搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种高偏转灵敏度同步扫描条纹管

柳雪玲 田进寿 田丽萍 陈萍 张敏睿 薛彦华 李亚晖 方玉熳 徐向晏 刘百玉 缑永胜

引用本文:
Citation:

一种高偏转灵敏度同步扫描条纹管

柳雪玲, 田进寿, 田丽萍, 陈萍, 张敏睿, 薛彦华, 李亚晖, 方玉熳, 徐向晏, 刘百玉, 缑永胜

A synchroscan streak tube with high deflection sensitivity

Liu Xue-Ling, Tian Jin-Shou, Tian Li-Ping, Chen Ping, Zhang Min-Rui, Xue Yan-Hua, Li Ya-Hui, Fang Yu-Man, Xu Xiang-Yan, Liu Bai-Yu, Gou Yong-Sheng
PDF
HTML
导出引用
  • 设计了一种高时空分辨率、高偏转灵敏度的同步扫描条纹管. 采用降低阴极与阳极之间电压、增大等位区长度的方法提高了条纹管的偏转灵敏度. 采用在阴极后引入超精细栅网、合理设计六电极静电聚焦系统上各个电极所加电压以及将电子束交叉点设计到偏转板入口处的方法, 降低了时间畸变和时间弥散, 提高了条纹管的时空分辨率. 7000 V工作电压下的模拟结果显示: 在阴极有效尺寸10 mm × 4 mm内, 该条纹管的物理时间分辨率优于1.83 ps @MTF = 10%, 阴极静态空间分辨率优于38 lp/mm @MTF = 10%, 偏转灵敏度为125 mm/kV; 在250 MHz同步扫描频率下的动态空间分辨率优于16 lp/mm, 极限时间分辨率为1.39 ps; 在10 mm × 20 μm阴极狭缝脉冲下得到的同步扫描时间分辨率优于2.3 ps. 此外, 实验测试结果显示: 该条纹管阴极中心的静态空间分辨率为40 lp/mm, 在75 MHz同步扫描频率下测得的时间分辨率为5.55 ps.
    A synchroscan streak tube with high spatiotemporal resolution and high deflection sensitivity is proposed, which contains several innovation designs. Some measures are taken to improve the imaging performances of the streak tube. Firstly, in order to obtain a high deflection sensitivity, the difference in voltage between the photocathode and anode and the length of the equipotential region of the streak tube are reduced as much as possible. Secondly, by introducing a hyperfine grid behind the cathode, reasonably designing the voltages applied to the six-electrode electrostatic focusing system, and moving the electron beam crossing point to the entrance of the deflection plates, the temporal dispersion and the temporal distortion of the streak tube are reduced, and the spatiotemporal resolution of the streak tube is improved. Besides, the streak tube is technically analyzed by tracking the temporal and spatial distribution of electrons under an operating voltage of 7000 V with the aid of computer simulation technology (CST) software. The results show that the deflection sensitivity is 125 mm/kV, the physical temporal resolution is better than 1.83 ps @MTF = 10%, and the static spatial resolution on the photocathode is better than 38 lp/mm @MTF = 10% over the effective photocathode area with a size of 10 mm × 4 mm. By applying a synchronous scanning voltage with a repetition frequency of 250 MHz to the deflection electrode, the results show that the dynamic spatial resolution of the streak tube is better than 16 lp/mm, the limit of the dynamic temporal resolution is 1.39 ps, and two rectangular electron pulses with a size of 10 mm × 20 μm and an interval of 2.3 ps emitted from the photocathode can be well resolved by the streak tube. In addition, the experimental measurements are conducted with a streak tube developed in our laboratory. The results demonstrate that the photocathode of the streak tube can work in the entire visible light region, and the response in the short wavelength region is significantly better than that in the long wavelength region. The static spatial resolution of this streak tube is 40 lp/mm in the center of the photocathode. The temporal resolution of this streak tube is 5.55 ps measured under a synchronous scanning voltage with a repetition frequency of 75 MHz.
      通信作者: 田进寿, tianjs@opt.ac.cn
      Corresponding author: Tian Jin-Shou, tianjs@opt.ac.cn
    [1]

    王季刚 2012 博士学位论文 (合肥: 中国科学技术大学)

    Wang J G 2012 Ph. D. Dissertation (Hefei: University of Science and Technology of China) (in Chinese)

    [2]

    郭宝平, Cunin B, 牛憨笨 2005 光子学报 34 442

    Guo B P, Cunin B, Niu H B 2005 Acta Photonic Sin. 34 442

    [3]

    牛憨笨, 刘月平, 杨勤劳 1988 光子学报 17 12

    Niu H B, Liu Y P, Yang Q L 1988 Acta Photonic Sin. 17 12

    [4]

    张焕文 1986 光子学报 15 43

    Zhang H W 1986 Acta Photonic Sin. 15 43

    [5]

    Adams M C, Sibbett W, Bradley D J 1980 Adv. Electron. Electron Phy. 52 265

    [6]

    Finch A, Sleat W E, Sibbett W 1989 Re. Sci. Instrum. 60 839Google Scholar

    [7]

    Sibbett W 1983 15th Intl Congress on High Speed Photography and Photonics San Diego, USA, March 1, 1983 p15

    [8]

    屈军乐, 牛憨笨, 李冀, 赵慧娟, 陈晓颍 2000 光学学报 20 1657Google Scholar

    Qu J L, Niu H B, Li J, Zhao H J, Chen X Y 2000 Acta Optica Sin. 20 1657Google Scholar

    [9]

    Taylor J R, Adams M C, Sibbett W 1980 Appl. Phys. 21 13Google Scholar

    [10]

    Fujimoto J G, Yee T K, Salour M M 1981 Appl. Phys. Lett. 39 12Google Scholar

    [11]

    The Universal Streak Camera C10910 series https://www.hamamatsu.com/jp/en/index.html [2021-4-25]

    [12]

    OptoScope SC-10 Systems https://optronis.com/en/ [2021-4-25]

    [13]

    Datasheets of Streak Tube Photochrom 5 http://www.photek.co.uk/ [2021-4-25]

    [14]

    Howorth J R, Phillips I, Monastryski M 2003 25th International Congress on High-Speed Photography and Photonics Beaune, France, August 1, 2003 p311

    [15]

    Synchronous Scanning Streak Camera 2200 (同步扫描条纹相机 2200) http://opt.cas.cn/gb2019/kycg/cpzs/202008/t202008 24_5670183.html [2021-4-25]

    [16]

    田丽萍, 沈令斌, 陈琳, 李立立, 陈萍, 田进寿 2021 光子学报 50 143Google Scholar

    Tian L P, Shen L B, Chen L, Li L L, Chen P, Tian J S 2021 Acta Photonic Sin. 50 143Google Scholar

    [17]

    刘月平 1985 硕士学位论文 (西安: 中国科学院西安光学精密机械研究所)

    Liu Y P 1985 M. S. Thesis (Xi’an: Xi’an Institute of Optics and Precision Mechanics of Chinese Academy of Sciences) (in Chinese)

    [18]

    Weiland T 1977 Electronics and Communication (AEü) 31 pp116−120

    [19]

    裴鹿成, 张孝泽 1980 蒙特卡罗方法及其在粒子输运问题中的应用 (北京: 科学出版社) 第100−114页

    Pei L C, Zhang X Z 1980 Monte Carlo Method and the Application in the Transport of Particles (Beijing: Science Press) pp100−114 (in Chinese)

    [20]

    刘虎林 2008 硕士学位论文 (西安: 中国科学院西安光学精密机械研究所)

    Liu H L 2008 M. S. Thesis (Xi’an: Xi’an Institute of Optics and Precision Mechanics of Chinese Academy of Sciences) (in Chinese)

    [21]

    惠丹丹, 田进寿, 王俊锋, 卢裕, 温文龙, 徐向晏 2016 物理学报 65 018502Google Scholar

    Hui D D, Tian J S, Wang J F, Lu Y, Wen W L, Xu X Y 2016 Acta Phys. Sin. 65 018502Google Scholar

    [22]

    杜秉初, 汪健如 2002 电子光学 (北京: 清华大学出版社) 第74, 75页

    Du B C, Wang J R 2002 Electron Optics (Beijing: Tsinghua University Press) pp74, 75 (in Chinese)

    [23]

    Sibbett W, Niu H, Baggs M R 1982 Re. Sci. Instrum. 53 758Google Scholar

    [24]

    牛憨笨, 杨勤劳 1985 光子学报 13 67

    Niu H B, Yang Q L 1985 Acta Photonic Sin. 13 67

    [25]

    Niu H, Sibbett W, Baggs M R 1982 Re. Sci. Instrum. 53 563Google Scholar

    [26]

    田进寿, 赵宝升, 吴建军, 赵卫, 刘运全, 张杰 2006 物理学报 55 3368Google Scholar

    Tian J S, Zhao B S, Wu J J, Zhao W, Liu Y Q, Zhang J 2006 Acta Phys. Sin. 55 3368Google Scholar

    [27]

    王强强 2014 硕士学位论文 (西安: 中国科学院西安光学精密机械研究所)

    Wang Q Q 2014 M. S. Thesis (Xi’an: Xi’an Institute of Optics and Precision Mechanics of Chinese Academy of Sciences) (in Chinese)

    [28]

    刘蓉, 田进寿, 苗润才, 王强强, 温文龙, 李岩, 王俊峰, 徐向晏, 卢裕, 刘虎林, 王兴 2016 光子学报 45 109

    Liu R, Tian J S, Miao R C, Wang Q Q, Wen W L, Li Y, Wang J F, Xu X Y, Lu Y, Liu H L, Wang X 2016 Acta Photonic Sin. 45 109

    [29]

    Fleurot N 1985 16th International Congress on High Speed Photography and Photonics Strasbourg, France, August 27–31 1984, p374

    [30]

    牛憨笨, 张焕文, 王贤华, 杨勤劳, 刘月平, 王云程, 任永安, 周军兰 1989 光子学报 18 11

    Niu H B, Zhang H W, Wang X H, Yang Q L, Liu Y P, Wang Y C, Ren Y A, Zhou J L 1989 Acta Photonic Sin. 18 11

  • 图 1  条纹管的结构剖视图

    Fig. 1.  Cross-sectional view of the streak tube.

    图 2  阴极发射电子的运行轨迹

    Fig. 2.  Trajectories of electrons emitted from the cathode.

    图 3  不同轴向位置处光电阴极中心的像斑大小

    Fig. 3.  Size of the image spot at the center of the photocathode at different axial positions.

    图 4  条纹管内电势分布情况 (a)子午面内电势分布图; (b)轴上电势分布; (c)轴上电势的一阶导数和二阶导数分布

    Fig. 4.  Potential distribution of the streak tube: (a) Potential distribution on the meridian plane; (b) potential along the z axis; (b) the first and second derivatives of the potential along the z-axis.

    图 5  狭缝方向离轴不同距离处发射的电子束的时间分辨特性 (a) TMTF; (b)时间畸变

    Fig. 5.  Time resolution properties of the electrons emitted from different distances on the cathode in the direction of the slit: (a) TMTF; (b) temporal distortion.

    图 6  狭缝方向离轴不同距离处发射的电子束的空间调制传递函数 (a)弧矢方向; (b)子午方向

    Fig. 6.  SMTF of the electrons emitted from different place on the cathode in the direction of the slit: (a) SMTF in the sagittal direction; (b) SMTF in the meridian direction.

    图 7  荧光屏上偏转距离随偏转电压的变化

    Fig. 7.  Deflection distance versus voltage applied on deflection plate.

    图 8  不同偏转电压下离轴不同距离处发射的电子的空间分辨率 (a)弧矢方向; (b)子午方向

    Fig. 8.  Spatial resolution of the electrons emitted at different distances from the axis varies with the deflection voltage: (a) Sagittal direction; (b) meridian direction.

    图 9  正弦扫描电压信号

    Fig. 9.  Sine sweep voltage signal.

    图 10  阴极发射的光电子脉冲序列及其扫描结果 (a)蒙特卡罗抽样的电子脉冲序列; (b)时间间隔为10 ps的电子脉冲序列的的扫描图像

    Fig. 10.  Emitted electron pulses from photocathode and its scanning image: (a) M-C sampling electron pulse sequences; (b) scanning image of the electron pulses with an interval of 10 ps.

    图 11  动态空间分辨率模拟结果 (a)荧光屏上电子像斑分布; (b)电子像斑沿弧矢方向的强度分布曲线

    Fig. 11.  Simulation results of dynamic spatial resoluiton: (a) Distribution of the scanning image on the phosphor screen; (b) intensity distribution of the scanning image along the sagittal direction.

    图 12  间隔为2.3 ps的10 mm × 20 μm狭缝脉冲的动态扫描像

    Fig. 12.  Dynamic scanning image of a 10 mm × 20 μm slit pulses with an interval of 2.3 ps.

    图 13  等径圆筒型条纹管实物图

    Fig. 13.  Prototype of the equal-diameter cylindrical streak tube.

    图 14  光电阴极光谱灵敏度

    Fig. 14.  Photocathode radiation sensitivity results.

    图 15  静态测试平台实物图

    Fig. 15.  Static test platform.

    图 16  光电阴极中心静态空间分辨率测试结果

    Fig. 16.  Test result of static spatial resolution of photocathode center.

    图 17  同步扫描时间分辨率测试结果 (a) CCD采集到的扫描狭缝像; (b)扫描狭缝像沿扫描方向的强度积分曲线

    Fig. 17.  Results of synchronous scanning temporal resolution test: (a) Scanning image collected by CCD; (b) intensity distribution of the scanned image along the scanning direction.

    表 1  光电阴极10 mm × 4 mm内发射的光电子的时空分辨率

    Table 1.  Temporal and spatial resolution of photoelectrons emitted within 10 mm × 4 mm of the photocathode.

    离轴距离X = 0 mmX = 1 mmX = 2 mmX = 3 mmX = 4 mmX = 5 mm
    时间分辨率/psY = –1 mm1.221.241.261.341.421.63
    Y = –2 mm1.241.271.371.401.401.83
    弧矢方向空间分辨率/( lp·mm–1)Y = –1 mm1778861394421
    Y = –2 mm6612277403618
    子午方向空间分辨率/( lp·mm–1)Y = –1 mm60522684311867640
    Y= –2 mm5152111471394727
    下载: 导出CSV
  • [1]

    王季刚 2012 博士学位论文 (合肥: 中国科学技术大学)

    Wang J G 2012 Ph. D. Dissertation (Hefei: University of Science and Technology of China) (in Chinese)

    [2]

    郭宝平, Cunin B, 牛憨笨 2005 光子学报 34 442

    Guo B P, Cunin B, Niu H B 2005 Acta Photonic Sin. 34 442

    [3]

    牛憨笨, 刘月平, 杨勤劳 1988 光子学报 17 12

    Niu H B, Liu Y P, Yang Q L 1988 Acta Photonic Sin. 17 12

    [4]

    张焕文 1986 光子学报 15 43

    Zhang H W 1986 Acta Photonic Sin. 15 43

    [5]

    Adams M C, Sibbett W, Bradley D J 1980 Adv. Electron. Electron Phy. 52 265

    [6]

    Finch A, Sleat W E, Sibbett W 1989 Re. Sci. Instrum. 60 839Google Scholar

    [7]

    Sibbett W 1983 15th Intl Congress on High Speed Photography and Photonics San Diego, USA, March 1, 1983 p15

    [8]

    屈军乐, 牛憨笨, 李冀, 赵慧娟, 陈晓颍 2000 光学学报 20 1657Google Scholar

    Qu J L, Niu H B, Li J, Zhao H J, Chen X Y 2000 Acta Optica Sin. 20 1657Google Scholar

    [9]

    Taylor J R, Adams M C, Sibbett W 1980 Appl. Phys. 21 13Google Scholar

    [10]

    Fujimoto J G, Yee T K, Salour M M 1981 Appl. Phys. Lett. 39 12Google Scholar

    [11]

    The Universal Streak Camera C10910 series https://www.hamamatsu.com/jp/en/index.html [2021-4-25]

    [12]

    OptoScope SC-10 Systems https://optronis.com/en/ [2021-4-25]

    [13]

    Datasheets of Streak Tube Photochrom 5 http://www.photek.co.uk/ [2021-4-25]

    [14]

    Howorth J R, Phillips I, Monastryski M 2003 25th International Congress on High-Speed Photography and Photonics Beaune, France, August 1, 2003 p311

    [15]

    Synchronous Scanning Streak Camera 2200 (同步扫描条纹相机 2200) http://opt.cas.cn/gb2019/kycg/cpzs/202008/t202008 24_5670183.html [2021-4-25]

    [16]

    田丽萍, 沈令斌, 陈琳, 李立立, 陈萍, 田进寿 2021 光子学报 50 143Google Scholar

    Tian L P, Shen L B, Chen L, Li L L, Chen P, Tian J S 2021 Acta Photonic Sin. 50 143Google Scholar

    [17]

    刘月平 1985 硕士学位论文 (西安: 中国科学院西安光学精密机械研究所)

    Liu Y P 1985 M. S. Thesis (Xi’an: Xi’an Institute of Optics and Precision Mechanics of Chinese Academy of Sciences) (in Chinese)

    [18]

    Weiland T 1977 Electronics and Communication (AEü) 31 pp116−120

    [19]

    裴鹿成, 张孝泽 1980 蒙特卡罗方法及其在粒子输运问题中的应用 (北京: 科学出版社) 第100−114页

    Pei L C, Zhang X Z 1980 Monte Carlo Method and the Application in the Transport of Particles (Beijing: Science Press) pp100−114 (in Chinese)

    [20]

    刘虎林 2008 硕士学位论文 (西安: 中国科学院西安光学精密机械研究所)

    Liu H L 2008 M. S. Thesis (Xi’an: Xi’an Institute of Optics and Precision Mechanics of Chinese Academy of Sciences) (in Chinese)

    [21]

    惠丹丹, 田进寿, 王俊锋, 卢裕, 温文龙, 徐向晏 2016 物理学报 65 018502Google Scholar

    Hui D D, Tian J S, Wang J F, Lu Y, Wen W L, Xu X Y 2016 Acta Phys. Sin. 65 018502Google Scholar

    [22]

    杜秉初, 汪健如 2002 电子光学 (北京: 清华大学出版社) 第74, 75页

    Du B C, Wang J R 2002 Electron Optics (Beijing: Tsinghua University Press) pp74, 75 (in Chinese)

    [23]

    Sibbett W, Niu H, Baggs M R 1982 Re. Sci. Instrum. 53 758Google Scholar

    [24]

    牛憨笨, 杨勤劳 1985 光子学报 13 67

    Niu H B, Yang Q L 1985 Acta Photonic Sin. 13 67

    [25]

    Niu H, Sibbett W, Baggs M R 1982 Re. Sci. Instrum. 53 563Google Scholar

    [26]

    田进寿, 赵宝升, 吴建军, 赵卫, 刘运全, 张杰 2006 物理学报 55 3368Google Scholar

    Tian J S, Zhao B S, Wu J J, Zhao W, Liu Y Q, Zhang J 2006 Acta Phys. Sin. 55 3368Google Scholar

    [27]

    王强强 2014 硕士学位论文 (西安: 中国科学院西安光学精密机械研究所)

    Wang Q Q 2014 M. S. Thesis (Xi’an: Xi’an Institute of Optics and Precision Mechanics of Chinese Academy of Sciences) (in Chinese)

    [28]

    刘蓉, 田进寿, 苗润才, 王强强, 温文龙, 李岩, 王俊峰, 徐向晏, 卢裕, 刘虎林, 王兴 2016 光子学报 45 109

    Liu R, Tian J S, Miao R C, Wang Q Q, Wen W L, Li Y, Wang J F, Xu X Y, Lu Y, Liu H L, Wang X 2016 Acta Photonic Sin. 45 109

    [29]

    Fleurot N 1985 16th International Congress on High Speed Photography and Photonics Strasbourg, France, August 27–31 1984, p374

    [30]

    牛憨笨, 张焕文, 王贤华, 杨勤劳, 刘月平, 王云程, 任永安, 周军兰 1989 光子学报 18 11

    Niu H B, Zhang H W, Wang X H, Yang Q L, Liu Y P, Wang Y C, Ren Y A, Zhou J L 1989 Acta Photonic Sin. 18 11

  • [1] 何小安, 杨家敏, 黎宇坤, 李晋, 熊刚. 软X射线条纹相机CsI光阴极响应灵敏度的理论计算. 物理学报, 2023, 72(24): 245203. doi: 10.7498/aps.72.20231043
    [2] 潘彬雄, 弓晟, 张鹏, 刘子叶, 皮彭健, 陈旺, 黄文强, 王保举, 詹求强. 基于点扫描的高时空分辨荧光显微成像技术进展. 物理学报, 2023, 72(20): 204201. doi: 10.7498/aps.72.20230912
    [3] 郁钧瑾, 郭星奕, 隋怡晖, 宋剑平, 他得安, 梅永丰, 许凯亮. 超分辨率超快超声脊髓微血管成像方法. 物理学报, 2022, 71(17): 174302. doi: 10.7498/aps.71.20220629
    [4] 向鹏程, 蔡聪波, 王杰超, 蔡淑惠, 陈忠. 基于深度神经网络的时空编码磁共振成像超分辨率重建方法. 物理学报, 2022, 71(5): 058702. doi: 10.7498/aps.71.20211754
    [5] 严德贤, 李九生, 王怡. 基于向日葵型圆形光子晶体的高灵敏度太赫兹折射率传感器. 物理学报, 2019, 68(20): 207801. doi: 10.7498/aps.68.20191024
    [6] 高强, 李小秋, 周志鹏, 孙磊. 基于分形谐振器的远场超分辨率扫描成像. 物理学报, 2019, 68(24): 244102. doi: 10.7498/aps.68.20190620
    [7] 许新科, 刘国栋, 刘炳国, 陈凤东, 庄志涛, 甘雨. 基于光纤色散相位补偿的高分辨率激光频率扫描干涉测量研究. 物理学报, 2015, 64(21): 219501. doi: 10.7498/aps.64.219501
    [8] 田会娟, 牛萍娟. 基于delta-P1近似模型的空间分辨漫反射一阶散射参量灵敏度研究. 物理学报, 2013, 62(3): 034201. doi: 10.7498/aps.62.034201
    [9] 张聪, 沈惠璋, 李峰, 杨何群. 复杂网络中社团结构发现的多分辨率密度模块度. 物理学报, 2012, 61(14): 148902. doi: 10.7498/aps.61.148902
    [10] 曾鹏, 袁铮, 邓博, 袁永腾, 李志超, 刘慎业, 赵屹东, 洪才浩, 郑雷, 崔明启. 软X射线条纹相机透射式Au与CsI阴极谱响应灵敏度标定. 物理学报, 2012, 61(15): 155209. doi: 10.7498/aps.61.155209
    [11] 陈英明, 王秉中, 葛广顶. 微波时间反演系统的空间超分辨率机理. 物理学报, 2012, 61(2): 024101. doi: 10.7498/aps.61.024101
    [12] 田会娟, 牛萍娟. 基于混合漫射近似的空间分辨漫反射光学参量灵敏度的研究. 物理学报, 2012, 61(18): 184214. doi: 10.7498/aps.61.184214
    [13] 龚元, 郭宇, 饶云江, 赵天, 吴宇, 冉曾令. 光纤法布里-珀罗复合结构折射率传感器的灵敏度分析. 物理学报, 2011, 60(6): 064202. doi: 10.7498/aps.60.064202
    [14] 卢婧, 李昊, 何毅, 史国华, 张雨东. 超分辨率活体人眼视网膜共焦扫描成像系统. 物理学报, 2011, 60(3): 034207. doi: 10.7498/aps.60.034207
    [15] 吴丹, 陶超, 刘晓峻. 有限方位扫描的光声断层成像分辨率研究. 物理学报, 2010, 59(8): 5845-5850. doi: 10.7498/aps.59.5845
    [16] 侯建平, 宁韬, 盖双龙, 李鹏, 郝建苹, 赵建林. 基于光子晶体光纤模间干涉的折射率测量灵敏度分析. 物理学报, 2010, 59(7): 4732-4737. doi: 10.7498/aps.59.4732
    [17] 葛广顶, 王秉中, 黄海燕, 郑罡. 时间反演电磁波超分辨率特性. 物理学报, 2009, 58(12): 8249-8253. doi: 10.7498/aps.58.8249
    [18] 刘 迎, 王利军, 郭云峰, 张小娟, 高宗慧, 田会娟. 空间分辨漫反射的高阶参量灵敏度. 物理学报, 2007, 56(4): 2119-2123. doi: 10.7498/aps.56.2119
    [19] 刘运全, 梁文锡, 张 杰, 吴建军, 田进寿, 王俊峰, 赵宝升. 飞秒电子衍射系统的静态特性研究. 物理学报, 2006, 55(12): 6500-6505. doi: 10.7498/aps.55.6500
    [20] 张海涛, 巩马理, 赵达尊, 闫平, 崔瑞祯, 贾维溥. 实现超分辨率的微变焦法. 物理学报, 2001, 50(8): 1486-1491. doi: 10.7498/aps.50.1486
计量
  • 文章访问数:  4100
  • PDF下载量:  76
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-04-27
  • 修回日期:  2021-07-12
  • 上网日期:  2021-08-15
  • 刊出日期:  2021-11-05

/

返回文章
返回