搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

两次淬火下横场中XY链的动力学量子相变

符浩 曹凯源 钟鸣 童培庆

引用本文:
Citation:

两次淬火下横场中XY链的动力学量子相变

符浩, 曹凯源, 钟鸣, 童培庆

Dynamical quantum phase transitions in transverse field XY chain after a double quench

Fu Hao, Cao Kai-Yuan, Zhong Ming, Tong Pei-Qing
PDF
HTML
导出引用
  • 研究了两次淬火下横场中XY链的动力学量子相变. 两次淬火是指系统的Hamilton量先由H0淬火到H1, 演化一段时间T后再由H1淬火到H2. 由于横场中XY链存在两种不同的量子相变(Ising相变和各向异性相变), 因此主要讨论淬火路径对横场中XY链的动力学量子相变的影响, 发现第2次淬火后系统发生动力学量子相变的临界时间存在三种典型的情形. 情形I对应于临界时间在一定的T范围内出现, 它与由H0淬火到H1的临界时间相联系. 情形II对应于临界时间在任意T时总是出现, 它与由H0直接淬火到H2的临界时间相联系. 情形III对应于临界时间也在任意T时总是出现, 它同时与由H0淬火到H1以及由H0直接淬火到H2的临界时间相联系. 还发现两次淬火都经过同一类相变点时, 第2次淬火后只会出现情形I对应的临界时间. 而两次淬火经过不同类相变点时, 第2次淬火后的临界时间会出现上述三种情形中的任意两种, 它与淬火路径有关.
    Nonequilibrium dynamics of quantum many-body systems have achieved rapid progress from both theoretical and experimental perspectives. Recently, dynamical quantum phase transitions (DQPTs), which describe the nonanalytic behaviors of physical quantities during the time evolution, have attracted a lot of interest. The most studied protocol to drive the system out of equilibrium is via a quantum quench. Recently, the DQPTs in the Ising chain and ANNNI chain after double quench are studied. Double quench means that the Hamiltonian of the system is abruptly changed from $H_{0}$ to $H_{1}$, and then abruptly changed from $H_{1}$ to $H_{2}$ after a evolutionary time T. One can control at will whether or not DQPTs appear after the second quench by varying T. In this paper, we study the DQPTs arising from a double quench in the anisotropic $XY$ chain in a transverse field. The anisotropic $XY$ chain in a transverse field has two kinds of quantum phase transitions (Ising transition and anisotropic transition). We discuss mainly the effects of quench paths on the DQPTs of the transverse field $XY$ chain. By calculating the rate function of the Loschmidt echo and Fisher zeros, we find that there are three typical types of the critical times of DQPTs in the plane of the T and the evolution time t. Type I of critical times, which occurs only in a certain range of T, is related to the protocol of the Hamiltonian abruptly changed from $H_{0}$ to $H_{1}$. Type II of critical times, which occurs all the time, is related to the protocol of the Hamiltonian abruptly changed from $H_{0}$ to $H_{2}$. Type III of critical times, which occurs all the time, is related to the protocols of the Hamiltonian abruptly changed from $H_{0}$ to $H_{1}$ and $H_{0}$ to $H_{2}$. When the double quench paths pass through the same kind of transition point, only the critical times corresponding to Type I will appear after the second quench. When the double quench paths pass through different kinds of transition points, the critical times after the second quench will appear any two of the above three types, which depend on the choice of quench path.
      通信作者: 童培庆, pqtong@njnu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11975126, 11575087)资助的课题
      Corresponding author: Tong Pei-Qing, pqtong@njnu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11975126, 11575087)
    [1]

    Polkovnikov A, Sengupta K, Silva A, Vengalattore M 2011 Rev. Mod. Phys. 83 863Google Scholar

    [2]

    Dziarmaga J 2010 Adv. Phys. 59 1063Google Scholar

    [3]

    Eisert J, Friesdorf M, Gogolin C 2015 Nat. Phys. 11 124Google Scholar

    [4]

    Moessner R, Sondhi S L 2017 Nat. Phys. 13 424Google Scholar

    [5]

    Bloch I, Dalibard J, Zwerger W 2008 Rev. Mod. Phys. 80 885Google Scholar

    [6]

    Blatt R, Roos C F 2012 Nat. Phys. 8 277Google Scholar

    [7]

    Bloch I, Dalibard J, Nascimbne S 2012 Nat. Phys. 8 267Google Scholar

    [8]

    Heyl M, Polkovnikov A, Kehrein S 2013 Phys. Rev. Lett. 110 135704Google Scholar

    [9]

    Vajna S, Dóra B 2014 Phys. Rev. B 89 161105(RGoogle Scholar

    [10]

    Sharma S, Divakaran U, Polkovnikov A, Dutta A 2016 Phys. Rev. B 93 144306Google Scholar

    [11]

    Cao K Y, Li W W, Zhong M, Tong P Q 2020 Phys. Rev. B 102 014207Google Scholar

    [12]

    Hickey J M, Genway S, Garrahan J P 2014 Phys. Rev. B 89 054301Google Scholar

    [13]

    Bhattacharjee S, Dutta A 2018 Phys. Rev. B 97 134306Google Scholar

    [14]

    Qiu X, Deng T S, Guo G C, Yi W 2018 Phys. Rev. A 98 021601Google Scholar

    [15]

    Zache T V, Mueller N, Schneider J T, Jendrzejewski F, Berges J, Hauke P 2019 Phys. Rev. Lett. 122 050403Google Scholar

    [16]

    Ding C X 2020 Phys. Rev. B 102 060409(RGoogle Scholar

    [17]

    Schmitt M, Kehrein S 2015 Phys. Rev. B 92 075114Google Scholar

    [18]

    Heyl M 2014 Phys. Rev. Lett. 113 205701Google Scholar

    [19]

    Karrasch C, Schuricht D 2013 Phys. Rev. B 87 195104Google Scholar

    [20]

    Kriel J N, Karrasch C, Kehrein S 2014 Phys. Rev. B 90 125106Google Scholar

    [21]

    Yin H H, Chen S, Gao X L, Wang P 2018 Phys. Rev. A 97 033624Google Scholar

    [22]

    Yang C, Wang Y, Wang P, Gao X, Chen S 2017 Phys. Rev. B 95 184201Google Scholar

    [23]

    Žunkovič B, Heyl M, Knap M, Silva A 2018 Phys. Rev. Lett. 120 130601Google Scholar

    [24]

    Karrasch C, Schuricht D 2017 Phys. Rev. B 95 075143Google Scholar

    [25]

    Zhou L, Wang Q H, Wang H, Gong J 2018 Phys. Rev. A 98 022129Google Scholar

    [26]

    邓天舒, 易为 2019 物理学报 68 040303Google Scholar

    Deng T S, Yi W 2019 Acta Phys. Sin. 68 040303Google Scholar

    [27]

    Abdi M 2019 Phys. Rev. B 100 184310Google Scholar

    [28]

    Liu T, Guo H 2019 Phys. Rev. B 99 104307Google Scholar

    [29]

    Abeling N O, Kehrein S 2016 Phys. Rev. B 93 104302Google Scholar

    [30]

    Vajna S, Dóra B 2015 Phys. Rev. B 91 155127Google Scholar

    [31]

    Wang P, Gao X L 2018 Phys. Rev. A 97 023627Google Scholar

    [32]

    Yang K, Zhou L, Ma W, Kong X, Wang P, Qin X, Rong X, Wang Y, Shi F, Gong J, Du J 2019 Phys. Rev. B 100 085308Google Scholar

    [33]

    Jurcevic P, Shen H, Hauke P, Maier C, Brydges T, Hempel C, Lanyon B P, Heyl M, Blatt R, Roos C F 2017 Phys. Rev. Lett. 119 080501Google Scholar

    [34]

    Fläschner N, Vogel D, Tarnowski M, Rem B S, Lühmann D S, Heyl M, Budich J C, Mathey L, Sengstock K, Weitenberg C 2018 Nat. Phys. 14 265Google Scholar

    [35]

    Martinez E A, Muschik C A, Schindler P, Nigg D, Erhard A, Heyl M, Hauke P, Dalmonte M, Monz T, Zoller P, Blatt R 2016 Nature 534 516Google Scholar

    [36]

    Zhang J, Pagano G, Hess P W, Kyprianidis A, Becker P, Kaplan H, Gorshkov A V, Gong Z X, Monroe C 2017 Nature 551 601Google Scholar

    [37]

    Nie X, Wei B B, Chen X, Zhang Z, Zhao X, Qiu C, Tian Y, Ji Y, Xin T, Lu D, Li J 2020 Phys. Rev. Lett. 124 250601Google Scholar

    [38]

    Wang K, Qiu X, Xiao L, Zhan X, Bian Z, Yi W, Xue P 2019 Phys. Rev. Lett. 122 020501Google Scholar

    [39]

    Tia Tn, Yang H X, Qiu L Y, Liang H Y, Yang Y B, Xu Y, Duan L M 2020 Phys. Rev. Lett. 124 043001Google Scholar

    [40]

    Kennes D M, Schuricht D, Karrasch C 2018 Phys. Rev. B 97 184302Google Scholar

    [41]

    cheraghi H, Mahdavifar S 2020 Sci. Rep. 10 4407Google Scholar

    [42]

    Hou X Y, Gao Q C, Guo H, He Y, Liu T, Chien C C 2020 Phys. Rev. B 102 104305Google Scholar

    [43]

    Heyl M 2015 Phys. Rev. Lett. 115 140602Google Scholar

    [44]

    Lang J, Frank B, Halimeh J C 2018 Phys. Rev. Lett. 121 130603Google Scholar

    [45]

    Hagymási I, Hubig C, Legeza Ö, Schollwöck U 2019 Phys. Rev. Lett. 122 250601Google Scholar

    [46]

    Huang Y P, Banerjee D, Heyl M 2019 Phys. Rev. Lett. 122 250401Google Scholar

    [47]

    Khatun A, Bhattacharjee S M 2019 Phys. Rev. Lett. 123 160603Google Scholar

    [48]

    Zhou B, Yang C, Chen S 2019 Phys. Rev. B 100 184313Google Scholar

    [49]

    Sun G, Wei B B 2020 Phys. Rev. B 102 094302Google Scholar

    [50]

    Wu Y 2020 Phys. Rev. B 101 014305Google Scholar

    [51]

    Divakaran U, Sharma S, Dutta A 2016 Phys. Rev. E 93 052133Google Scholar

    [52]

    Zhang X X, Li F J, Wang K, Xue J, Huo G W, Fang A P, Li H R 2021 Chin. Phys. B 30 090504Google Scholar

    [53]

    Mo H L, Zhang Q L, Wan X 2020 Chin. Phys. Lett. 37 060301Google Scholar

    [54]

    杨超, 陈澍 2019 物理学报 68 220304Google Scholar

    Chen S, Yang C 2019 Acta Phys. Sin. 68 220304Google Scholar

    [55]

    贺志, 余敏, 王琼 2019 物理学 报 68 240506

    He Z, Yu M, Wang Q 2019 Acta Phys. Sin. 68 240506

    [56]

    Lieb E, Schultz T, Mattis D 1961 Ann. Phys. NY 16 407Google Scholar

  • 图 1  横场中XY链的相图, 其中的点$A, B, \cdots, F$表示典型的参数值所对应的位置

    Fig. 1.  Phase diagram of the $XY$ chain in a transverse field. The points $A, B, \cdots, F$ in the phase diagram correspond to the typical parameter values.

    图 2  (a)淬火路径$A\rightarrow B\rightarrow C$对应的临界时间图, 图中两条虚线对应的时刻分别为$T=0.5$$1.0$; (b1) $T=0.5$和(b2)$T=1.0$$t>T$时的Fisher零点分布; (c)两次淬火过程中的率函数, 黑色和红色实线分别对应$T=0.5$$1.0$; (d) $|B_{k}/A_{k}|$k的关系, 黑色和红色实线分别对应$T=0.5$$1.0$

    Fig. 2.  (a) Location of the critical times in the $t\text{-}T$ plane for the path $A\rightarrow B\rightarrow C$. The dotted lines mark the times for $T=0.5$ and $1.0$, respectively. (b) The Fisher zeros for $t>T$ with (b1) $T=0.5$ and (b2) $T=1.0$, respectively. (c) The rate functions corresponding to $T=0.5$ and $1.0$, respectively. (d) The relationship between $|B_{k}/A_{k}|$ and k for $T=0.5$ and $1.0$, respectively.

    图 3  (a)淬火路径$C\rightarrow D\rightarrow E$对应的临界时间图, 图中虚线对应的时刻为$T=1.25$; (b) $T=1.25$$t>T$时的Fisher零点分布; (c) $T=1.25$时两次淬火过程的率函数; (d)黑色实线是$\tan^{2}(\theta_{0, k}-\theta_{1, k})/2$k的关系, 图中红色和蓝色实线为$|B_{k}/A_{k}|$k的关系, 对应的时间间隔分别为$T=T_{5}\approx1.1574$$T=T_{6}\approx1.3879$

    Fig. 3.  (a) Location of the critical times in the $t\text{-}T$ plane for the path $C\rightarrow D\rightarrow E$. The dotted line marks the time for $T=1.25$. (b) The Fisher zeros for $t>T$ with $T=1.25$. (c) The rate function corresponding to $T=1.25$. (d) The black line corresponding to the relationship between $\tan^{2}(\theta_{0, k}-\theta_{1, k})/2$ and k. The red and blue lines corresponding to the relationships between $|B_{k}/A_{k}|$ and k for $T=T_{5}\approx1.1574$ and $T=T_{6}\approx1.3879$, respectively.

    图 4  (a)淬火路径$B\rightarrow C\rightarrow D$对应的临界时间图, 图中虚线对应的时刻为$T=1.5$; (b) $T=1.5$$t>T$时的Fisher零点分布; (c) $T=1.5$时两次淬火过程的率函数; (d)黑色实线是$\tan^{2}(\theta_{0, k}-\theta_{1, k})/2$k的关系. 红色实线为$|B_{k}/A_{k}|$k的关系, 对应的时间间隔为$T=T_{7}\approx1.5210$

    Fig. 4.  (a) Location of the critical times in the $t\text{-}T$ plane for the path $B\rightarrow C\rightarrow D$. The dotted line marks the time for $T=1.5$. (b) The Fisher zeros for $t>T$ with $T=1.5$. (c) The rate function corresponding to $T=1.5$. (d) The black line corresponding to the relationship between $\tan^{2}(\theta_{0, k}-\theta_{1, k})/2$ and k. The red line corresponding to the relationship between $|B_{k}/A_{k}|$ and k for $T=T_{7}\approx1.5210$.

    图 5  (a)淬火路径$D\rightarrow C\rightarrow B$对应的临界时间图, 图中虚线对应的时刻为$T=1.5$; (b) $T=1.5$$t>T$ 时的Fisher零点分布; (c) $T=1.5$时两次淬火过程的率函数; (d)黑色实线是$\tan^{2}(\theta_{0, k}-\theta_{1, k})/2$k的关系, 其中红色和蓝色实线为$|B_{k}/A_{k}|$k的关系, 对应的时间间隔分别为$T=T_{8}\approx1.1574$$T=T_{9}\approx1.3879$

    Fig. 5.  (a) Location of the critical times in the $t\text{-}T$ plane for the path $D\rightarrow C\rightarrow B$. The dotted line marks the time for $T=1.5$. (b) The Fisher zeros for $t>T$ with $T=1.5$. (c) The rate function corresponding to $T=1.5$. (d) The black line corresponding to the relationship between $\tan^{2}(\theta_{0, k}-\theta_{1, k})/2$ and k. The red and blue lines corresponding to the relationships between $|B_{k}/A_{k}|$ and k for $T=T_{8}\approx1.1574$ and $T=T_{9}\approx1.3879$, respectively.

    图 6  (a)淬火路径$C\rightarrow B\rightarrow D$对应的临界时间图, 图中虚线对应的时刻为$T=1.5$; (b) $T=1.5$$t>T$ 时的Fisher零点分布; (c) $T=1.5$时两次淬火过程的率函数; (d)黑色实线是$\tan^{2}(\theta_{0, k}-\theta_{1, k})/2$k的关系, 其中红色实线为$|B_{k}/A_{k}|$k的关系, 对应的时间间隔为$T=T_{10}\approx0.9170$

    Fig. 6.  (a) Location of the critical times in the $t\text{-}T$ plane for the path $C\rightarrow B\rightarrow D$. The dotted line marks the time for $T=1.5$. (b) The Fisher zeros for $t>T$ with $T=1.5$. (c) The rate function corresponding to $T=1.5$. (d) The black line corresponding to the relationship between $\tan^{2}(\theta_{0, k}-\theta_{1, k})/2$ and k. The red line corresponding to the relationship between $|B_{k}/A_{k}|$ and k for $T=T_{10}\approx0.9170$.

  • [1]

    Polkovnikov A, Sengupta K, Silva A, Vengalattore M 2011 Rev. Mod. Phys. 83 863Google Scholar

    [2]

    Dziarmaga J 2010 Adv. Phys. 59 1063Google Scholar

    [3]

    Eisert J, Friesdorf M, Gogolin C 2015 Nat. Phys. 11 124Google Scholar

    [4]

    Moessner R, Sondhi S L 2017 Nat. Phys. 13 424Google Scholar

    [5]

    Bloch I, Dalibard J, Zwerger W 2008 Rev. Mod. Phys. 80 885Google Scholar

    [6]

    Blatt R, Roos C F 2012 Nat. Phys. 8 277Google Scholar

    [7]

    Bloch I, Dalibard J, Nascimbne S 2012 Nat. Phys. 8 267Google Scholar

    [8]

    Heyl M, Polkovnikov A, Kehrein S 2013 Phys. Rev. Lett. 110 135704Google Scholar

    [9]

    Vajna S, Dóra B 2014 Phys. Rev. B 89 161105(RGoogle Scholar

    [10]

    Sharma S, Divakaran U, Polkovnikov A, Dutta A 2016 Phys. Rev. B 93 144306Google Scholar

    [11]

    Cao K Y, Li W W, Zhong M, Tong P Q 2020 Phys. Rev. B 102 014207Google Scholar

    [12]

    Hickey J M, Genway S, Garrahan J P 2014 Phys. Rev. B 89 054301Google Scholar

    [13]

    Bhattacharjee S, Dutta A 2018 Phys. Rev. B 97 134306Google Scholar

    [14]

    Qiu X, Deng T S, Guo G C, Yi W 2018 Phys. Rev. A 98 021601Google Scholar

    [15]

    Zache T V, Mueller N, Schneider J T, Jendrzejewski F, Berges J, Hauke P 2019 Phys. Rev. Lett. 122 050403Google Scholar

    [16]

    Ding C X 2020 Phys. Rev. B 102 060409(RGoogle Scholar

    [17]

    Schmitt M, Kehrein S 2015 Phys. Rev. B 92 075114Google Scholar

    [18]

    Heyl M 2014 Phys. Rev. Lett. 113 205701Google Scholar

    [19]

    Karrasch C, Schuricht D 2013 Phys. Rev. B 87 195104Google Scholar

    [20]

    Kriel J N, Karrasch C, Kehrein S 2014 Phys. Rev. B 90 125106Google Scholar

    [21]

    Yin H H, Chen S, Gao X L, Wang P 2018 Phys. Rev. A 97 033624Google Scholar

    [22]

    Yang C, Wang Y, Wang P, Gao X, Chen S 2017 Phys. Rev. B 95 184201Google Scholar

    [23]

    Žunkovič B, Heyl M, Knap M, Silva A 2018 Phys. Rev. Lett. 120 130601Google Scholar

    [24]

    Karrasch C, Schuricht D 2017 Phys. Rev. B 95 075143Google Scholar

    [25]

    Zhou L, Wang Q H, Wang H, Gong J 2018 Phys. Rev. A 98 022129Google Scholar

    [26]

    邓天舒, 易为 2019 物理学报 68 040303Google Scholar

    Deng T S, Yi W 2019 Acta Phys. Sin. 68 040303Google Scholar

    [27]

    Abdi M 2019 Phys. Rev. B 100 184310Google Scholar

    [28]

    Liu T, Guo H 2019 Phys. Rev. B 99 104307Google Scholar

    [29]

    Abeling N O, Kehrein S 2016 Phys. Rev. B 93 104302Google Scholar

    [30]

    Vajna S, Dóra B 2015 Phys. Rev. B 91 155127Google Scholar

    [31]

    Wang P, Gao X L 2018 Phys. Rev. A 97 023627Google Scholar

    [32]

    Yang K, Zhou L, Ma W, Kong X, Wang P, Qin X, Rong X, Wang Y, Shi F, Gong J, Du J 2019 Phys. Rev. B 100 085308Google Scholar

    [33]

    Jurcevic P, Shen H, Hauke P, Maier C, Brydges T, Hempel C, Lanyon B P, Heyl M, Blatt R, Roos C F 2017 Phys. Rev. Lett. 119 080501Google Scholar

    [34]

    Fläschner N, Vogel D, Tarnowski M, Rem B S, Lühmann D S, Heyl M, Budich J C, Mathey L, Sengstock K, Weitenberg C 2018 Nat. Phys. 14 265Google Scholar

    [35]

    Martinez E A, Muschik C A, Schindler P, Nigg D, Erhard A, Heyl M, Hauke P, Dalmonte M, Monz T, Zoller P, Blatt R 2016 Nature 534 516Google Scholar

    [36]

    Zhang J, Pagano G, Hess P W, Kyprianidis A, Becker P, Kaplan H, Gorshkov A V, Gong Z X, Monroe C 2017 Nature 551 601Google Scholar

    [37]

    Nie X, Wei B B, Chen X, Zhang Z, Zhao X, Qiu C, Tian Y, Ji Y, Xin T, Lu D, Li J 2020 Phys. Rev. Lett. 124 250601Google Scholar

    [38]

    Wang K, Qiu X, Xiao L, Zhan X, Bian Z, Yi W, Xue P 2019 Phys. Rev. Lett. 122 020501Google Scholar

    [39]

    Tia Tn, Yang H X, Qiu L Y, Liang H Y, Yang Y B, Xu Y, Duan L M 2020 Phys. Rev. Lett. 124 043001Google Scholar

    [40]

    Kennes D M, Schuricht D, Karrasch C 2018 Phys. Rev. B 97 184302Google Scholar

    [41]

    cheraghi H, Mahdavifar S 2020 Sci. Rep. 10 4407Google Scholar

    [42]

    Hou X Y, Gao Q C, Guo H, He Y, Liu T, Chien C C 2020 Phys. Rev. B 102 104305Google Scholar

    [43]

    Heyl M 2015 Phys. Rev. Lett. 115 140602Google Scholar

    [44]

    Lang J, Frank B, Halimeh J C 2018 Phys. Rev. Lett. 121 130603Google Scholar

    [45]

    Hagymási I, Hubig C, Legeza Ö, Schollwöck U 2019 Phys. Rev. Lett. 122 250601Google Scholar

    [46]

    Huang Y P, Banerjee D, Heyl M 2019 Phys. Rev. Lett. 122 250401Google Scholar

    [47]

    Khatun A, Bhattacharjee S M 2019 Phys. Rev. Lett. 123 160603Google Scholar

    [48]

    Zhou B, Yang C, Chen S 2019 Phys. Rev. B 100 184313Google Scholar

    [49]

    Sun G, Wei B B 2020 Phys. Rev. B 102 094302Google Scholar

    [50]

    Wu Y 2020 Phys. Rev. B 101 014305Google Scholar

    [51]

    Divakaran U, Sharma S, Dutta A 2016 Phys. Rev. E 93 052133Google Scholar

    [52]

    Zhang X X, Li F J, Wang K, Xue J, Huo G W, Fang A P, Li H R 2021 Chin. Phys. B 30 090504Google Scholar

    [53]

    Mo H L, Zhang Q L, Wan X 2020 Chin. Phys. Lett. 37 060301Google Scholar

    [54]

    杨超, 陈澍 2019 物理学报 68 220304Google Scholar

    Chen S, Yang C 2019 Acta Phys. Sin. 68 220304Google Scholar

    [55]

    贺志, 余敏, 王琼 2019 物理学 报 68 240506

    He Z, Yu M, Wang Q 2019 Acta Phys. Sin. 68 240506

    [56]

    Lieb E, Schultz T, Mattis D 1961 Ann. Phys. NY 16 407Google Scholar

  • [1] 蔡德欢, 屈苏平. 周期驱动拉曼晶格系统中的动力学拓扑现象. 物理学报, 2024, 73(14): 140301. doi: 10.7498/aps.73.20240535
    [2] 熊凡, 陈永聪, 敖平. 热噪声环境下偶极场驱动的量子比特动力学. 物理学报, 2023, 72(17): 170302. doi: 10.7498/aps.72.20230625
    [3] 谭辉, 曹睿, 李永强. 基于动力学平均场的光晶格超冷原子量子模拟. 物理学报, 2023, 72(18): 183701. doi: 10.7498/aps.72.20230701
    [4] 王欢, 贺夏瑶, 李帅, 刘博. 非线性相互作用的自旋-轨道耦合玻色-爱因斯坦凝聚体的淬火动力学. 物理学报, 2023, 72(10): 100309. doi: 10.7498/aps.72.20222401
    [5] 张禧征, 王鹏, 张坤亮, 杨学敏, 宋智. 非厄米临界动力学及其在量子多体系统中的应用. 物理学报, 2022, 71(17): 174501. doi: 10.7498/aps.71.20220914
    [6] 吴建达. 从横场伊辛链到量子E8 可积模型. 物理学报, 2022, (): . doi: 10.7498/aps.71.20211836
    [7] 毛丽君, 张云波. 三量子比特Dicke模型中的两体和三体纠缠动力学. 物理学报, 2021, 70(4): 040301. doi: 10.7498/aps.70.20201602
    [8] 温永立, 张善超, 颜辉, 朱诗亮. 无指针δ-淬火直接测量法测量量子密度矩阵. 物理学报, 2021, 70(11): 110301. doi: 10.7498/aps.70.20210269
    [9] 王骁, 杨家豪, 吴建达. 从横场伊辛链到量子E8可积模型. 物理学报, 2021, 70(23): 230504. doi: 10.7498/aps.70.20211836
    [10] 邓天舒, 易为. 动力学淬火过程中的不动点及衍生拓扑现象. 物理学报, 2019, 68(4): 040303. doi: 10.7498/aps.68.20181928
    [11] 杨超, 陈澍. 淬火动力学中的拓扑不变量. 物理学报, 2019, 68(22): 220304. doi: 10.7498/aps.68.20191410
    [12] 宋加丽, 钟鸣, 童培庆. 横场中具有周期性各向异性的一维XY模型的量子相变. 物理学报, 2017, 66(18): 180302. doi: 10.7498/aps.66.180302
    [13] 李文芳, 杜金锦, 文瑞娟, 杨鹏飞, 李刚, 张天才. 强耦合腔量子电动力学中单原子转移的实验及模拟. 物理学报, 2014, 63(24): 244205. doi: 10.7498/aps.63.244205
    [14] 樊开明, 张国锋. 阻尼Jaynes-Cummings模型中两原子的量子关联动力学. 物理学报, 2013, 62(13): 130301. doi: 10.7498/aps.62.130301
    [15] 吕海艳, 袁伟, 侯喜文. 场与非线性介质原子相互作用模型的量子纠缠动力学特性. 物理学报, 2013, 62(11): 110301. doi: 10.7498/aps.62.110301
    [16] 胡长城, 叶慧琪, 王刚, 刘宝利. GaAs/AlGaAs多量子阱中载流子动力学的实验研究. 物理学报, 2011, 60(1): 017803. doi: 10.7498/aps.60.017803
    [17] 刘圣鑫, 李莎莎, 孔祥木. Dzyaloshinskii-Moriya相互作用对量子XY链中热纠缠的影响. 物理学报, 2011, 60(3): 030303. doi: 10.7498/aps.60.030303
    [18] 黄仙山, 谢双媛, 羊亚平. 量子测量对三维光子晶体中Λ型原子动力学性质的影响. 物理学报, 2006, 55(5): 2269-2274. doi: 10.7498/aps.55.2269
    [19] 蒋维洲, 傅德基, 王震遐, 艾小白, 朱志远. 柱环腔中的量子电动力学效应. 物理学报, 2003, 52(4): 813-822. doi: 10.7498/aps.52.813
    [20] 阮建红, 薛迅, 朱伟. 量子色动力学演化方程中的高扭度效应. 物理学报, 2002, 51(6): 1214-1220. doi: 10.7498/aps.51.1214
计量
  • 文章访问数:  4026
  • PDF下载量:  87
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-16
  • 修回日期:  2021-06-16
  • 上网日期:  2021-08-15
  • 刊出日期:  2021-09-20

/

返回文章
返回