar
[21] Akkerman A, Gibrekhterman A, Breskin A, Chechik R 1992 J. Appl. Phys. 72 5429Google Scholar
[22] Li X, Gu L, Zong F K, Zhang J J, Yang Q L 2015 J. Appl. Phys. 118 083105Google Scholar
[23] 李敏, 尼启良, 陈波 2009 物理学报 58 6894Google Scholar
Li M, Ni Q L, Chen B 2009 Acta Phys. Sin. 58 6894Google Scholar
-
图 5 采用MC方法计算的CsPbX3响应灵敏度和量子效率 (a) CsPbI3; (b) CsPbI2Br; (c) CsPbBr3; (d) CsPbX3灵敏度模拟数据与CsI和Au测试数据的对比
Fig. 5. Spectral responsivity and quantum efficiency calculated via MC simulation: (a) CsPbI3; (b) CsPbI2Br; (c) CsPbBr3; (d) comparison of CsPbX3 response simulation with experimental datas of CsI and Au.
-
[1] Kojima A, Teshima K, Shirai Y, Miyasaka T 2009 J. Am. Chem. Soc. 131 6050Google Scholar
[2] Chen Y N, He M H, Peng J J, Sun Y, Liang Z Q 2016 Adv. Sci. 3 1500392Google Scholar
[3] Quinten A A, Gabriele R, Maksym V K, Liberato M 2018 Nat. Mater. 17 394Google Scholar
[4] Dong Y H, Zou Y S, Song J Z, Song X F, Zeng H B 2017 J. Mater. Chem. C 5 11369Google Scholar
[5] Constantinos C S, Christos D M, John A P, Liu Z F, Maria S, Jino I, Thomas C C, Arief C W, Duck Y C, Arthur J F, Bruce W W, Mercouri G K 2013 Cryst. Growth Des. 13 2722
[6] Sergii Y, Mykhailo S, Dominik K, Shreetu S, Moses R, Gebhard J M, Hamed A, Christoph J B, Julian S, Maksym V K, Wolfgang H 2015 Nat. Photonics 9 444Google Scholar
[7] Pan W C, Wu H D, Luo J J, Deng Z Z, Ge C, Chen C, Jiang X W, Yin W, Niu G D, Zhu L J, Yin L X, Zhou Y, Xie Q G, Ke X X, Sui M L, Tang J 2017 Nat. Photonics 11 726Google Scholar
[8] Pan W C, Yang B, Niu G D, Xue K, Du X Y, Yin L X, Zhang M Y, Wu H D, Miao X, Tang J 2019 Adv. Mater. 31 1904405Google Scholar
[9] Li X M, Meng C F, Huang B, Yang D D, Xu X B, Zeng H B 2020 Adv. Opt. Mater. 8 2000273
[10] Gao L, Yan Q F 2020 Sol. RRL 4 1900210Google Scholar
[11] Loredana P, Sergii Y, Maryna I B, Franziska K, Riccarda C, Christopher H H, Yang R X, Aron W, Maksym V K 2015 Nano Lett. 15 3692
[12] Wang H, Kim D H 2017 Chem. Soc. Rev. 46 5204Google Scholar
[13] Chen W J, Li X Q, Li Y W, Li Y F 2020 Energy Environ. Sci. 13 1971Google Scholar
[14] Jiang Y Z, Yuan J, Ni Y X, Yang J E, Wang Y, Jiu T G, Yuan M H, Chen J 2018 Joule 2 1Google Scholar
[15] Chen W J, Chen H Y, Xu G Y, Xue R M, Wang S H, Li Y W, Li Y F 2019 Joule 3 191Google Scholar
[16] Fan Y Y, Fang J J, Chang X M, Tang M C, Dounya B, Xu Z, Jiang Z W, Wen J L, Zhao H, Niu T Q, Detlerf-M S, Jin S Y, Liu Z K, Li E Q, Aram A, Liu S Z, Zhao K 2019 Joule 3 2485Google Scholar
[17] Duan C Y, Cui J, Zhang M M, Han Y, Yang S M, Zho H, Bian H T, Yao J X, Zhao K, Liu Z K, Liu S Z 2020 Adv. Energy Mater. 10 2000691Google Scholar
[18] 易荣清, 宋天明, 赵屹东, 郑雷, 马陈燕 2013 核聚变与等离子体物理 4 320Google Scholar
Yi R Q, Song T M, Zhao Y D, Zheng L, Ma C Y 2013 Nucl. Fusion Plasma Phys. 4 320Google Scholar
[19] 曾鹏, 袁铮, 邓博, 袁永腾, 李志超, 刘慎业, 赵屹东, 洪才浩, 郑雷, 崔明启 2012 物理学报 61 155209Google Scholar
Zeng P, Yuan Z, Deng B, Yuan Y T, Li Z C, Liu S Y, Zhao Y D, Hong C H, Zheng L, Cui M Q 2012 Acta Phys. Sin. 61 155209Google Scholar
[20] Spicer W E, Herrera-Gomez A 1993 Proc. SPIE. 2022 18Google Scholar
[21] Akkerman A, Gibrekhterman A, Breskin A, Chechik R 1992 J. Appl. Phys. 72 5429Google Scholar
[22] Li X, Gu L, Zong F K, Zhang J J, Yang Q L 2015 J. Appl. Phys. 118 083105Google Scholar
[23] 李敏, 尼启良, 陈波 2009 物理学报 58 6894Google Scholar
Li M, Ni Q L, Chen B 2009 Acta Phys. Sin. 58 6894Google Scholar
计量
- 文章访问数: 4724
- PDF下载量: 110
- 被引次数: 0