搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

空间非均匀摩擦棘轮的输运性能

曹佳慧 刘艳艳 艾保全 黄仁忠 高天附

引用本文:
Citation:

空间非均匀摩擦棘轮的输运性能

曹佳慧, 刘艳艳, 艾保全, 黄仁忠, 高天附

Transport performance of spatial non-uniform friction ratchets

Cao Jia-Hui, Liu Yan-Yan, Ai Bao-Quan, Huang Ren-Zhong, Gao Tian-Fu
PDF
HTML
导出引用
  • 本文研究了耦合布朗粒子在空间非均匀摩擦环境下的定向输运问题, 并进一步讨论了摩擦系数振幅、空间相位差等因素对耦合粒子质心平均速度及能量转化效率的影响. 研究发现, 耦合粒子的质心平均速度和能量转化效率随摩擦系数振幅的变化都能呈现多峰结构. 这一结果表明摩擦阻尼并不总是阻碍布朗粒子的定向运动, 一定条件下合适的摩擦环境还能多次增强耦合布朗棘轮的输运性能. 此外, 在小摩擦系数振幅条件下通过改变外力振幅、外势不对称度、空间相位差还能诱导摩擦棘轮流反转的产生. 本文所得结论不仅有助于理解摩擦环境中耦合布朗粒子的输运性能, 还可为微观纳米机器的设计与粒子的筛选分离技术提供理论指导.
    Biomolecular motor is a kind of protein macromolecule widely existing in cells. It can convert the chemical energy contained in ATP molecules into mechanical motion, and then continuously provide power for the material transport process. In order to further study the directional transport of molecular motors, the Brownian ratchet model is established based on Brownian motion theory. However, most of the considerations in previous studies are devoted to the motion of Brownian particles under the condition of unit friction damping. In order to further study the influence of medium damping on the directional motion of Brownian particles, our group further study the directional transport of Brownian ratchets in different damping environments, and find that the suitable friction damping coefficient ratio can increase the center-of-mass mean velocity of the coupled Brownian particle. It should be pointed out that the above studies of Brownian ratchets consider the motion of Brownian particles under the condition of uniform spatial friction. In fact, the cell environment in organism is very complex, and the concentration and impurities in the cell change all the time. The medium damping of molecular motor is not always fixed, so choosing the space non-uniform friction condition to study the directional motion of coupled Brownian particles under different damping environments can better understand the directional transport characteristics of friction ratchets. In addition, other point of interest in the research of biomolecular motors is the high efficiency of energy conversion. Experimental results show that the energy conversion efficiencies of most molecular motors are more than 70%, and the efficiencies of some motors are even close to 100%. However, by comparing the experimental results with the theoreticalstudies, it can be found that the efficiency calculated by ratchet model is much lower than that measured in experiment. Therefore, in this paper, the directional motion of coupled Brownian particles in the space non-uniform friction environment is studied in depth, and the energy conversion efficiency of Brownian particles is further discussed.The results show that the center-of-mass mean velocity varying with the amplitude of the friction coefficient presents a multi-peak structure. This conclusion shows that friction damping does not always hinder the directional motion of coupled particles, and the frictional environment under certain conditions can also enhance the directional transport of coupled Brownian particles. At the same time, the change of the energy conversion efficiency of friction ratchets is similar to that of the center-of-mass mean velocity, which means that the proper friction damping can also enhance the transport performance of the friction ratchets. In addition, under the condition of small friction amplitude, the flow reversal of friction ratchet can be induced by external force amplitude, external potential asymmetry and spatial phase difference. The conclusions obtained in this paper can not only help people understand the directional transport performance of coupled particles in a spatially non-uniform friction environment, but also provide theoretical inspiration for particle separation and screening technology and the design of artificial nanomachines.
      通信作者: 高天附, tianfugao@synu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11347003)和沈阳师范大学高层次人才支持计划资助的课题
      Corresponding author: Gao Tian-Fu, tianfugao@synu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant No. 11347003) and the High-level Talent Support Program of Shenyang Normal University, China
    [1]

    舒咬根, 欧阳钟灿 2007 物理 36 735Google Scholar

    Shu Y G, Ouyang Z C 2007 Physics 36 735Google Scholar

    [2]

    Xie P 2010 Int. J. Biol. Sci. 6 665

    [3]

    郭晓强 2019 自然杂志 41 56Google Scholar

    Guo X Q 2019 Chin. J. Nat. 41 56Google Scholar

    [4]

    Ross J L 2012 P. Natl. Acad. Sci. Usa. 109 5911Google Scholar

    [5]

    Nara Y, Niemi H, Steinheimer J, Stöcker H 2017 Phys. Lett. B 769 543Google Scholar

    [6]

    Mateos J L, Arzola A V, Volke-Seplveda K 2011 Phys. Rev. Lett. 106 168104Google Scholar

    [7]

    Palmigiano A, Santaniello F, Cerutti A, Penkov D, Purushothama D 2018 Sci. Rep. 8 3198Google Scholar

    [8]

    Linke H 2002 Appl. Phys. A 75 167Google Scholar

    [9]

    Van den Heuvel M G L, Dekker C 2007 Science 317 333Google Scholar

    [10]

    Zhang H W, Wen S T, Zhang H T, Li Y X, Chen G R 2012 Chin. Phys. B 21 078701Google Scholar

    [11]

    Doering C R 1995 Nuovo Cimento 17 685Google Scholar

    [12]

    Astumian R D, Bier M 1994 Phys. Rev. Lett. 2 1766

    [13]

    Gao T F, Chen J C 2009 J. Phys. A: Math. Theor. 42 065002Google Scholar

    [14]

    Dinis L, Quintero R N 2015 Phys. Rev. E 91 032920Google Scholar

    [15]

    Li P C, Chen H B, Fan H, Shen W M, Zheng Z G 2017 J. Phys. A:Math. Theor. 50 475003Google Scholar

    [16]

    延明月, 张旭, 刘晨昊, 黄仁忠, 高天附, 郑志刚 2018 物理学报 67 190501Google Scholar

    Yan M Y, Zhang X, Liu C H, Huang R Z, Gao T F, Zheng Z G 2018 Acta Phys. Sin. 67 190501Google Scholar

    [17]

    张旭, 曹佳慧, 艾保全, 高天附, 郑志刚 2020 物理学报 69 100503Google Scholar

    Zhang X, Cao J H, Ai B Q, Gao T F, Zheng Z G 2020 Acta Phys. Sin. 69 100503Google Scholar

    [18]

    Gehlen S V, Evstigneev M, Reimann P 2009 Phys. Rev. E 79 031114Google Scholar

    [19]

    Lombardo J, Broadwater D, Collins R, Cebe K, Brady R, Harrison S 2019 Hum. Pathol. 86 129Google Scholar

    [20]

    Toyoshima H 1951 J. Japan. Forest. Soc. 33 203

    [21]

    Toyoshima H 1951 J. Japan. Forest. Soc. 33 83

    [22]

    黎明, 欧阳钟灿, 舒咬根 2016 物理学报 65 188702Google Scholar

    Li M, Ouyang Z C, Shu Y G 2016 Acta Phys. Sin. 65 188702Google Scholar

    [23]

    Sumithra K, Sintes T 2001 Physica A 297 1

    [24]

    Kharkongor D, Reenbohn W L, Mahato Mangal C 2018 J. Stat. Mech. 3 033209

    [25]

    Kharkongor D, Reenbohn W L, Mahato Mangal C 2016 Phys. Rev. E 94 022148Google Scholar

    [26]

    Camargo S, Anteneodo C 2018 Physica A 495 114Google Scholar

    [27]

    Sekimoto K 1997 J. Phys. Soc. Jpn. 66 1234Google Scholar

  • 图 1  不同外力振幅$ A $下质心平均速度$ \left\langle v \right\rangle $随摩擦系数振幅$ {\gamma _0} $的变化曲线, 其中$\varDelta = 1$, $\theta = 0.75{\text{π }}$

    Fig. 1.  The curves of the center-of-mass mean velocity $ \left\langle v \right\rangle $ varying with the amplitude of the friction coefficient $ {\gamma _0} $ under different external force amplitude$ A $, where $\varDelta = 1$, $\theta = 0.75{\text{π }}$.

    图 2  (a) 不同外势不对称度$\varDelta$下质心平均速度$ \left\langle v \right\rangle $随摩擦系数振幅$ {\gamma _0} $的变化曲线; (b) 外势作用力$- {\text{d}}{V_r} \left( x \right)/{\text{d}}x$ 随外势不对称度$\varDelta$变化的曲线, 其中$ A = 4 $, $\theta = 0.75{\text{π }}$

    Fig. 2.  (a) The curves of the center-of-mass mean velocity $ \left\langle v \right\rangle $ varying with the amplitude of the friction coefficient $ {\gamma _0} $ under different asymmetric parameter $\varDelta$; (b) the curves of the external potential force $ - {\text{d}}{V_r}\left( x \right)/{\text{d}}x$ varying with asymmetric parameter $\varDelta$, where $ A = 4 $, $\theta = 0.75{\text{π }}$.

    图 3  不同空间相位差$ \theta $下质心平均速度$ \left\langle v \right\rangle $随摩擦系数振幅$ {\gamma _0} $的变化曲线, 其中$ A = 4 $, $\varDelta = 1$

    Fig. 3.  The curves of the center-of-mass mean velocity $ \left\langle v \right\rangle $ varying with the amplitude of the friction coefficient $ {\gamma _0} $ under different spatial phase difference $ \theta $, where $ A = 4 $, $\varDelta = 1$.

    图 4  不同外力振幅下能量转化效率$ \eta $随摩擦系数振幅$ {\gamma _0} $的变化曲线, 其中$\varDelta = 1= 1$, $\theta = 0.75{\text{π }}$

    Fig. 4.  The curves of the energy conversion efficiency $ \eta $ varying with the amplitude of the friction coefficient $ {\gamma _0} $under different external force amplitudes A, where $\varDelta = 1= 1$, $\theta = 0.75{\text{π }}$.

    图 5  不同外势不对称度$\varDelta$下能量转化效率$ \eta $随摩擦系数振幅$ {\gamma _0} $的变化曲线, 其中$ A = 4 $, $\theta = 0.75{\text{π }}$

    Fig. 5.  The curves of the energy conversion efficiency $ \eta $ varying with the amplitude of the friction coefficient$ {\gamma _0} $under different external asymmetric parameter$\varDelta$, where $ A = 4 $, $\theta = 0.75{\text{π }}$.

    图 6  $\theta = 0.75{\text{π }}$时能量转化效率$ \eta $随摩擦系数振幅$ {\gamma _0} $的变化曲线, 其中$ A = 4 $, $\varDelta = 1$

    Fig. 6.  The curve of the energy conversion efficiency $ \eta $ varying with the amplitude of the friction coefficient $ {\gamma _0} $, where $\theta = 0.75{\text{π }}$, $ A = 4 $, $\varDelta = 1$.

    图 7  质心平均速度$ \left\langle v \right\rangle $随外力振幅$ A $的变化曲线, 其中$\varDelta = 1$, $\theta = 0.75{\text{π }}$

    Fig. 7.  The curves of the center-of-mass mean velocity $ \left\langle v \right\rangle $ varying with the amplitude of the external force $ A $, where $\varDelta = 1$, $\theta = 0.75{\text{π }}$.

    图 8  质心平均速度$ \left\langle v \right\rangle $随外势不对称度$\varDelta$的变化曲线, 其中$ A = 4 $, $ {\gamma _0} = 0.08 $

    Fig. 8.  The curves of the center-of-mass mean velocity $ \left\langle v \right\rangle $ varying with asymmetric parameter $\varDelta$, where $ A = 4 $, $ {\gamma _0} = 0.08 $.

    图 9  质心平均速度$ \left\langle v \right\rangle $随空间相位差$ \theta $的变化曲线, 其中$\varDelta = 1$, $ {\gamma _0} = 0.08 $

    Fig. 9.  The curves of the center-of-mass mean velocity $ \left\langle v \right\rangle $ varying with spatial phase difference $ \theta $, where $\varDelta = 1$, $ {\gamma _0} = 0.08 $.

  • [1]

    舒咬根, 欧阳钟灿 2007 物理 36 735Google Scholar

    Shu Y G, Ouyang Z C 2007 Physics 36 735Google Scholar

    [2]

    Xie P 2010 Int. J. Biol. Sci. 6 665

    [3]

    郭晓强 2019 自然杂志 41 56Google Scholar

    Guo X Q 2019 Chin. J. Nat. 41 56Google Scholar

    [4]

    Ross J L 2012 P. Natl. Acad. Sci. Usa. 109 5911Google Scholar

    [5]

    Nara Y, Niemi H, Steinheimer J, Stöcker H 2017 Phys. Lett. B 769 543Google Scholar

    [6]

    Mateos J L, Arzola A V, Volke-Seplveda K 2011 Phys. Rev. Lett. 106 168104Google Scholar

    [7]

    Palmigiano A, Santaniello F, Cerutti A, Penkov D, Purushothama D 2018 Sci. Rep. 8 3198Google Scholar

    [8]

    Linke H 2002 Appl. Phys. A 75 167Google Scholar

    [9]

    Van den Heuvel M G L, Dekker C 2007 Science 317 333Google Scholar

    [10]

    Zhang H W, Wen S T, Zhang H T, Li Y X, Chen G R 2012 Chin. Phys. B 21 078701Google Scholar

    [11]

    Doering C R 1995 Nuovo Cimento 17 685Google Scholar

    [12]

    Astumian R D, Bier M 1994 Phys. Rev. Lett. 2 1766

    [13]

    Gao T F, Chen J C 2009 J. Phys. A: Math. Theor. 42 065002Google Scholar

    [14]

    Dinis L, Quintero R N 2015 Phys. Rev. E 91 032920Google Scholar

    [15]

    Li P C, Chen H B, Fan H, Shen W M, Zheng Z G 2017 J. Phys. A:Math. Theor. 50 475003Google Scholar

    [16]

    延明月, 张旭, 刘晨昊, 黄仁忠, 高天附, 郑志刚 2018 物理学报 67 190501Google Scholar

    Yan M Y, Zhang X, Liu C H, Huang R Z, Gao T F, Zheng Z G 2018 Acta Phys. Sin. 67 190501Google Scholar

    [17]

    张旭, 曹佳慧, 艾保全, 高天附, 郑志刚 2020 物理学报 69 100503Google Scholar

    Zhang X, Cao J H, Ai B Q, Gao T F, Zheng Z G 2020 Acta Phys. Sin. 69 100503Google Scholar

    [18]

    Gehlen S V, Evstigneev M, Reimann P 2009 Phys. Rev. E 79 031114Google Scholar

    [19]

    Lombardo J, Broadwater D, Collins R, Cebe K, Brady R, Harrison S 2019 Hum. Pathol. 86 129Google Scholar

    [20]

    Toyoshima H 1951 J. Japan. Forest. Soc. 33 203

    [21]

    Toyoshima H 1951 J. Japan. Forest. Soc. 33 83

    [22]

    黎明, 欧阳钟灿, 舒咬根 2016 物理学报 65 188702Google Scholar

    Li M, Ouyang Z C, Shu Y G 2016 Acta Phys. Sin. 65 188702Google Scholar

    [23]

    Sumithra K, Sintes T 2001 Physica A 297 1

    [24]

    Kharkongor D, Reenbohn W L, Mahato Mangal C 2018 J. Stat. Mech. 3 033209

    [25]

    Kharkongor D, Reenbohn W L, Mahato Mangal C 2016 Phys. Rev. E 94 022148Google Scholar

    [26]

    Camargo S, Anteneodo C 2018 Physica A 495 114Google Scholar

    [27]

    Sekimoto K 1997 J. Phys. Soc. Jpn. 66 1234Google Scholar

  • [1] 杨楠楠, 王尚民, 张家良, 温小琼, 赵凯. 改进型机-电模型及脉冲等离子体推力器能量转化效率分析. 物理学报, 2024, 73(21): 215202. doi: 10.7498/aps.73.20241117
    [2] 潘登, 刘长鑫, 张泽洋, 高玉金, 郝秀红. 速度对聚四氟乙烯摩擦系数影响的分子动力学模拟. 物理学报, 2019, 68(17): 176801. doi: 10.7498/aps.68.20190495
    [3] 刘晨昊, 刘天宇, 黄仁忠, 高天附, 舒咬根. 粗糙势中耦合布朗粒子的定向输运性能. 物理学报, 2019, 68(24): 240501. doi: 10.7498/aps.68.20191203
    [4] 王世伟, 朱朋哲, 李瑞. 界面羟基对碳纳米管摩擦行为和能量耗散的影响. 物理学报, 2018, 67(7): 076101. doi: 10.7498/aps.67.20180311
    [5] 贺书凯, 齐伟, 矫金龙, 董克攻, 邓志刚, 滕建, 张博, 张智猛, 洪伟, 张辉, 沈百飞, 谷渝秋. 基于带电粒子活化法开展的SGⅡ-U皮秒激光质子加速实验研究. 物理学报, 2018, 67(22): 225202. doi: 10.7498/aps.67.20181504
    [6] 延明月, 张旭, 刘晨昊, 黄仁忠, 高天附, 郑志刚. 反馈脉冲棘轮的能量转化效率研究. 物理学报, 2018, 67(19): 190501. doi: 10.7498/aps.67.20181066
    [7] 吕明涛, 延明月, 艾保全, 高天附, 郑志刚. 过阻尼布朗棘轮的斯托克斯效率研究. 物理学报, 2017, 66(22): 220501. doi: 10.7498/aps.66.220501
    [8] 温涛, 何剑, 张增星, 田竹梅, 穆继亮, 韩建强, 丑修建, 薛晨阳. 磁悬浮式电磁-摩擦复合生物机械能量采集器. 物理学报, 2017, 66(22): 228401. doi: 10.7498/aps.66.228401
    [9] 范黎明, 吕明涛, 黄仁忠, 高天附, 郑志刚. 反馈控制棘轮的定向输运效率研究. 物理学报, 2017, 66(1): 010501. doi: 10.7498/aps.66.010501
    [10] 韩燕龙, 贾富国, 唐玉荣, 刘扬, 张强. 颗粒滚动摩擦系数对堆积特性的影响. 物理学报, 2014, 63(17): 174501. doi: 10.7498/aps.63.174501
    [11] 张兆慧, 李海鹏, 韩奎. 纳米摩擦中极性有机分子超薄膜的结构、对称性及能量机理. 物理学报, 2013, 62(15): 158701. doi: 10.7498/aps.62.158701
    [12] 韩亮, 宁涛, 刘德连, 何亮. 氩离子轰击对四面体非晶碳膜内应力和摩擦系数影响的研究. 物理学报, 2012, 61(17): 176801. doi: 10.7498/aps.61.176801
    [13] 韩亮, 陈仙, 杨立, 王炎武, 王晓艳, 赵玉清. 高能氮离子轰击对四面体非晶碳膜的表面改性和摩擦系数影响的研究. 物理学报, 2011, 60(6): 066804. doi: 10.7498/aps.60.066804
    [14] 龚中良, 黄平. 基于非连续能量耗散的滑动摩擦系数计算模型. 物理学报, 2011, 60(2): 024601. doi: 10.7498/aps.60.024601
    [15] 丁凌云, 龚中良, 黄平. 声子摩擦能量耗散机理研究. 物理学报, 2009, 58(12): 8522-8528. doi: 10.7498/aps.58.8522
    [16] 龚中良, 黄 平. 界面摩擦过程非连续能量耗散机理研究. 物理学报, 2008, 57(4): 2358-2362. doi: 10.7498/aps.57.2358
    [17] 许中明, 黄 平. 摩擦微观能量耗散机理的复合振子模型研究. 物理学报, 2006, 55(5): 2427-2432. doi: 10.7498/aps.55.2427
    [18] 刘元富, 张谷令, 王久丽, 刘赤子, 杨思泽. 脉冲高能量密度等离子体法制备TiN薄膜及其摩擦磨损性能研究. 物理学报, 2004, 53(2): 503-507. doi: 10.7498/aps.53.503
    [19] 胡宁. 一排等距平行直杆后及方格后激流平均速度及温度之分布. 物理学报, 1944, 5(1): 30-48. doi: 10.7498/aps.5.30
    [20] 胡宁. 圆柱体后及轴对称体后激流平均速度及温度之分布. 物理学报, 1944, 5(1): 1-29. doi: 10.7498/aps.5.1
计量
  • 文章访问数:  3714
  • PDF下载量:  51
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-26
  • 修回日期:  2021-07-28
  • 刊出日期:  2021-12-05

/

返回文章
返回