搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

聚甲基丙烯酸甲酯与碳纳米管纳米复合材料玻璃化转变及其非线性力学行为的分子动力学模拟

黄多辉 万明杰 杨俊升

引用本文:
Citation:

聚甲基丙烯酸甲酯与碳纳米管纳米复合材料玻璃化转变及其非线性力学行为的分子动力学模拟

黄多辉, 万明杰, 杨俊升

Mmolecular dynamics study of glass transition and nonlinear mechanical behavior of poly(methyl methacrylate)/carbon nanotubes nanocomposites

Huang Duo-Hui, Wan Ming-Jie, Yang Jun-Sheng
PDF
HTML
导出引用
  • 短纤维结构对聚合物材料玻璃化转变温度及非线性力学具有非常重要的影响. 本文利用粗粒化分子动力学方法研究了碳纳米管(CNTs)含量对聚甲基丙烯酸甲酯(PMMA)玻璃化转变、扩散系数及非线性力学特性的影响. 分子动力学模拟结果显示: 短CNTs纤维的加入的确会改变PMMA体系的玻璃化转变温度, 模拟结果与实验测量结果一致, 而且随着CNTs含量的增加其对应的玻璃化转变温度也会随着增加. 进一步分析扩散特性发现, CNTs加入PMMA对于体系扩散特性的改变主要发生在玻璃化温度以上, 玻璃化温度以下结构对应的扩散系数差异非常的小. 聚合物材料在服役过程中难免要遭受应力-应变的作用, 而且其结构对应的模量和韧性成反比. 基于此, 本文通过非平衡分子动力学探究了短CNTs纤维添加PMMA复合材料的非线性力学特性. 模拟结果显示: 随着CNTs纤维的含量增加, 其对应的屈服模量也在不断的增加, 而且含有短CNTs纤维的体系还能够保持原来的韧性. 因此, 分子层面的理论研究策略可以为进一步的实验和加工提供理论指导.
    The glass transition temperature and nonlinear mechanics of polymer nanocomposites are strongly influenced by the short fibers. In this paper, coarse-grained molecular dynamics simulations are used to study the effects of single-walled carbon nanotube (CNT) content on the glass transition, diffusion coefficient, viscosity and nonlinear mechanical properties of poly(methyl methacrylate) (PMMA)/CNT nanocomposites. The glass transition temperature Tg is very important for the application of the materials. The Tg is related to the specific volume of the system. Generally, the location of the discontinuity on the curve of specific volume vs. temperature is the position of Tg. Our simulation results show that the Tg of PMMA/CNT composite increases with CNT content, and the result is consistent with the experimental value (434 K). This increase of Tg is evidently due to the presence of CNTs, which imposes a limit on the mobility of the molecules of PMMA. For the free volume in the liquid state, recent experiments pointed out that the molecular mutation is relatively easy to occur because the unoccupied volume is large. Further analysis of the diffusion coefficient of the PMMA/CNT indicates that the difference in diffusion characteristic occurs above the glass transition temperature, and the diffusion coefficient of PMMA system and PMMA/CNT system are the same below the glass transition temperature. Polymer materials in the service process will inevitably suffer the deformation, and the modulus and toughness of material are inversely proportional. Based on this problem, the nonlinear mechanical properties of short CNTs added PMMA composite are studied by nonequilibrium molecular dynamics. Our results show that the yield modulus increases with the CNT content increasing. However, the toughness is almost unchanged. In order to further understand the origin of stress of PMMA/CNT nanocomposites, the stretch ratio and orientation parameters of MPPA chains are also investigated in the present work. According to the stretch ratio and orientation parameters, it is not difficult to conclude that the stress-strain curve is mainly the result of the synergistic effect of molecular chain stretching and orientation. This work provides a theoretical guidance for further experiments and processing at the atomic and molecular level.
      通信作者: 杨俊升, yangjunsheng2005@163.com
    • 基金项目: 宜宾学院预研项目 (批准号: 2019YY06) 和宜宾学院计算物理四川省高等学校重点实验室开放课题基金(批准号: YBXYJSWL-ZD-2020-003)资助的课题.
      Corresponding author: Yang Jun-Sheng, yangjunsheng2005@163.com
    • Funds: Project supported by the Pre-Research Project of Yibin University, China (Grant No. 2019YY06) and the Open Research Fund of Computational Physics Key Laboratory of Sichuan Province, Yibin University, China (Grant No. YBXYJSWL-ZD-2020-003)
    [1]

    Mackay M E, Dao T T, Tuteja A, Ho D L, van Horn B, Kim H C, Hawker C J 2003 Nat. Mater. 2 762Google Scholar

    [2]

    Polizos G, Tuncer E, Agapov A L, Stevens D, Sokolov A P, Kidder M K, Jacobs J D, Koerner H, Vaia R A, More K L, Sauers I 2012 Polymer 53 595Google Scholar

    [3]

    Mammeri F, Teyssandier J, Connan C, Le Bourhis E, Chehimi M M 2012 RSC Adv. 2 2462Google Scholar

    [4]

    Luo J T, Wen H C, Wu W F, Chou C P 2008 Polym. Compos. 29 1285Google Scholar

    [5]

    De S K 1996 Short Fibre-polymer Composites (Woodhead: Woodhead Publishing) p257

    [6]

    Salami-Kalajahi M, Haddadi-Asl V, Behboodi-Sadabad F, Rahimi-Razin S, Roghani-Mamaqani H 2012 Polym. Compos. 33 215Google Scholar

    [7]

    Van Loock F, Fleck N A 2018 Polymer 148 259Google Scholar

    [8]

    Haggenmueller R, Gommans H H, Rinzler A G, Fischer J E, Winey K I 2000 Chem. Phys. Lett. 330 219Google Scholar

    [9]

    Du F, Fischer J E, Winey K I 2003 J. Polym. Sci. , Part B:Polym. Phys. 41 3333Google Scholar

    [10]

    Wang J F, Yang J P, Tam L h, Zhang W 2021 Mech. Syst. Singal PR 153 107530Google Scholar

    [11]

    杨俊升, 朱子亮, 曹启龙 2020 物理学报 69 038101

    Yang J S, Zhu Z L, Cao Q L 2020 Acta Phys. Sin. 69 038101

    [12]

    陈超, 段芳莉 2020 物理学报 69 1 93102Google Scholar

    Chen C, Duan F L 2020 Acta Phys. Sin. 69 1 93102Google Scholar

    [13]

    Yang J S, Yang C L, Wang M S, Chen B D, Ma X G 2011 Phys. Chem. Chem. Phys. 13 15476Google Scholar

    [14]

    Skountzos E N, Mermigkis P G, Mavrantzas V G 2018 J. Phys. Chem. B 122 9007Google Scholar

    [15]

    Jiang Q, Tallury S S, Qiu Y, Pasquinelli M A 2020 Nanotechnol. Rev. 9 136Google Scholar

    [16]

    Mohammadi M, fazli H, karevan M, Davoodi J 2017 Eur. Polym. J. 91 121Google Scholar

    [17]

    Zhao J, Jiang J W, Wang L, Guo W, Rabczuk T 2014 J. Mech. Phys. Solids 71 197Google Scholar

    [18]

    Arash B, Park H S, Rabczuk T 2015 Compos. Struct. 134 981Google Scholar

    [19]

    Meng Z, Soler-Crespo R A, Xia W, Gao W, Ruiz L, Espinosa H D, Keten S 2017 Carbon 117 476Google Scholar

    [20]

    Mousavi A A, Arash B, Zhuang X, Rabczuk T 2016 Compos. B. Eng. 95 404Google Scholar

    [21]

    Ash B J, Siegel R W, Schadler L S 2004 J. Polym. Sci. , Part B:Polym. Phys. 42 4371Google Scholar

    [22]

    Mohammadi M, Davoodi J, Javanbakht M, Rezaei H 2018 Mater. Res. Express 6 035309Google Scholar

  • 图 1  (a) 1个PMMA聚合物链的3个单体及其由3个珠子组成的CG模型; (b) 1个(5, 5)带有10个碳原子环的CNT及其由3个珠子组成的CG模型

    Fig. 1.  (a) Three monomers of a PMMA polymer chain and its CG model made of three beads; (b) a (5, 5) CNT with 10 rings of carbon atoms and its CG model made of three beads.

    图 2  PMMA及PMMA/CNTs结构示意图

    Fig. 2.  Schematic diagram of PMMA and PMMA/CNTs.

    图 3  PMMA, PMMA/10CNTs及PMMA/20CNTs体系对应的比容随着温度的变化

    Fig. 3.  Specific volumes of PMMA, PMMA/10CNTs and PMMA/20CNTs under the different temperatures.

    图 4  (a) PMMA体系对应的MSD; (b) PMMA, PMMA/10CNTs及PMMA/20CNTs体系不同温度下对应的扩散系数

    Fig. 4.  (a) Evolution of mean square displacement (MSD) of PMMA system; (b) the diffusion coefficient of PMMA, PMMA/ 10CNTs and PMMA/20CNTs under the different temperatures.

    图 5  PMMA, PMMA/10CNTs及PMMA/20CNTs体系在300 K下对应的应力-应变(a)、拉伸比(b)和取向参数(c)变化曲线

    Fig. 5.  Evolutions of stress-strain curves (a), stretch ratio (b) and orientational parameter (c) of PMMA, PMMA/10CNTs and PMMA/20CNTs under the temperature of 300 K.

    图 6  PMMA (a), PMMA/10CNTs (b)及PMMA/20CNTs (c)结构体系在不同温度下对应的应力-应变曲线及在相同过冷度(ΔT= 135 K)下3个体系结构对应的应力-应变曲线(d)

    Fig. 6.  E of stress-strain curves of PMMA (a), PMMA/10CNTs (b) and PMMA/20CNTs (c) under the different temperatures and the same cooling depth (ΔT = 135 K)(d).

    图 7  PMMA体系维诺体积随着应变的变化过程

    Fig. 7.  Voronoi volume of PMMA system under the different stain.

    图 8  PMMA/10CNTs体系维诺体积随着应变的变化过程

    Fig. 8.  Voronoi volume of PMMA/10CNTs system under the different stain.

    表 1  PMMA及PMMA-CNT粗粒化粒子之间相互作用力场参数

    Table 1.  Parameters of the CG force field for PMMA and CNT beads.

    Type of interactionParametersPMMACNTPMMA
    /CNT
    Bondkd/(kcal·mol–1·Å–2)97.3805.15
    d04.059.45
    Anglekθ/(kcal·mol–1·Å–2)40032140
    θ0/(o)84.6180
    vdWD0/(kcal·mol–1)0.565.341.4
    r06.539.457.7
    下载: 导出CSV
  • [1]

    Mackay M E, Dao T T, Tuteja A, Ho D L, van Horn B, Kim H C, Hawker C J 2003 Nat. Mater. 2 762Google Scholar

    [2]

    Polizos G, Tuncer E, Agapov A L, Stevens D, Sokolov A P, Kidder M K, Jacobs J D, Koerner H, Vaia R A, More K L, Sauers I 2012 Polymer 53 595Google Scholar

    [3]

    Mammeri F, Teyssandier J, Connan C, Le Bourhis E, Chehimi M M 2012 RSC Adv. 2 2462Google Scholar

    [4]

    Luo J T, Wen H C, Wu W F, Chou C P 2008 Polym. Compos. 29 1285Google Scholar

    [5]

    De S K 1996 Short Fibre-polymer Composites (Woodhead: Woodhead Publishing) p257

    [6]

    Salami-Kalajahi M, Haddadi-Asl V, Behboodi-Sadabad F, Rahimi-Razin S, Roghani-Mamaqani H 2012 Polym. Compos. 33 215Google Scholar

    [7]

    Van Loock F, Fleck N A 2018 Polymer 148 259Google Scholar

    [8]

    Haggenmueller R, Gommans H H, Rinzler A G, Fischer J E, Winey K I 2000 Chem. Phys. Lett. 330 219Google Scholar

    [9]

    Du F, Fischer J E, Winey K I 2003 J. Polym. Sci. , Part B:Polym. Phys. 41 3333Google Scholar

    [10]

    Wang J F, Yang J P, Tam L h, Zhang W 2021 Mech. Syst. Singal PR 153 107530Google Scholar

    [11]

    杨俊升, 朱子亮, 曹启龙 2020 物理学报 69 038101

    Yang J S, Zhu Z L, Cao Q L 2020 Acta Phys. Sin. 69 038101

    [12]

    陈超, 段芳莉 2020 物理学报 69 1 93102Google Scholar

    Chen C, Duan F L 2020 Acta Phys. Sin. 69 1 93102Google Scholar

    [13]

    Yang J S, Yang C L, Wang M S, Chen B D, Ma X G 2011 Phys. Chem. Chem. Phys. 13 15476Google Scholar

    [14]

    Skountzos E N, Mermigkis P G, Mavrantzas V G 2018 J. Phys. Chem. B 122 9007Google Scholar

    [15]

    Jiang Q, Tallury S S, Qiu Y, Pasquinelli M A 2020 Nanotechnol. Rev. 9 136Google Scholar

    [16]

    Mohammadi M, fazli H, karevan M, Davoodi J 2017 Eur. Polym. J. 91 121Google Scholar

    [17]

    Zhao J, Jiang J W, Wang L, Guo W, Rabczuk T 2014 J. Mech. Phys. Solids 71 197Google Scholar

    [18]

    Arash B, Park H S, Rabczuk T 2015 Compos. Struct. 134 981Google Scholar

    [19]

    Meng Z, Soler-Crespo R A, Xia W, Gao W, Ruiz L, Espinosa H D, Keten S 2017 Carbon 117 476Google Scholar

    [20]

    Mousavi A A, Arash B, Zhuang X, Rabczuk T 2016 Compos. B. Eng. 95 404Google Scholar

    [21]

    Ash B J, Siegel R W, Schadler L S 2004 J. Polym. Sci. , Part B:Polym. Phys. 42 4371Google Scholar

    [22]

    Mohammadi M, Davoodi J, Javanbakht M, Rezaei H 2018 Mater. Res. Express 6 035309Google Scholar

  • [1] 邓永和, 张宇文, 谭恒博, 文大东, 高明, 吴安如. NiCu双金属纳米粒子的表面偏析、结构特征与扩散. 物理学报, 2021, 70(17): 177601. doi: 10.7498/aps.70.20210336
    [2] 廖晶晶, 蔺福军. 混合手征活性粒子在时间延迟反馈下的扩散和分离. 物理学报, 2020, 69(22): 220501. doi: 10.7498/aps.69.20200505
    [3] 张恒, 黄燕, 石旺舟, 周孝好, 陈效双. Al原子在Si表面扩散动力学的第一性原理研究. 物理学报, 2019, 68(20): 207302. doi: 10.7498/aps.68.20190783
    [4] 李亚雄, 刘先贵, 胡志明, 高树生, 端祥刚, 常进. 页岩气滑脱、扩散传输机理耦合新方法. 物理学报, 2017, 66(11): 114702. doi: 10.7498/aps.66.114702
    [5] 杨文龙, 韩浚生, 王宇, 林家齐, 何国强, 孙洪国. 聚酰亚胺/功能化石墨烯复合材料力学性能及玻璃化转变温度的分子动力学模拟. 物理学报, 2017, 66(22): 227101. doi: 10.7498/aps.66.227101
    [6] 林家齐, 李晓康, 杨文龙, 孙洪国, 谢志滨, 修翰江, 雷清泉. 聚酰亚胺/钽铌酸钾纳米颗粒复合材料结构与机械性能分子动力学模拟. 物理学报, 2015, 64(12): 126202. doi: 10.7498/aps.64.126202
    [7] 刘式达, 付遵涛, 刘式适. 间歇湍流的分数阶动力学. 物理学报, 2014, 63(7): 074701. doi: 10.7498/aps.63.074701
    [8] 向辉, 刘大欢, 阳庆元, 密建国, 仲崇立. 骨架柔性对短链烷烃分子在金属-有机骨架材料中扩散的影响. 物理学报, 2011, 60(9): 093602. doi: 10.7498/aps.60.093602
    [9] 陈德彝, 王忠龙. 白交叉关联色噪声驱动的线性振子的扩散. 物理学报, 2010, 59(1): 111-115. doi: 10.7498/aps.59.111
    [10] 杨春, 冯玉芳, 余毅. 动力学研究AlN/α-Al2O3(0001)薄膜生长初期的吸附与扩散. 物理学报, 2009, 58(5): 3553-3559. doi: 10.7498/aps.58.3553
    [11] 李美丽, 张 迪, 孙宏宁, 付兴烨, 姚秀伟, 李 丛, 段永平, 闫 元, 牟洪臣, 孙民华. 二元Lennard-Jones液体的相分离过程及其扩散性质的分子动力学研究. 物理学报, 2008, 57(11): 7157-7163. doi: 10.7498/aps.57.7157
    [12] 刘 磊, 任晓敏, 周 静, 王 琦, 熊德平, 黄 辉, 黄永清. 横向外延过生长磷化铟材料的生长速率模型. 物理学报, 2007, 56(6): 3570-3576. doi: 10.7498/aps.56.3570
    [13] 曹 博, 包良满, 李公平, 何山虎. Cu/SiO2/Si(111)体系中Cu和Si的扩散及界面反应. 物理学报, 2006, 55(12): 6550-6555. doi: 10.7498/aps.55.6550
    [14] 乔永红, 王绍青. 硅晶体中点缺陷结合过程的分子动力学研究. 物理学报, 2005, 54(10): 4827-4835. doi: 10.7498/aps.54.4827
    [15] 常福宣, 陈 进, 黄 薇. 反常扩散与分数阶对流-扩散方程. 物理学报, 2005, 54(3): 1113-1117. doi: 10.7498/aps.54.1113
    [16] 唐 鑫, 张 超, 张庆瑜. Cu(111)三维表面岛对表面原子扩散影响的分子动力学研究. 物理学报, 2005, 54(12): 5797-5803. doi: 10.7498/aps.54.5797
    [17] 杨 春, 余 毅, 李言荣, 刘永华. 温度对ZnO/Al2O3(0001)界面的吸附、扩散及生长初期模式的影响. 物理学报, 2005, 54(12): 5907-5913. doi: 10.7498/aps.54.5907
    [18] 王秀英, 孙力玲, 刘日平, 姚玉书, 张 君, 王文魁. 高压下Co在Zr46.75Ti8.25Cu7.5Ni10Be27.5大块金属玻璃过冷液相区中的扩散. 物理学报, 2004, 53(11): 3845-3848. doi: 10.7498/aps.53.3845
    [19] 胡晓君, 戴永兵, 何贤昶, 沈荷生, 李荣斌. 空位在金刚石近(001)表面扩散的分子动力学模拟. 物理学报, 2002, 51(6): 1388-1392. doi: 10.7498/aps.51.1388
    [20] 金进生, 叶高翔, 钱昌吉, 翟国庆, 叶全林, 焦正宽. 金原子在熔融玻璃表面的凝聚特性. 物理学报, 2001, 50(3): 544-549. doi: 10.7498/aps.50.544
计量
  • 文章访问数:  5036
  • PDF下载量:  86
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-20
  • 修回日期:  2021-06-22
  • 上网日期:  2021-08-15
  • 刊出日期:  2021-11-05

/

返回文章
返回