搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

具有异质增益因子的超图上的演化公共品博弈

陈蔚颖 潘建臣 韩文臣 黄昌巍

引用本文:
Citation:

具有异质增益因子的超图上的演化公共品博弈

陈蔚颖, 潘建臣, 韩文臣, 黄昌巍

Evolutionary public goods games on hypergraphs with heterogeneous multiplication factors

Chen Wei-Ying, Pan Jian-Chen, Han Wen-Chen, Huang Chang-Wei
PDF
HTML
导出引用
  • 近年来, 空间结构和社会多样性对群体合作演化的影响吸引了人们极大的关注. 本文在空间公共品博弈中引入了异质增益因子, 研究超图上合作行为的演化. 除所有博弈群组具有相同增益因子的原始模型外, 还考虑了包括均匀分布、指数分布和幂律分布在内的不同异质性强度的三类异质增益因子分布. 数值模拟结果显示, 上述4种增益因子分布对应的公共品博弈中, 均匀随机超图阶数$g$的增大有利于提高群体的合作水平. 更进一步地, 对比超图上原始空间公共品博弈的演化结果, 群体中博弈群组增益因子异质性的引入能够显著促进群体的合作行为, 幂律分布情况下能够使得系统获得最高合作水平. 此外, 研究了超边数目对群体合作演化的影响, 结果表明上述结论对超边数目鲁棒, 并且超边数目$L$的增大会抑制公共品博弈中合作行为的涌现. 一定程度上, 本文的研究结果有助于我们更好地理解超图上空间公共品博弈的演化动力学.
    The spatial structure and social diversity playing a nontrivial role in the emergence and maintenance of cooperation among selfish individuals have been verified. Their effects on the evolution of cooperation have attracted great attention in recent years. Most of previous evolutionary game dynamics is based on pairwise interactions. However, the interactions often take place within groups of people in many real situations and cannot be described simply by dyads. The dynamics of evolutionary games in systems with higher-order interactions has not yet been explored as deserved. In this paper, we introduce heterogeneous multiplication factors into the spatial public goods game to investigate the cooperative behaviors on the hypergraphs. In addition to the original model in which all groups have the same multiplication factor, three types of heterogeneous multiplication factor distributions including uniform, exponential and power-law distributions are considered. The numerical simulation results show that the increase of the order g of the uniform random hypergraphs is conducive to the emergence and prosperity of the individuals' cooperative behavior no matter what types these distributions belong to. Furthermore, compared with the results of the original spatial public goods games on hypergraphs, the heterogeneous multiplication factors following three different distributions can remarkably promote the evolution of cooperation. In particular, for most of ranges of the average rescaling multiplication factor $r_0$, the highest cooperation level can be obtained under the power-law distribution, while the uniform distribution leads to the lowest cooperation level. We provide an explanation through investigating the number of cooperators in each group. In addition, to probe into the essence that influences the survival of cooperative behaviors, we study the time series of the fraction of groups with different numbers of cooperators. Besides, we also investigate the influence of the number of hyperlinks on cooperation evolution. We find that the results are robust against the number of hyperlinks L, and the emergence of cooperative behaviors in public goods games on hypergraphs is hindered with the value of L increasing. To some extent, these results are helpful in the better understanding of the evolutionary dynamics of the spatial public goods games on hypergraphs with social diversity.
      通信作者: 黄昌巍, cwhuang@gxu.edu.cn
    • 基金项目: 国家自然科学基金青年科学基金(批准号: 12005043)资助的课题
      Corresponding author: Huang Chang-Wei, cwhuang@gxu.edu.cn
    • Funds: Project supported by the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 12005043)
    [1]

    Axelrod R, Hamilton W 1981 Science 211 1390Google Scholar

    [2]

    Szabó G, Fáth G 2007 Phys. Rep. 446 97Google Scholar

    [3]

    Nowak M A, May R M 1992 Nature 359 826Google Scholar

    [4]

    Szabó G, Borsos I 2016 Phys. Rep. 624 1Google Scholar

    [5]

    Perc M, Jordan J J, Rand D G, Wang Z, Boccaletti S, Szolnoki A 2017 Phys. Rep. 687 1Google Scholar

    [6]

    Battiston F, Cencetti G, Iacopini I, Latora V, Lucas M, Patania A, Young J G, Petri G 2020 Phys. Rep. 874 1Google Scholar

    [7]

    Santos F C, Santos M D, Pacheco J M 2008 Nature 454 213Google Scholar

    [8]

    Rong Z, Wu Z X 2009 Europhys. Lett. 87 30001Google Scholar

    [9]

    Battiston F, Perc M, Latora V 2017 New J. Phys. 19 073017Google Scholar

    [10]

    Huang C W, Han W C, Li H H, Cheng H Y, Dai Q L, Yang J Z 2019 Appl. Math. Comput. 340 305Google Scholar

    [11]

    Szolnoki A, Perc M 2010 Europhys. Lett. 92 38003Google Scholar

    [12]

    Brandt H, Hauert C, Sigmund K 2003 Proc. R. Soc. London, Ser. B 270 1099Google Scholar

    [13]

    Helbing D, Szolnoki A, Perc M, Szabó G 2010 New J. Phys. 12 083005Google Scholar

    [14]

    Chen X, Szolnoki A, Perc M 2014 New J. Phys. 16 083016Google Scholar

    [15]

    Yang H X, Rong Z H 2015 Chaos Solitons Fractals 77 230Google Scholar

    [16]

    Yang H X, Chen X 2018 Appl. Math. Comput. 316 460Google Scholar

    [17]

    Zhang Y C, Wang J, Ding C X, Xia C 2017 Knowledge-Based Systems 136 150Google Scholar

    [18]

    Zhang L, Xie Y, Huang C W, Li H H, Dai Q L 2020 Chaos, Solitons Fractals 133 109675Google Scholar

    [19]

    Liu L, Chen X, Perc M 2019 Nonlinear Dynamics 97 749Google Scholar

    [20]

    Liu L, Chen X 2020 Knowledge-Based Systems 188 104835Google Scholar

    [21]

    Chen M, Wang L, Wang J, Sun S, Xia C 2015 Appl. Math. Comput. 251 192Google Scholar

    [22]

    Szolnoki A, Chen X 2015 Phys. Rev. E 92 042813Google Scholar

    [23]

    Szolnoki A, Perc M 2016 New J. Phys. 18 083021Google Scholar

    [24]

    Javarone M A, Antonioni A, Caravelli F 2016 Europhys. Lett. 114 38001Google Scholar

    [25]

    Pei Z, Wang B, Du J 2017 New J. Phys. 19 013037Google Scholar

    [26]

    Shi D M, Zhuang Y, Wang B H 2010 Europhys. Lett. 90 58003Google Scholar

    [27]

    Shi D M, Zhuang Y, Wang B H 2012 Physica A 391 1636Google Scholar

    [28]

    Chen X, Liu Y, Zhou Y, Wang L, Perc M 2012 PLoS One 7 e36895Google Scholar

    [29]

    Weng Q, He N, Hu L, Chen X 2021 Phys. Lett. A 400 127299Google Scholar

    [30]

    郭进利, 祝昕昀 2014 物理学报 63 090207Google Scholar

    Guo J L, Zhu X Y 2014 Acta Phys. Sin. 63 090207Google Scholar

    [31]

    卢文, 赵海兴, 孟磊, 胡枫 2021 物理学报 70 018901Google Scholar

    Lu W, Zhao H X, Meng L, Hu F 2021 Acta Phys. Sin. 70 018901Google Scholar

    [32]

    Vasilyeva E, Kozlov A, Alfaro-Bittner K, Musatov D, Raigorodskii A M, Perc M, Boccaletti S 2021 Sci. Rep. 11 5666Google Scholar

    [33]

    Battiston F, Amico E, Barrat A, Bianconi G, Ferraz de Arruda G, Franceschiello B, Iacopini I, Kéfi S, Latora V, Moreno Y, Murray M M, Peixoto T P, Vaccarino F, Petri G 2021 Nat. Phys. 17 1093Google Scholar

    [34]

    Burgio G, Matamalas J T, Gómez S, Arenas A 2020 Entropy 22 744Google Scholar

    [35]

    Alvarez-Rodriguez U, Battiston F, de Arruda G F, Moreno Y, Perc M, Latora V 2021 Nature Human Behaviour 5 586Google Scholar

    [36]

    Perc M, Szolnoki A 2008 Phys. Rev. E 77 011904Google Scholar

    [37]

    Taylor P, Jonker L 1978 Math. Biosci. 40 145Google Scholar

  • 图 1  3阶均匀随机超图上的空间公共品博弈

    Fig. 1.  The spatial public goods game on uniform random hypergraph with hyperlinks of order equal to g = 3.

    图 2  $ r_0 = 1.0 $$ a = 1.0 $时4种分布情况下的群体增益因子$ r_{l} = r_0(1 + \xi) $的分布 (a) 原始模型; (b) 均匀分布; (c) 指数分布; (d) 幂律分布

    Fig. 2.  Distributions of synergy factors $ r_{l} = r_0(1 + \xi) $ for $ r_0 = 1.0 $ and $ a = 1.0 $ of the four cases: (a) Original model; (b) uniform distribution; (c) exponential distribution; (d) power-law distribution.

    图 3  4种增益因子分布情况下, 不同阶数$ g $的超图上群体合作水平$f_{\rm{C}}$$ r_0 $的变化 (a) 原始模型; (b) 均匀分布; (c) 指数分布; (d) 幂律分布

    Fig. 3.  Fraction of cooperators $ f_{\rm{C}} $ as a function of $ r_0 $ for hypergraphs with different orders $ g $: (a) Original model; (b) uniform distribution; (c) exponential distribution; (d) power-law distribution

    图 4  不同超图阶数$ g $值情况下, 4种增益因子分布对应的群体合作水平$f_{\rm{C}}$$ r_0 $的变化 (a) $ g = 2 $; (b) $ g = 3 $; (c) $ g = 4 $; (d) $ g = 5 $

    Fig. 4.  Fraction of cooperators $ f_{\rm{C}} $ as a function of $ r_0 $ on hypergraphs with (a) $ g = 2 $, (b) $ g = 3 $, (c) $ g = 4 $ and (d) $ g = 5 $ for the four situations

    图 5  参数取$ g = 5 $$ r_0 = 0.35 $时博弈群组单元中合作者数目$w_{\rm{C }}$的分布

    Fig. 5.  Distribution of the numbers of cooperators in the group $w_{\rm{C}}$ for $ g = 5 $ and $ r_0 = 0.35 $

    图 6  4种增益因子分布情况下, 参数取$ g = 5 $$ r_0 = 0.35 $时群体合作水平$ f_{\rm{C}} $ 以及群组中合作者数目$ w_{\rm{C}} $分别为0, 1, 2, 3, 4, 5的博弈群组比例的演化时间序列 (a) 原始模型; (b) 均匀分布; (c) 指数分布; (d) 幂律分布

    Fig. 6.  Time series for the evolution of the fraction of cooperators $ f_{\rm{C}} $ and the fractions of groups with $ w_{\rm{C}} = 0, 1, 2, 3, 4, 5 $ for $ g = 5 $ and $ r_0 = 0.35 $: (a) Original model; (b) uniform distribution; (c) exponential distribution; (d) power-law distribution

    图 7  4种增益因子分布情况下, 不同阶数$ g $的超图上临界增益因子均值$r_{\rm{c}}$随超边数目$ L $与阈值$ L_{\rm{c}} $的比值的变化 (a) 原始模型; (b) 均匀分布; (c) 指数分布; (d) 幂律分布

    Fig. 7.  Critical value of the synergy factor $ r_{\rm{c}} $ as a function of the ratio between the number of hyperlinks $ L $ and the critical value $ L_{\rm{c}} $ in hypergraphs of different orders $ g $: (a) Original model; (b) uniform distribution; (c) exponential distribution; (d) power-law distribution

  • [1]

    Axelrod R, Hamilton W 1981 Science 211 1390Google Scholar

    [2]

    Szabó G, Fáth G 2007 Phys. Rep. 446 97Google Scholar

    [3]

    Nowak M A, May R M 1992 Nature 359 826Google Scholar

    [4]

    Szabó G, Borsos I 2016 Phys. Rep. 624 1Google Scholar

    [5]

    Perc M, Jordan J J, Rand D G, Wang Z, Boccaletti S, Szolnoki A 2017 Phys. Rep. 687 1Google Scholar

    [6]

    Battiston F, Cencetti G, Iacopini I, Latora V, Lucas M, Patania A, Young J G, Petri G 2020 Phys. Rep. 874 1Google Scholar

    [7]

    Santos F C, Santos M D, Pacheco J M 2008 Nature 454 213Google Scholar

    [8]

    Rong Z, Wu Z X 2009 Europhys. Lett. 87 30001Google Scholar

    [9]

    Battiston F, Perc M, Latora V 2017 New J. Phys. 19 073017Google Scholar

    [10]

    Huang C W, Han W C, Li H H, Cheng H Y, Dai Q L, Yang J Z 2019 Appl. Math. Comput. 340 305Google Scholar

    [11]

    Szolnoki A, Perc M 2010 Europhys. Lett. 92 38003Google Scholar

    [12]

    Brandt H, Hauert C, Sigmund K 2003 Proc. R. Soc. London, Ser. B 270 1099Google Scholar

    [13]

    Helbing D, Szolnoki A, Perc M, Szabó G 2010 New J. Phys. 12 083005Google Scholar

    [14]

    Chen X, Szolnoki A, Perc M 2014 New J. Phys. 16 083016Google Scholar

    [15]

    Yang H X, Rong Z H 2015 Chaos Solitons Fractals 77 230Google Scholar

    [16]

    Yang H X, Chen X 2018 Appl. Math. Comput. 316 460Google Scholar

    [17]

    Zhang Y C, Wang J, Ding C X, Xia C 2017 Knowledge-Based Systems 136 150Google Scholar

    [18]

    Zhang L, Xie Y, Huang C W, Li H H, Dai Q L 2020 Chaos, Solitons Fractals 133 109675Google Scholar

    [19]

    Liu L, Chen X, Perc M 2019 Nonlinear Dynamics 97 749Google Scholar

    [20]

    Liu L, Chen X 2020 Knowledge-Based Systems 188 104835Google Scholar

    [21]

    Chen M, Wang L, Wang J, Sun S, Xia C 2015 Appl. Math. Comput. 251 192Google Scholar

    [22]

    Szolnoki A, Chen X 2015 Phys. Rev. E 92 042813Google Scholar

    [23]

    Szolnoki A, Perc M 2016 New J. Phys. 18 083021Google Scholar

    [24]

    Javarone M A, Antonioni A, Caravelli F 2016 Europhys. Lett. 114 38001Google Scholar

    [25]

    Pei Z, Wang B, Du J 2017 New J. Phys. 19 013037Google Scholar

    [26]

    Shi D M, Zhuang Y, Wang B H 2010 Europhys. Lett. 90 58003Google Scholar

    [27]

    Shi D M, Zhuang Y, Wang B H 2012 Physica A 391 1636Google Scholar

    [28]

    Chen X, Liu Y, Zhou Y, Wang L, Perc M 2012 PLoS One 7 e36895Google Scholar

    [29]

    Weng Q, He N, Hu L, Chen X 2021 Phys. Lett. A 400 127299Google Scholar

    [30]

    郭进利, 祝昕昀 2014 物理学报 63 090207Google Scholar

    Guo J L, Zhu X Y 2014 Acta Phys. Sin. 63 090207Google Scholar

    [31]

    卢文, 赵海兴, 孟磊, 胡枫 2021 物理学报 70 018901Google Scholar

    Lu W, Zhao H X, Meng L, Hu F 2021 Acta Phys. Sin. 70 018901Google Scholar

    [32]

    Vasilyeva E, Kozlov A, Alfaro-Bittner K, Musatov D, Raigorodskii A M, Perc M, Boccaletti S 2021 Sci. Rep. 11 5666Google Scholar

    [33]

    Battiston F, Amico E, Barrat A, Bianconi G, Ferraz de Arruda G, Franceschiello B, Iacopini I, Kéfi S, Latora V, Moreno Y, Murray M M, Peixoto T P, Vaccarino F, Petri G 2021 Nat. Phys. 17 1093Google Scholar

    [34]

    Burgio G, Matamalas J T, Gómez S, Arenas A 2020 Entropy 22 744Google Scholar

    [35]

    Alvarez-Rodriguez U, Battiston F, de Arruda G F, Moreno Y, Perc M, Latora V 2021 Nature Human Behaviour 5 586Google Scholar

    [36]

    Perc M, Szolnoki A 2008 Phys. Rev. E 77 011904Google Scholar

    [37]

    Taylor P, Jonker L 1978 Math. Biosci. 40 145Google Scholar

  • [1] 刘波, 曾钰洁, 杨荣湄, 吕琳媛. 高阶网络统计指标综述. 物理学报, 2024, 73(12): 128901. doi: 10.7498/aps.73.20240270
    [2] 汪亭亭, 梁宗文, 张若曦. 基于信息熵与迭代因子的复杂网络节点重要性评价方法. 物理学报, 2023, 72(4): 048901. doi: 10.7498/aps.72.20221878
    [3] 卢文, 赵海兴, 孟磊, 胡枫. 具有双峰特性的双层超网络模型. 物理学报, 2021, 70(1): 018901. doi: 10.7498/aps.70.20201065
    [4] 马秀娟, 赵海兴, 胡枫. 基于超图的超网络相继故障分析. 物理学报, 2016, 65(8): 088901. doi: 10.7498/aps.65.088901
    [5] 郭进利. 非均齐超网络中标度律的涌现富者愈富导致幂律分布吗?. 物理学报, 2014, 63(20): 208901. doi: 10.7498/aps.63.208901
    [6] 郭进利, 祝昕昀. 超网络中标度律的涌现. 物理学报, 2014, 63(9): 090207. doi: 10.7498/aps.63.090207
    [7] 李雨珊, 吕翎, 刘烨, 刘硕, 闫兵兵, 常欢, 周佳楠. 复杂网络时空混沌同步的Backstepping设计. 物理学报, 2013, 62(2): 020513. doi: 10.7498/aps.62.020513
    [8] 刘群, 易佳. 基于演化博弈的社交网络模型演化研究. 物理学报, 2013, 62(23): 238902. doi: 10.7498/aps.62.238902
    [9] 胡枫, 赵海兴, 何佳倍, 李发旭, 李淑玲, 张子柯. 基于超图结构的科研合作网络演化模型. 物理学报, 2013, 62(19): 198901. doi: 10.7498/aps.62.198901
    [10] 郝崇清, 王江, 邓斌, 魏熙乐. 基于稀疏贝叶斯学习的复杂网络拓扑估计. 物理学报, 2012, 61(14): 148901. doi: 10.7498/aps.61.148901
    [11] 刘刚, 李永树. 基于引力约束的复杂网络拥塞问题研究. 物理学报, 2012, 61(10): 108901. doi: 10.7498/aps.61.108901
    [12] 周漩, 张凤鸣, 李克武, 惠晓滨, 吴虎胜. 利用重要度评价矩阵确定复杂网络关键节点. 物理学报, 2012, 61(5): 050201. doi: 10.7498/aps.61.050201
    [13] 崔爱香, 傅彦, 尚明生, 陈端兵, 周涛. 复杂网络局部结构的涌现:共同邻居驱动网络演化. 物理学报, 2011, 60(3): 038901. doi: 10.7498/aps.60.038901
    [14] 陈华良, 刘忠信, 陈增强, 袁著祉. 复杂网络的一种加权路由策略研究. 物理学报, 2009, 58(9): 6068-6073. doi: 10.7498/aps.58.6068
    [15] 李涛, 裴文江, 王少平. 无标度复杂网络负载传输优化策略. 物理学报, 2009, 58(9): 5903-5910. doi: 10.7498/aps.58.5903
    [16] 王丹, 于灏, 井元伟, 姜囡, 张嗣瀛. 基于感知流量算法的复杂网络拥塞问题研究. 物理学报, 2009, 58(10): 6802-6808. doi: 10.7498/aps.58.6802
    [17] 吕翎, 张超. 一类节点结构互异的复杂网络的混沌同步. 物理学报, 2009, 58(3): 1462-1466. doi: 10.7498/aps.58.1462
    [18] 许 丹, 李 翔, 汪小帆. 复杂网络病毒传播的局域控制研究. 物理学报, 2007, 56(3): 1313-1317. doi: 10.7498/aps.56.1313
    [19] 林 海, 吴晨旭. 基于遗传算法的重复囚徒困境博弈策略在复杂网络中的演化. 物理学报, 2007, 56(8): 4313-4318. doi: 10.7498/aps.56.4313
    [20] 李 季, 汪秉宏, 蒋品群, 周 涛, 王文旭. 节点数加速增长的复杂网络生长模型. 物理学报, 2006, 55(8): 4051-4057. doi: 10.7498/aps.55.4051
计量
  • 文章访问数:  4873
  • PDF下载量:  122
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-12-30
  • 修回日期:  2022-02-24
  • 上网日期:  2022-05-23
  • 刊出日期:  2022-06-05

/

返回文章
返回