搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

一种准零刚度声学超材料板的低频宽频带隔声行为

胥强荣 沈承 韩峰 卢天健

引用本文:
Citation:

一种准零刚度声学超材料板的低频宽频带隔声行为

胥强荣, 沈承, 韩峰, 卢天健

Broadband low-frequency sound insulation performance of quasi-zero stiffness local resonant acoustic metamaterial plate

Xu Qiang-Rong, Shen Cheng, Han Feng, Lu Tian-Jian
PDF
HTML
导出引用
  • 在传统弹簧-振子局域共振基础上, 本文并联倾斜弹簧负刚度机构, 提出一种新型的准零刚度局域共振型声学超材料板, 以实现低频宽频带有效隔声. 首先, 从动力学角度推导准零刚度结构的归一化等效刚度; 然后, 基于等效介质法建立声学超材料板的隔声理论模型, 并通过理论分析和数值模拟(有限元)结果, 讨论其在正负等效刚度区的隔声效果; 最后, 为验证理论预测的准确性, 制备准零刚度超材料板样件并采用阻抗管对其进行测试. 结果表明: 在正刚度区, 增大弹簧的刚度比或预压缩量可显著降低超材料板的局域共振频率, 如在10 Hz附近获得30 dB的传输损失, 实现了超低频隔声. 在负刚度区, 超材料板不产生局域共振现象, 且可避免“吻合效应”引起的隔声低谷现象, 故可在53—1500 Hz宽频段内实现大宽带隔声(大于30 dB), 相较传统材料或类似的超材料具有显著优势. 进一步利用理论模型, 从等效质量面密度、反射系数和声阻抗率等多个角度, 分析了超材料板的隔声机理, 在隔声峰处发现了负的等效质量密度, 且隔声谷处产生了低频“吻合效应”. 本文提出利用准零刚度局域共振思想实现低频宽带隔声的方法, 克服了传统超材料需减小刚度或增大附加质量的不利特性, 对低频隔声结构的设计具有重要的理论指导意义.
    For realizing the effective broadband insulation of sound at low frequencies, a novel local resonant acoustic metamaterial plate having quasi-zero stiffness is proposed. Based on the classical mass-spring local resonance model, a metastructure is constructed by introducing additional inclined springs with negative stiffness. First, the normalized equivalent stiffness of the quasi-zero stiffness structure is derived from the perspective of dynamics. Then, by employing the method of equivalent medium, a sound insulation model of the metastructure is established theoretically. For validation, numerical simulations as well as experimental measurements are carried out. It is demonstrated that in the positive (equivalent) stiffness regime, increasing either the stiffness ratio or pre-compression can significantly reduce the local resonance frequency of the metastructure, which exhibits the great insulation performance around the local resonance frequency. For a typical example, the proposed metastructure can achieve a transmission loss of 30 dB around 10 Hz. In contrast, within the negative stiffness regime, the metastructure does not exhibit local resonance, thus avoiding sound insulation valley caused by the “coincidence effect”. Compared with traditional materials or similar metamaterials, the proposed metastructure has significant advantages in sound insulation (e.g. more than 30 dB drop over a wide frequency band of 53-1500 Hz). By analyzing the equivalent mass density, reflection coefficient, and acoustic impedance ratio of the metastructure, the physical mechanism behind its superior insulation performance is further explored. The equivalent mass density changes from positive to negative and tends to infinity at the insulation peak. The insulation peak is attributed to a nearly perfect total reflection of sound wave caused by impedance mismatch, while the insulation valley is caused by low-frequency “coincidence effect” originating from the local resonance band gap. The using of the quasi-zero stiffness local resonance to achieve low-frequency broadband sound insulation overcomes the disadvantages of traditional metamaterials such as reduced stiffness or additional mass, thus becoming vastly attractive for constructing low-frequency broad band sound insulation structures.
      通信作者: 沈承, cshen@nuaa.edu.cn ; 卢天健, tjlu@nuaa.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 11502110, 11972185)和机械结构强度与振动国家重点实验室开放基金(批准号: SV2018-KF-01)资助的课题.
      Corresponding author: Shen Cheng, cshen@nuaa.edu.cn ; Lu Tian-Jian, tjlu@nuaa.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 11502110, 11972185) and the Open Fund of the State Key Laboratory for Strength and Vibration of Mechanical Structures, China (Grant No. SV2018-KF-01).
    [1]

    田源, 葛浩, 卢明辉, 陈延锋 2019 物理学报 68 194301Google Scholar

    Tian Y, Ge H, Lu M H, Chen Y F 2019 Acta Phys. Sin. 68 194301Google Scholar

    [2]

    Ma G C, Sheng P 2016 Sci. Adv. 2 e1501595Google Scholar

    [3]

    丁昌林, 董仪宝, 赵晓鹏 2018 物理学报 67 194301Google Scholar

    Ding C L, Dong Y B, Zhao X P 2018 Acta Phys. Sin. 67 194301Google Scholar

    [4]

    Liu Z Y, Chan C T, Sheng P 2005 Phys. Rev. B 71 014103Google Scholar

    [5]

    Fang N, Xi D J, Xu J Y, Ambati M, Srituravanich W, Sun C, Zhang X 2006 Nat. Mater. 5 452Google Scholar

    [6]

    Deng K, Ding Y Q, He Z J, Zhao H P, Shi J, Liu Z Y 2009 J. Appl. Phys. 105 188505Google Scholar

    [7]

    Zhu X F, Liang B, Kan W W, Zou X Y, Cheng J C 2011 Phys. Rev. Lett. 106 014301Google Scholar

    [8]

    Peng S S, He Z J, Jia H, Zhang A Q, Qiu C Y, Ke M Z, Liu Z Y 2010 Appl. Phys. Lett. 96 263502Google Scholar

    [9]

    Mei J, Ma G C, Yang M, Yang Z Y, Wen W J, Sheng P 2012 Nat. Commun. 3 756Google Scholar

    [10]

    Kushwaha M S, Halevi P, Dobrzynski L, Djafari-Rouhani B 1993 Phys. Rev. Lett. 71 2022Google Scholar

    [11]

    Liu Z Y, Zhang X, Mao Y, Zhu Y Y, Yang Z, Chan C T, Sheng P 2000 Science 289 1734Google Scholar

    [12]

    张佳龙, 姚宏, 杜军, 赵静波, 董亚科, 祁鹏山 2016 硅酸盐学报 44 1440Google Scholar

    Zhang J L, Yao H, Du J, Zhao J B, Dong Y K, Qi P S 2016 J. Chin. Ceramic Soc. 44 1440Google Scholar

    [13]

    张思文, 吴九汇 2013 物理学报 62 134302Google Scholar

    Zhang S W, Wu J H 2013 Acta Phys. Sin. 62 134302Google Scholar

    [14]

    张永燕, 吴九汇, 钟宏民 2017 物理学报 66 094301Google Scholar

    Zhang Y Y, Wu J H, Zhong H M 2017 Acta Phys. Sin. 66 094301Google Scholar

    [15]

    张若军, 肖勇, 温激鸿, 郁殿龙 2016 振动工程学报 29 905Google Scholar

    Zhang R J, Xiao Y, Wen J H, Yu D L 2016 J. Vib. Eng. 29 905Google Scholar

    [16]

    乔厚, 何锃, 张恒堃, 彭伟才, 江雯 2019 物理学报 68 128101Google Scholar

    Qiao H, He Z, Zhang H K, Peng W C, Jiang W 2019 Acta Phys. Sin. 68 128101Google Scholar

    [17]

    梅军, 杨旻, 杨志宇, 陈傲轩, 沈平 2010 物理 39 243

    Mei J, Yang M, Yang Z Y, Chen A X, Shen P 2010 Physics 39 243

    [18]

    贺子厚, 赵静波, 姚宏, 陈鑫 2019 物理学报 68 214302Google Scholar

    He Z H, Zhao J B, Yao H, Chen X 2019 Acta Phys. Sin. 68 214302Google Scholar

    [19]

    贺子厚, 赵静波, 姚宏, 蒋娟娜, 陈鑫 2019 物理学报 68 134302Google Scholar

    He Z H, Zhao J B, Yao H, Jiang J N, Chen X 2019 Acta Phys. Sin. 68 134302Google Scholar

    [20]

    Xiao Y, Wen J H, Wen X S 2012 J. Phys. D:Appl. Phys. 45 195401Google Scholar

    [21]

    Xiao Y, Wen J H, Wen X S 2012 J. Sound Vib. 331 5408Google Scholar

    [22]

    Huang X C, Liu X T, Sun J Y, Zhang Z Y, Hua H X 2014 J. Sound Vib. 333 1132Google Scholar

    [23]

    Carrella A, Brennan M J, Waters T P 2007 J. Sound Vib. 301 678Google Scholar

    [24]

    Zheng Y S, Zhang X N, Luo Y J, Zhang Y H, Xie S L 2018 Mech. Syst. Sig. Process. 100 135Google Scholar

    [25]

    Wang K, Zhou J X, Cai C Q, Xu D L, Ouyang H J 2019 Appl. Math. Modell. 73 581Google Scholar

    [26]

    张浩 2016 博士学位论文 (长沙: 国防科技大学)

    Zhang H 2016 Ph. D. Dissertation (Changsha: National University of Defense Technology) (in Chinese)

    [27]

    杜功焕, 朱哲民, 龚秀芬 2012 声学基础 (南京: 南京大学出版社) 第71页

    Du G H, Zhu Z M, Gong X F 2012 Acoustic Basis (Nanjing: Nanjing University Press) p71 (in Chinese)

    [28]

    李佩 2014 博士学位论文 (北京: 北京理工大学)

    Li P 2014 Ph. D. Dissertation (Beijing: Beijing Institute of Technology) (in Chinese)

    [29]

    何琳, 朱海潮, 邱小军, 杜功焕 2006 声学理论与工程应用 (北京: 科学出版社) 第177页

    He L, Zhu H C, Qiu X J, Du G H 2006 Acoustic Theory and Engineering Application (Beijing: Science Press) p177 (in Chinese)

  • 图 1  准零刚度局域共振结构[25] (a)结构示意图; (b)单胞结构; (c)主要几何参数; (d)准零刚度单元俯视图

    Fig. 1.  Quasi-zero stiffness local resonance structure[25]: (a) Schematic of whole structure; (b) unit cell; (c) main geometric parameters; (d) top view of quasi-zero stiffness element.

    图 2  弹簧刚度比保持不变($\gamma = 0.4$), (a)归一化恢复力和(b)等效刚度随弹簧预压缩量的变化趋势; 弹簧预压缩量保持不变($\bar \delta = 0.2$), (c)归一化恢复力和(d)等效刚度随弹簧刚度比的变化趋势

    Fig. 2.  (a) Normalized reacting force and (b) equivalent stiffness plotted as functions of pre-compression of springs for $\gamma = 0.4$; (c) normalized reacting force and (d) equivalent stiffness plotted as functions of spring stiffness ratio for $\bar \delta = 0.2$.

    图 3  周期性元胞有限元模型 (a)有限元模型; (b)集总机械系统原理图

    Fig. 3.  Finite element model of periodic cell: (a) Finite element model; (b) schematic diagram of lumped mechanical system.

    图 4  三种声学板结构的传输损失: 理论预测与数值模拟对比

    Fig. 4.  Comparison of sound transmission loss among three different plate structures: Analytical model prediction versus numerical simulation.

    图 5  三种板结构对比 (a)等效质量面密度和超材料板的偶极子振动模式; (b)反射系数

    Fig. 5.  Comparison among three different plate structures: (a) Equivalent mass surface density and dipole vibration mode of QZS; (b) reflection coefficient.

    图 6  声压云图(单位: Pa) (a) 22.5 Hz; (b) 90 Hz

    Fig. 6.  Sound pressure cloud diagram (unit: Pa): (a) 22.5 Hz; (b) 90 Hz.

    图 7  正刚度区传输损失对比 (a)刚度比的影响($\bar \delta = $$ 0.2$); (b)预压缩量的影响($\gamma = 0.4$)

    Fig. 7.  Comparison of transmission loss versus frequency curves in positive equivalent stiffness zone: (a) Influence of stiffness ratio at $\bar \delta = 0.2$; (b) influence of pre-compression at $\gamma = 0.4$.

    图 8  负刚度区传输损失对比

    Fig. 8.  Comparison of transmission loss versus frequency curves in negative equivalent stiffness zone.

    图 9  正/负等效刚度区超材料板和无振子板对比 (a)传输损失; (b)等效阻抗和反射系数

    Fig. 9.  Metamaterial plate compared with non-oscillator plate in both positive regime ($\bar \delta = 0.2$ and $\gamma = 0.8$) and negative regime ($\bar \delta = 0.8$ and $\gamma = 0.8$) of equivalent stiffness: (a) Transmission loss; (b) equivalent impedance and reflection coefficient.

    图 10  传输损失随入射角变化曲线

    Fig. 10.  Comparison of transmission loss under different incident angle.

    图 11  (a)实验装置; (b)超材料板样件; (c)样件置于阻抗管内

    Fig. 11.  (a) Experimental facility; (b) metamaterial plate sample; (c) sample positioned in impedance tube.

    图 12  实验测量与数值仿真得到的传输损失对比 (a)无振子板; (b) 4振子超材料板

    Fig. 12.  Comparison of transmission loss between experimental measurement and numerical simulation: (a) Non-oscillator plate; (b) four-oscillator metamaterial plate.

    表 1  材料参数

    Table 1.  Material parameters.

    Material$\rho $/(kg⋅m–3)E /(1010 Pa)Possion ratio
    Aluminum270070.33
    Steel778021.060.3
    Epoxy resin 1150 0.435 0.38
    Plumbum1160040.80.369
    下载: 导出CSV

    表 2  三种声学板结构的结构参数

    Table 2.  Structural parameters of the three structures.

    Modela/mmh/mmk1/(N⋅m–1)Stiffness ratioPre-compressionm/kg
    QZS254100000.80.20.1
    MSP25410000000.1
    NOP2540000
    下载: 导出CSV

    表 3  准零刚度单元在正等效刚度区的调节参数

    Table 3.  Selected values of spring stiffness and pre-compression in the regime of positive equivalent stiffness.

    Groupk1 /(N⋅m–1)Stiffness ratioPre-compression
    Case1100000.40.2
    Case2100000.60.2
    Case3100000.80.2
    Case4
    Case5
    10000
    10000
    0.4
    0.4
    0.3
    0.376
    下载: 导出CSV

    表 4  准零刚度单元在负等效刚度区的调节参数

    Table 4.  Selected values of spring stiffness and pre-compression in the regime of negative equivalent stiffness.

    Groupk1/(N⋅m–1)Stiffness ratioPre-compression
    Case1100002.00.2
    Case2100003.00.2
    Case3
    Case4
    10000
    10000
    0.8
    0.8
    0.4
    0.8
    下载: 导出CSV

    表 5  有限大四振子超材料板的力学参数及局域共振频率

    Table 5.  Mechanical parameters and local resonance frequencies of finite four-oscillator metamaterial plate.

    k1/(N·m–1)k2/(N·m–1)Pre-compressionm/gExperiment f0/HzFEM f0/ Hz
    A35137.811322.10.219.14178176
    B35137.81093.160.219.14211210
    C35137.811322.10.210.17254242
    D35137.811322.10.0210.17300289
    下载: 导出CSV
  • [1]

    田源, 葛浩, 卢明辉, 陈延锋 2019 物理学报 68 194301Google Scholar

    Tian Y, Ge H, Lu M H, Chen Y F 2019 Acta Phys. Sin. 68 194301Google Scholar

    [2]

    Ma G C, Sheng P 2016 Sci. Adv. 2 e1501595Google Scholar

    [3]

    丁昌林, 董仪宝, 赵晓鹏 2018 物理学报 67 194301Google Scholar

    Ding C L, Dong Y B, Zhao X P 2018 Acta Phys. Sin. 67 194301Google Scholar

    [4]

    Liu Z Y, Chan C T, Sheng P 2005 Phys. Rev. B 71 014103Google Scholar

    [5]

    Fang N, Xi D J, Xu J Y, Ambati M, Srituravanich W, Sun C, Zhang X 2006 Nat. Mater. 5 452Google Scholar

    [6]

    Deng K, Ding Y Q, He Z J, Zhao H P, Shi J, Liu Z Y 2009 J. Appl. Phys. 105 188505Google Scholar

    [7]

    Zhu X F, Liang B, Kan W W, Zou X Y, Cheng J C 2011 Phys. Rev. Lett. 106 014301Google Scholar

    [8]

    Peng S S, He Z J, Jia H, Zhang A Q, Qiu C Y, Ke M Z, Liu Z Y 2010 Appl. Phys. Lett. 96 263502Google Scholar

    [9]

    Mei J, Ma G C, Yang M, Yang Z Y, Wen W J, Sheng P 2012 Nat. Commun. 3 756Google Scholar

    [10]

    Kushwaha M S, Halevi P, Dobrzynski L, Djafari-Rouhani B 1993 Phys. Rev. Lett. 71 2022Google Scholar

    [11]

    Liu Z Y, Zhang X, Mao Y, Zhu Y Y, Yang Z, Chan C T, Sheng P 2000 Science 289 1734Google Scholar

    [12]

    张佳龙, 姚宏, 杜军, 赵静波, 董亚科, 祁鹏山 2016 硅酸盐学报 44 1440Google Scholar

    Zhang J L, Yao H, Du J, Zhao J B, Dong Y K, Qi P S 2016 J. Chin. Ceramic Soc. 44 1440Google Scholar

    [13]

    张思文, 吴九汇 2013 物理学报 62 134302Google Scholar

    Zhang S W, Wu J H 2013 Acta Phys. Sin. 62 134302Google Scholar

    [14]

    张永燕, 吴九汇, 钟宏民 2017 物理学报 66 094301Google Scholar

    Zhang Y Y, Wu J H, Zhong H M 2017 Acta Phys. Sin. 66 094301Google Scholar

    [15]

    张若军, 肖勇, 温激鸿, 郁殿龙 2016 振动工程学报 29 905Google Scholar

    Zhang R J, Xiao Y, Wen J H, Yu D L 2016 J. Vib. Eng. 29 905Google Scholar

    [16]

    乔厚, 何锃, 张恒堃, 彭伟才, 江雯 2019 物理学报 68 128101Google Scholar

    Qiao H, He Z, Zhang H K, Peng W C, Jiang W 2019 Acta Phys. Sin. 68 128101Google Scholar

    [17]

    梅军, 杨旻, 杨志宇, 陈傲轩, 沈平 2010 物理 39 243

    Mei J, Yang M, Yang Z Y, Chen A X, Shen P 2010 Physics 39 243

    [18]

    贺子厚, 赵静波, 姚宏, 陈鑫 2019 物理学报 68 214302Google Scholar

    He Z H, Zhao J B, Yao H, Chen X 2019 Acta Phys. Sin. 68 214302Google Scholar

    [19]

    贺子厚, 赵静波, 姚宏, 蒋娟娜, 陈鑫 2019 物理学报 68 134302Google Scholar

    He Z H, Zhao J B, Yao H, Jiang J N, Chen X 2019 Acta Phys. Sin. 68 134302Google Scholar

    [20]

    Xiao Y, Wen J H, Wen X S 2012 J. Phys. D:Appl. Phys. 45 195401Google Scholar

    [21]

    Xiao Y, Wen J H, Wen X S 2012 J. Sound Vib. 331 5408Google Scholar

    [22]

    Huang X C, Liu X T, Sun J Y, Zhang Z Y, Hua H X 2014 J. Sound Vib. 333 1132Google Scholar

    [23]

    Carrella A, Brennan M J, Waters T P 2007 J. Sound Vib. 301 678Google Scholar

    [24]

    Zheng Y S, Zhang X N, Luo Y J, Zhang Y H, Xie S L 2018 Mech. Syst. Sig. Process. 100 135Google Scholar

    [25]

    Wang K, Zhou J X, Cai C Q, Xu D L, Ouyang H J 2019 Appl. Math. Modell. 73 581Google Scholar

    [26]

    张浩 2016 博士学位论文 (长沙: 国防科技大学)

    Zhang H 2016 Ph. D. Dissertation (Changsha: National University of Defense Technology) (in Chinese)

    [27]

    杜功焕, 朱哲民, 龚秀芬 2012 声学基础 (南京: 南京大学出版社) 第71页

    Du G H, Zhu Z M, Gong X F 2012 Acoustic Basis (Nanjing: Nanjing University Press) p71 (in Chinese)

    [28]

    李佩 2014 博士学位论文 (北京: 北京理工大学)

    Li P 2014 Ph. D. Dissertation (Beijing: Beijing Institute of Technology) (in Chinese)

    [29]

    何琳, 朱海潮, 邱小军, 杜功焕 2006 声学理论与工程应用 (北京: 科学出版社) 第177页

    He L, Zhu H C, Qiu X J, Du G H 2006 Acoustic Theory and Engineering Application (Beijing: Science Press) p177 (in Chinese)

  • [1] 魏巍, 管峰, 方鑫. 基于带隙阻波隔振的超材料梁吸隔振一体化设计方法. 物理学报, 2024, 73(22): 1-13. doi: 10.7498/aps.73.20241135
    [2] 崔铁军, 吴浩天, 刘硕. 信息超材料研究进展. 物理学报, 2020, 69(15): 158101. doi: 10.7498/aps.69.20200246
    [3] 翟世龙, 王元博, 赵晓鹏. 基于声学超材料的低频可调吸收器. 物理学报, 2019, 68(3): 034301. doi: 10.7498/aps.68.20181908
    [4] 王飞, 黄益旺, 孙启航. 气泡体积分数对沙质沉积物低频声学特性的影响. 物理学报, 2017, 66(19): 194302. doi: 10.7498/aps.66.194302
    [5] 朱席席, 肖勇, 温激鸿, 郁殿龙. 局域共振型加筋板的弯曲波带隙与减振特性. 物理学报, 2016, 65(17): 176202. doi: 10.7498/aps.65.176202
    [6] 薛佳, 秦际良, 张玉驰, 李刚, 张鹏飞, 张天才, 彭堃墀. 低频标准真空涨落的测量. 物理学报, 2016, 65(4): 044211. doi: 10.7498/aps.65.044211
    [7] 吴健, 白晓春, 肖勇, 耿明昕, 郁殿龙, 温激鸿. 一种多频局域共振型声子晶体板的低频带隙与减振特性. 物理学报, 2016, 65(6): 064602. doi: 10.7498/aps.65.064602
    [8] 周卓辉, 刘晓来, 黄大庆, 康飞宇. 一种基于十字镂空结构的低频超材料吸波体的设计与制备. 物理学报, 2014, 63(18): 184101. doi: 10.7498/aps.63.184101
    [9] 侯丽娜, 侯志林, 傅秀军. 局域共振型声子晶体中的缺陷态研究. 物理学报, 2014, 63(3): 034305. doi: 10.7498/aps.63.034305
    [10] 程聪, 吴福根, 张欣, 姚源卫. 基于局域共振单元实现声子晶体低频多通道滤波. 物理学报, 2014, 63(2): 024301. doi: 10.7498/aps.63.024301
    [11] 鲁磊, 屈绍波, 施宏宇, 张安学, 张介秋, 马华. 基于宽边耦合螺旋结构的低频小型化极化不敏感超材料吸波体. 物理学报, 2013, 62(15): 158102. doi: 10.7498/aps.62.158102
    [12] 王莹, 程用志, 聂彦, 龚荣洲. 基于集总元件的低频宽带超材料吸波体设计与实验研究. 物理学报, 2013, 62(7): 074101. doi: 10.7498/aps.62.074101
    [13] 张思文, 吴九汇. 局域共振复合单元声子晶体结构的低频带隙特性研究. 物理学报, 2013, 62(13): 134302. doi: 10.7498/aps.62.134302
    [14] 沈晓鹏, 崔铁军, 叶建祥. 基于超材料的微波双波段吸收器. 物理学报, 2012, 61(5): 058101. doi: 10.7498/aps.61.058101
    [15] 刘敏, 侯志林, 傅秀军. 二维正方排列圆柱状亥姆赫兹共振腔阵列局域共振声带隙的研究. 物理学报, 2012, 61(10): 104302. doi: 10.7498/aps.61.104302
    [16] 文岐华, 左曙光, 魏欢. 多振子梁弯曲振动中的局域共振带隙. 物理学报, 2012, 61(3): 034301. doi: 10.7498/aps.61.034301
    [17] 苏妍妍, 龚伯仪, 赵晓鹏. 基于双负介质结构单元的零折射率超材料. 物理学报, 2012, 61(8): 084102. doi: 10.7498/aps.61.084102
    [18] 陈圣兵, 韩小云, 郁殿龙, 温激鸿. 不同压电分流电路对声子晶体梁带隙的影响. 物理学报, 2010, 59(1): 387-392. doi: 10.7498/aps.59.387
    [19] 李晓春, 梁宏宇, 易秀英, 肖清武, 赵保星. 二维组合宽带隙材料的研究. 物理学报, 2007, 56(5): 2784-2789. doi: 10.7498/aps.56.2784
    [20] 华 佳, 张 舒, 程建春. 三元周期结构声禁带形成机理. 物理学报, 2005, 54(3): 1261-1266. doi: 10.7498/aps.54.1261
计量
  • 文章访问数:  7634
  • PDF下载量:  294
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-28
  • 修回日期:  2021-08-10
  • 上网日期:  2021-08-30
  • 刊出日期:  2021-12-20

/

返回文章
返回