-
钾离子通道在神经细胞动作电位复极过程中起着重要作用. 钾离子通道蛋白种类繁多, 钾离子通道允许钾离子特异性穿过细胞膜, 从而维持神经细胞静息电位. 离子通道蛋白的二级结构决定其功能特性, 皮秒尺度内二级结构的波动会对离子通道蛋白的功能, 即离子通过速率有很大的影响. 本文使用分子动力学模拟方法, 模拟施加不同幅值的53.7 THz的太赫兹波对真实KcsA钾通道蛋白二级结构和钾离子通过速率的影响. 研究发现, 在53.7 THz的太赫兹波的作用下, KcsA钾通道蛋白中α螺旋数量减少, β折叠以及卷曲数量增加. 此外, 53.7 THz的太赫兹波能够加速钾离子通过KcsA钾通道. 本文从蛋白质的二级结构分析太赫兹波对钾离子通道蛋白的影响, 为太赫兹波和生物功能分子相互作用之间提供了新的观察角度.Potassium channels play an important role in repolarizing the nerve cell action potentials. There are many types of potassium channel proteins, and potassium channels allow potassium ions to specifically pass through the cell membrane, thereby maintaining the resting potential of nerve cells. In this paper, molecular dynamics simulation method is used to simulate the effects of 53.7 THz terahertz wave with different amplitudes on the secondary structure of KcsA potassium channel protein and the potassium ions rate. It is found in this study that under the action of the 53.7 THz terahertz wave, the number of alpha helices in KcsA potassium channel protein decreases, and the number of beta sheets and the number of coils increase. In addition, the 53.7 THz terahertz wave can accelerate potassium ions through the KcsA potassium channel. In this article, the effects of terahertz waves on potassium channel proteins are analyzed through the secondary structure of proteins, and a new perspective for the interaction between terahertz waves and biological functional molecules is presented as well.
-
Keywords:
- potassium channel /
- protein secondary structure /
- potassium ion rate /
- resonance absorption
[1] Nelson M T, Quayle J M 1995 Am. J. Physiol. 268 C799Google Scholar
[2] Faraci F M, Sobey C G 1996 Clin. Exp. Pharmacol. Physiol. 23 1091Google Scholar
[3] Orias M 1998 Medicina 58 429
[4] Johnston J, Forsythe I D, Kopp-Scheinpflug C 2010 J. Physiol. 588 3187Google Scholar
[5] Yellen G 2002 Nature 419 35Google Scholar
[6] Guan D, Lee J C F, Higgs M H, Spain W J, Foehring R C 2007 J. Neurophys. 97 1931Google Scholar
[7] Guan D, Armstrong W E, Foehring R C 2013 J. Physiol. 591 4807Google Scholar
[8] Zhu Z, Cheng C, Chang C, Ren G, Zhang J, Peng Y, Han J, Zhao H 2019 Analyst 144 2504Google Scholar
[9] 周俊, 刘盛纲 2014 现代应用物理 5 85Google Scholar
Zhou J, Liu S G 2014 Modern Applied Physics 5 85Google Scholar
[10] Michele J C, Piero U 2021 Chem. Phys. 155 075102Google Scholar
[11] Sizov F 2017 SPQEO 20 273Google Scholar
[12] Li N, Peng D L, Zhang X J, Shu Y S, Zhang F, Jiang L, Song B 2021 Nano Res. 14 40Google Scholar
[13] Wilmink G J, Grundt J E 2011 J. Infrared Millimeter Terahertz Waves 32 1074Google Scholar
[14] Bo W F, Guo L H, Yang Y, Ma J L, Wang K C, Tang J C, Wu Z, Zeng B Q, Gong Y B 2020 IEEE Access 8 10305Google Scholar
[15] Li Y M, Chang C, Zhu Z, Sun L, Fan C H 2021 JACS 143 4311Google Scholar
[16] Liu X, Qiao Z, Chai Y M, Zhu Z, Wu K J, Ji W L, Li D G, Xiao Y J, Mao L Q, Chang C, Wen Q, Song B, Shu Y S 2021 PNAS 118 e2015685118Google Scholar
[17] Zhang J X, He Y, Liang S S, Liao X, Li T, Qiao Z, Chang C, Jia H B, Chen X W 2021 Nat. Commun. 12 2730Google Scholar
[18] Zhu Z, Chen C, Chang C, Song B 2021 ACS Photonics 8 781Google Scholar
[19] Zhang X X, He M X, Chen Y, Li C, Zhao J W, Wang P F, Peng X 2019 Chin. Phys. B 28 128702Google Scholar
[20] Alexandrov B S, Rasmussen K Ø, Bishop A R, Usheva A, Rodriguez G 2011 Biomed. Opt. Express 2 2679Google Scholar
[21] Yamazaki S, Harata M, Ueno Y, Tsubouchi M, Konagaya K, Ogawa Y, Isoyama G, Otani C, Hoshina H 2020 Sci. Rep. 10 9008Google Scholar
[22] Yamazaki S, Harata M, Idehara T, Konagaya K, Yokoyama G, Hoshina H, Ogawa Y 2018 Sci. Rep. 8 9990Google Scholar
[23] Wu K J, Qi C H, Zhu Z, Wang C L, Song B, Chang C 2020 J. Phys. Chem. Lett. 11 7002Google Scholar
[24] Takehiro T, Reiko S, Shiho T, Ken-Ichiro K, Hideki H 2020 Opt. Lett. 45 6078Google Scholar
[25] Jorgensen W L, Chandrasekhar J, Madura J D, Impey R W, Klein M L 1983 J. Chem. Phys. 79 926Google Scholar
[26] Biggin P C, Smith G R, Shrivastava I, Choe S, Sansom M S P 2001 BBA-Biomemberanes 1510 1Google Scholar
[27] Berendsen H J C, Spoel D V D, Drunen R V 1995 Comput. Phys. Commun. 91 43Google Scholar
[28] Parker M J, Sessions R B, Badcoe I G, Clarke A R 1996 Fold Des. 1 145Google Scholar
[29] Zhou H X, Wlodek S T, McCammon J A 1998 PNAS 95 9280Google Scholar
[30] Barron L D, Hecht L, Wilson G 1997 Biochemistry 36 13143Google Scholar
[31] Fischer S, Smith J C, Verma C S 2001 J. Phys. Chem. B 105 8050Google Scholar
[32] Leach A R 2001 Molecular Modelling: Principles and Applications (2nd Ed.) (Harlow: Pearson Education Ltd.) pp20−30
[33] Rath A, Johnson R M, Deber C M 2007 Pept. Sci. 88 217Google Scholar
[34] Moore D T, Berger B W, DeGrado W F 2008 Structure 16 991Google Scholar
[35] Matthews E E, Zoonens M, Engelman D M 2006 Cell 127 447Google Scholar
-
-
[1] Nelson M T, Quayle J M 1995 Am. J. Physiol. 268 C799Google Scholar
[2] Faraci F M, Sobey C G 1996 Clin. Exp. Pharmacol. Physiol. 23 1091Google Scholar
[3] Orias M 1998 Medicina 58 429
[4] Johnston J, Forsythe I D, Kopp-Scheinpflug C 2010 J. Physiol. 588 3187Google Scholar
[5] Yellen G 2002 Nature 419 35Google Scholar
[6] Guan D, Lee J C F, Higgs M H, Spain W J, Foehring R C 2007 J. Neurophys. 97 1931Google Scholar
[7] Guan D, Armstrong W E, Foehring R C 2013 J. Physiol. 591 4807Google Scholar
[8] Zhu Z, Cheng C, Chang C, Ren G, Zhang J, Peng Y, Han J, Zhao H 2019 Analyst 144 2504Google Scholar
[9] 周俊, 刘盛纲 2014 现代应用物理 5 85Google Scholar
Zhou J, Liu S G 2014 Modern Applied Physics 5 85Google Scholar
[10] Michele J C, Piero U 2021 Chem. Phys. 155 075102Google Scholar
[11] Sizov F 2017 SPQEO 20 273Google Scholar
[12] Li N, Peng D L, Zhang X J, Shu Y S, Zhang F, Jiang L, Song B 2021 Nano Res. 14 40Google Scholar
[13] Wilmink G J, Grundt J E 2011 J. Infrared Millimeter Terahertz Waves 32 1074Google Scholar
[14] Bo W F, Guo L H, Yang Y, Ma J L, Wang K C, Tang J C, Wu Z, Zeng B Q, Gong Y B 2020 IEEE Access 8 10305Google Scholar
[15] Li Y M, Chang C, Zhu Z, Sun L, Fan C H 2021 JACS 143 4311Google Scholar
[16] Liu X, Qiao Z, Chai Y M, Zhu Z, Wu K J, Ji W L, Li D G, Xiao Y J, Mao L Q, Chang C, Wen Q, Song B, Shu Y S 2021 PNAS 118 e2015685118Google Scholar
[17] Zhang J X, He Y, Liang S S, Liao X, Li T, Qiao Z, Chang C, Jia H B, Chen X W 2021 Nat. Commun. 12 2730Google Scholar
[18] Zhu Z, Chen C, Chang C, Song B 2021 ACS Photonics 8 781Google Scholar
[19] Zhang X X, He M X, Chen Y, Li C, Zhao J W, Wang P F, Peng X 2019 Chin. Phys. B 28 128702Google Scholar
[20] Alexandrov B S, Rasmussen K Ø, Bishop A R, Usheva A, Rodriguez G 2011 Biomed. Opt. Express 2 2679Google Scholar
[21] Yamazaki S, Harata M, Ueno Y, Tsubouchi M, Konagaya K, Ogawa Y, Isoyama G, Otani C, Hoshina H 2020 Sci. Rep. 10 9008Google Scholar
[22] Yamazaki S, Harata M, Idehara T, Konagaya K, Yokoyama G, Hoshina H, Ogawa Y 2018 Sci. Rep. 8 9990Google Scholar
[23] Wu K J, Qi C H, Zhu Z, Wang C L, Song B, Chang C 2020 J. Phys. Chem. Lett. 11 7002Google Scholar
[24] Takehiro T, Reiko S, Shiho T, Ken-Ichiro K, Hideki H 2020 Opt. Lett. 45 6078Google Scholar
[25] Jorgensen W L, Chandrasekhar J, Madura J D, Impey R W, Klein M L 1983 J. Chem. Phys. 79 926Google Scholar
[26] Biggin P C, Smith G R, Shrivastava I, Choe S, Sansom M S P 2001 BBA-Biomemberanes 1510 1Google Scholar
[27] Berendsen H J C, Spoel D V D, Drunen R V 1995 Comput. Phys. Commun. 91 43Google Scholar
[28] Parker M J, Sessions R B, Badcoe I G, Clarke A R 1996 Fold Des. 1 145Google Scholar
[29] Zhou H X, Wlodek S T, McCammon J A 1998 PNAS 95 9280Google Scholar
[30] Barron L D, Hecht L, Wilson G 1997 Biochemistry 36 13143Google Scholar
[31] Fischer S, Smith J C, Verma C S 2001 J. Phys. Chem. B 105 8050Google Scholar
[32] Leach A R 2001 Molecular Modelling: Principles and Applications (2nd Ed.) (Harlow: Pearson Education Ltd.) pp20−30
[33] Rath A, Johnson R M, Deber C M 2007 Pept. Sci. 88 217Google Scholar
[34] Moore D T, Berger B W, DeGrado W F 2008 Structure 16 991Google Scholar
[35] Matthews E E, Zoonens M, Engelman D M 2006 Cell 127 447Google Scholar
计量
- 文章访问数: 7639
- PDF下载量: 168
- 被引次数: 0