-
基于密度泛函理论的第一性原理方法研究了扭转变形对掺金黑磷烯电子结构和光学性质的影响. 研究发现, 与本征黑磷烯受扭体系相比, 掺金黑磷烯体系的电子结构对扭转变形的敏感度提高. 能带结构分析发现, 本征黑磷烯是直接带隙半导体, 金掺杂后, 可实现其从半导体到金属的转变. 掺金黑磷烯体系扭转1°后, 带隙被打开, 成为间接带隙半导体. 随着扭转角的增加, 本征黑磷烯体系的带隙增长缓慢, 而掺金黑磷烯体系的带隙呈先减小后增加, 再减小的趋势. 从态密度分析发现, 扭转角为0°—5°时, 本征黑磷烯体系具有很强的sp轨道杂化, s轨道和p轨道对导带和价带均有贡献, 但p轨道比s轨道对总态密度的贡献更多, 而掺金黑磷烯体系的s轨道、p轨道、d轨道对总态密度均有贡献. 从光学性质分析发现, 与扭转角为0°的本征黑磷烯体系相比, 本征黑磷烯受扭体系在吸收峰和反射峰处均出现蓝移, 掺金黑磷烯受扭体系在吸收峰和反射峰处均出现红移.The first-principles method based on density functional theory is used to study the effect of torsion deformation on the electronic structure and optical properties of gold-doped black phosphorene. The results show that the electronic structure of the gold-doped black phosphorene system is more sensitive to torsion deformation than that of the intrinsic black phosphorene system under torsion. The analysis of the energy band structure indicates that intrinsic black phosphorene is a direct band gap semiconductor. After being doped with gold, it can realize its transformation from semiconductor into metal. After the gold-doped black phosphorene system is twisted by 1°, the band gap is opened and becomes an indirect band gap semiconductor. As the torsion angle increases, the band gap of the intrinsic black phosphorene system increases slowly, while the band gap of the gold-doped black phosphorene system first decreases, then increases, and then decreases. From the analysis of the density of states, it is found that when the torsion angle changes from 0° to 5°, the intrinsic black phosphorene system has a strong sp orbital hybridization. The s orbit and p orbit contribute to the conduction band and the valence band, but the p orbit is better than the s orbit. The contribution to the total density of states is more, and the s orbital, p orbital and d orbital of the gold-doped black phosphorene system all contribute to the total density of states. From the analysis of optical properties, it is found that compared with the intrinsic black phosphorene system with a torsion angle of 0°, the intrinsic black phosphorene twisted system exhibits a blue shift at the absorption peak and reflection peak, and the gold-doped black phosphorene twisted system exhibits a blue shift in both absorption peak and reflection peak. Both the absorption peak and the reflection peak are red-shifted.
-
Keywords:
- gold-doped black phosphorene /
- torsion deformation /
- electronic structure /
- optical properties
[1] 黄申洋, 张国伟, 汪凡洁, 雷雨晨, 晏湖根 2021 物理学报 70 027802
Huang S Y, Zhang G W, Wang F J, Lei Y C, Yan H G 2021 Acta Phys. Sin. 70 027802
[2] Lin S, Li Y, Qian J, Lau S P 2019 Mater. Today Energy 12 1Google Scholar
[3] Ma T, Huang H, Guo W, Zhang C, Chen Z, Li S, Ma L, Deng Y 2020 J. Biomed. Nanotechnol. 16 1045Google Scholar
[4] Li Y Y, Gao B, Han Y, Chen B K, Huo J Y 2021 Front. Phys. 16 43301Google Scholar
[5] Vitiello M S, Viti L 2016 Rivista Del Nuovo Cimento 39 371
[6] Wang Y, He M, Ma S, Yang C, Yu M, Yin G, Zuo P 2020 J. Phys. Chem. Lett. 11 2708Google Scholar
[7] 王聪, 刘杰, 张晗 2019 物理学报 68 188101Google Scholar
Wang C, Liu J, Zhang H 2019 Acta Phys. Sin. 68 188101Google Scholar
[8] He L D, Lian P C, Zhu Y Z, Zhao J P, Mei Y 2021 Chin. J. Chem. 39 690Google Scholar
[9] Jalaei S, Karamdel J, Ghalami-Bavil-Olyaee H 2020 Phys. Status Solidi A 217 2000483Google Scholar
[10] Feng Y, Sun H, Sun J, Lu Z, You Y 2018 J. Phys. Condens. Matter 30 015601
[11] 谭兴毅, 王佳恒, 朱祎祎, 左安友, 金克新 2014 物理学报 63 207301Google Scholar
Tan X Y, Wang J H, Zhu Y Y, Zuo A Y, Jin K X 2014 Acta Phys. Sin. 63 207301Google Scholar
[12] 张倩, 金鑫鑫, 张梦, 郑铮 2020 物理学报 69 188101Google Scholar
Zhang Q, Jin X X, Zhang M, Zheng Z 2020 Acta Phys. Sin. 69 188101Google Scholar
[13] Chaves A, Azadani J G, Alsalman H, da Costa D R, Frisenda R, Chaves A J, Song S H, Kim Y D, He D, Zhou J, Castellanos-Gomez A, Peeters F M, Liu Z, Hinkle C L, Oh S H, Ye P D, Koester S J, Lee Y H, Avouris P, Wang X, Low T 2020 NPJ 2 D Mater. Appl. 4 29Google Scholar
[14] Li C, Tian Z 2017 Nanoscale Microscale Thermophys. Eng. 21 45Google Scholar
[15] Batista J S, Churchill H O H, El-Shenawee M 2021 J. Opt. Soc. Am. B: Opt. Phys. 38 1367
[16] Na J, Park K, Kim J T, Choi W K, Song Y W 2017 Nanotechnology 28 085201Google Scholar
[17] Lan S, Rodrigues S, Kang L, Cai W 2016 ACS Photonics 3 1176Google Scholar
[18] Xia F, Wang H, Hwang J C M, Neto A H C, Yang L 2019 Nat. Rev. Phys. 1 306Google Scholar
[19] Mu G Y, Liu G L, Zhang G Y 2020 Int. J. Mod. Phys. B 34 2092003Google Scholar
[20] Wang J X, Wang Y, Liu G L, Wei L, Zhang G Y 2020 Physica B 578 411755Google Scholar
[21] Carmel S, Subramanian S, Rathinam R, Bhattacharyya A 2020 J. Appl. Phys. 127 094303Google Scholar
[22] Koenig S P, Doganov R A, Seixas L, Carvalho A, Tan J Y, Watanabe K, Taniguchi T, Yakovlev N, Castro Neto A H, Ozyilmaz B 2016 Nano Lett. 16 2145Google Scholar
[23] Fang Z, Wang Y, Liu Z, Schlather A, Ajayan P M, Koppens F H L, Nordlander P, Halas N J 2012 ACS Nano 6 10222Google Scholar
[24] Knight M W, Sobhani H, Nordlander P, Halas N J 2011 Science 332 702Google Scholar
[25] Stockman M I 2010 Nature 467 541Google Scholar
[26] Kutlu E, Narin P, Lisesivdin S B, Ozbay E 2018 Philos. Mag. 98 155Google Scholar
[27] Perdew J P, Burke K, Ernzerhof M 1998 Phys. Rev. Lett. 80 891
[28] Liu H, Neal A T, Zhu Z, Luo Z, Xu X, Tomanek D, Ye P D 2014 ACS Nano 8 4033Google Scholar
[29] Cakir D, Sahin H, Peeters F M 2014 Phys. Rev. B 90 205421Google Scholar
[30] 杜燕兰 2010 硕士学位论文 (南昌: 江西师范大学)
Du Y L 2010 M. S. Thesis (Nanchang: Jiangxi Normal University)
[31] Wu Z F, Gao P F, Guo L, Kang J, Fang D Q, Zhang Y, Xia M G, Zhang S L, Wen Y H 2017 Phys. Chem. Chem. Phys. 19 31796Google Scholar
-
图 4 (a)−(e)本征黑磷烯在扭转角为1°, 2°, 3°, 4°和5°下的能带图和态密度; (f)−(j)掺金黑磷烯在扭转角为1°, 2°, 3°, 4°和5°下的能带图和态密度
Fig. 4. (a)−(e) The energy band diagram and density of states of intrinsic black phosphorene at twist angles of 1°, 2°, 3°, 4° and 5°; (f)−(j) gold-doped black phosphorene at twist angles are Band diagram and density of states at 1°, 2°, 3°, 4° and 5°.
图 6 (a), (d) 本征黑磷烯和掺金黑磷烯在扭转角为0°, 1°, 2°, 3°, 4°和5°下的吸收系数和反射率; (b), (c) 图(a)的放大视图; (e), (f) 图(d)的放大视图
Fig. 6. (a), (d) The absorption coefficient and reflectivity of intrinsic black phosphorene and gold-doped black phosphorene at twist angles of 0°, 1°, 2°, 3°, 4° and 5°; (b), (c) magnified view of Figure (a); (e), (f) magnified views of Figure (d).
表 1 本征黑磷烯体系和掺金黑磷烯体系在不同扭转角度下的结合能
Table 1. Binding energy of intrinsic black phosphorene system and gold-doped black phosphorene system under different torsion angles.
扭转角
结合能0° 1° 2° 3° 4° 5° 本征黑磷
烯/eV–191.18 –190.97 –190.31 –189.10 –187.17 –184.27 掺金黑磷
烯/eV–185.78 –185.58 –184.92 –183.73 –181.83 –178.96 表 2 本征黑磷烯体系和掺金黑磷烯体系在不同扭转角度下的带隙值
Table 2. Band gap values of intrinsic black phosphorene system and gold-doped black phosphorene system under different twist angles.
扭转角
带隙0° 1° 2° 3° 4° 5° 本征黑磷烯/eV 0.899 0.905 0.908 0.911 0.914 0.918 掺金黑磷烯/eV — 0.758 0.753 0.762 0.703 0.534 -
[1] 黄申洋, 张国伟, 汪凡洁, 雷雨晨, 晏湖根 2021 物理学报 70 027802
Huang S Y, Zhang G W, Wang F J, Lei Y C, Yan H G 2021 Acta Phys. Sin. 70 027802
[2] Lin S, Li Y, Qian J, Lau S P 2019 Mater. Today Energy 12 1Google Scholar
[3] Ma T, Huang H, Guo W, Zhang C, Chen Z, Li S, Ma L, Deng Y 2020 J. Biomed. Nanotechnol. 16 1045Google Scholar
[4] Li Y Y, Gao B, Han Y, Chen B K, Huo J Y 2021 Front. Phys. 16 43301Google Scholar
[5] Vitiello M S, Viti L 2016 Rivista Del Nuovo Cimento 39 371
[6] Wang Y, He M, Ma S, Yang C, Yu M, Yin G, Zuo P 2020 J. Phys. Chem. Lett. 11 2708Google Scholar
[7] 王聪, 刘杰, 张晗 2019 物理学报 68 188101Google Scholar
Wang C, Liu J, Zhang H 2019 Acta Phys. Sin. 68 188101Google Scholar
[8] He L D, Lian P C, Zhu Y Z, Zhao J P, Mei Y 2021 Chin. J. Chem. 39 690Google Scholar
[9] Jalaei S, Karamdel J, Ghalami-Bavil-Olyaee H 2020 Phys. Status Solidi A 217 2000483Google Scholar
[10] Feng Y, Sun H, Sun J, Lu Z, You Y 2018 J. Phys. Condens. Matter 30 015601
[11] 谭兴毅, 王佳恒, 朱祎祎, 左安友, 金克新 2014 物理学报 63 207301Google Scholar
Tan X Y, Wang J H, Zhu Y Y, Zuo A Y, Jin K X 2014 Acta Phys. Sin. 63 207301Google Scholar
[12] 张倩, 金鑫鑫, 张梦, 郑铮 2020 物理学报 69 188101Google Scholar
Zhang Q, Jin X X, Zhang M, Zheng Z 2020 Acta Phys. Sin. 69 188101Google Scholar
[13] Chaves A, Azadani J G, Alsalman H, da Costa D R, Frisenda R, Chaves A J, Song S H, Kim Y D, He D, Zhou J, Castellanos-Gomez A, Peeters F M, Liu Z, Hinkle C L, Oh S H, Ye P D, Koester S J, Lee Y H, Avouris P, Wang X, Low T 2020 NPJ 2 D Mater. Appl. 4 29Google Scholar
[14] Li C, Tian Z 2017 Nanoscale Microscale Thermophys. Eng. 21 45Google Scholar
[15] Batista J S, Churchill H O H, El-Shenawee M 2021 J. Opt. Soc. Am. B: Opt. Phys. 38 1367
[16] Na J, Park K, Kim J T, Choi W K, Song Y W 2017 Nanotechnology 28 085201Google Scholar
[17] Lan S, Rodrigues S, Kang L, Cai W 2016 ACS Photonics 3 1176Google Scholar
[18] Xia F, Wang H, Hwang J C M, Neto A H C, Yang L 2019 Nat. Rev. Phys. 1 306Google Scholar
[19] Mu G Y, Liu G L, Zhang G Y 2020 Int. J. Mod. Phys. B 34 2092003Google Scholar
[20] Wang J X, Wang Y, Liu G L, Wei L, Zhang G Y 2020 Physica B 578 411755Google Scholar
[21] Carmel S, Subramanian S, Rathinam R, Bhattacharyya A 2020 J. Appl. Phys. 127 094303Google Scholar
[22] Koenig S P, Doganov R A, Seixas L, Carvalho A, Tan J Y, Watanabe K, Taniguchi T, Yakovlev N, Castro Neto A H, Ozyilmaz B 2016 Nano Lett. 16 2145Google Scholar
[23] Fang Z, Wang Y, Liu Z, Schlather A, Ajayan P M, Koppens F H L, Nordlander P, Halas N J 2012 ACS Nano 6 10222Google Scholar
[24] Knight M W, Sobhani H, Nordlander P, Halas N J 2011 Science 332 702Google Scholar
[25] Stockman M I 2010 Nature 467 541Google Scholar
[26] Kutlu E, Narin P, Lisesivdin S B, Ozbay E 2018 Philos. Mag. 98 155Google Scholar
[27] Perdew J P, Burke K, Ernzerhof M 1998 Phys. Rev. Lett. 80 891
[28] Liu H, Neal A T, Zhu Z, Luo Z, Xu X, Tomanek D, Ye P D 2014 ACS Nano 8 4033Google Scholar
[29] Cakir D, Sahin H, Peeters F M 2014 Phys. Rev. B 90 205421Google Scholar
[30] 杜燕兰 2010 硕士学位论文 (南昌: 江西师范大学)
Du Y L 2010 M. S. Thesis (Nanchang: Jiangxi Normal University)
[31] Wu Z F, Gao P F, Guo L, Kang J, Fang D Q, Zhang Y, Xia M G, Zhang S L, Wen Y H 2017 Phys. Chem. Chem. Phys. 19 31796Google Scholar
计量
- 文章访问数: 4863
- PDF下载量: 82
- 被引次数: 0