-
The influence of Rashba effect and Zeeman effect on the properties of bound magnetopolaron in an anisotropic quantum dot are studied with Pekar variational method. The expression of the ground state energy of the bound magnetopolaron is obtained through theoretical derivation. The relationship of the ground state energy of the polaron with the transverse effective confinement length, the longitudinal effective confinement length, the magnetic field cyclotron resonance frequency, and the Coulomb bound potential are discussed, respectively. Owing to the crystal structural inversion asymmetry and the time inversion asymmetry, the polaron energy experiences Rashba spin-orbit splitting and Zeeman splitting. Under the strong and weak magnetic field, we discuss the dominant position of Zeeman effect and Rashba effect, respectively. Owing to the presence of phonons and impurities, the polaron is more stable than the bare electron state.
-
Keywords:
- Rashba effect /
- Zeeman effect /
- bound magnetopolaron /
- anisotropic quantum dot
[1] Rashba E I, Efros A L 2003 Phys. Rev. Let. 91 126405Google Scholar
[2] Chi F, Liu L, Sun L 2017 Chin. Phys. B 26 037304Google Scholar
[3] Liu J, Xiao J L, Huo S F, Chen Z Y 2007 Commun. Theor. Phys. 48 930Google Scholar
[4] Shan S P, Chen S H, Hu C, Zhuang R Z 2019 Int. J. Theor. Phys. 58 3702Google Scholar
[5] 施婷 婷, 汪六九, 王璟琨, 张威 2020 物理学报 69 016701Google Scholar
Shi T T, Wang L J, Wang J K, Zhang W 2020 Acta Phys. Sin. 69 016701Google Scholar
[6] Chen Y J, Cui C F, Liu W F, Shao F L 2020 Int. J. Theor. Phys. 6 1829
[7] Zamani A, Setareh F, Azargoshasb T, et al. 2017 Sperlattice Microst. 106 111
[8] Zhang H R, Xiao J L 2010 Chin. J. Lumi. 31 12
[9] Data S, Das B 1990 Appl. Phys. Lett. 56 665Google Scholar
[10] Chi F, Liu L M 2018 Int. J. Theor. Phys. 57 562Google Scholar
[11] Chi F, Sun L L 2016 Chin. Phys. Lett. 33 117201Google Scholar
[12] Hofmann A, Maisi V F, Krähenmann T, et al. 2017 Phys. Rev. Lett. 119 176807Google Scholar
[13] Ferdous R, Chan K W, Veldhorst M, et al. 2018 Phys. Rev. B 97 241401Google Scholar
[14] Governale M 2002 Phys. Rev. Lett. 892 06802
[15] Li W P, Yin J W, Yu Y F, Xiao J L 2010 J. Low Temp. Phys. 160 112
[16] Yin J W, Li W P, Yu Y F, Xiao J L 2011 J. Low Temp. Phys. 163 53
[17] Lee J, Spector H N 2006 J. Appl. Phys. 99 113708Google Scholar
[18] Bandyopadhyay S, Cahay M 2002 Superlattice Microst. 32 171Google Scholar
[19] Li Z X, Yin C H, Zhu X Y 2015 Mode. Phys. Lett. B 29 1550124
[20] Peeters F M, Wu X G, Devreese J T 1986 Phys. Rev. B 33 3926Google Scholar
[21] Shan S P, Chen S H, Xiao J L 2014 Low Temp. Phys. 40 712
-
图 5 取固定值l1 = 0.4, l2 = 0.8, α = 8, αR = 0.5, 当库仑束缚势β' 取不同值时, 束缚磁极化子基态能量E与磁场回旋共振评率ωc之间的关系曲线
Fig. 5. For fixed l1 = 0.4, l2 = 0.8, α = 8, αR = 0.5, the relation of bound magnetopoloran ground state enegergy E with the magnetic field resonance cyclotron frequency ωc at different Coulomb bound potential β'.
-
[1] Rashba E I, Efros A L 2003 Phys. Rev. Let. 91 126405Google Scholar
[2] Chi F, Liu L, Sun L 2017 Chin. Phys. B 26 037304Google Scholar
[3] Liu J, Xiao J L, Huo S F, Chen Z Y 2007 Commun. Theor. Phys. 48 930Google Scholar
[4] Shan S P, Chen S H, Hu C, Zhuang R Z 2019 Int. J. Theor. Phys. 58 3702Google Scholar
[5] 施婷 婷, 汪六九, 王璟琨, 张威 2020 物理学报 69 016701Google Scholar
Shi T T, Wang L J, Wang J K, Zhang W 2020 Acta Phys. Sin. 69 016701Google Scholar
[6] Chen Y J, Cui C F, Liu W F, Shao F L 2020 Int. J. Theor. Phys. 6 1829
[7] Zamani A, Setareh F, Azargoshasb T, et al. 2017 Sperlattice Microst. 106 111
[8] Zhang H R, Xiao J L 2010 Chin. J. Lumi. 31 12
[9] Data S, Das B 1990 Appl. Phys. Lett. 56 665Google Scholar
[10] Chi F, Liu L M 2018 Int. J. Theor. Phys. 57 562Google Scholar
[11] Chi F, Sun L L 2016 Chin. Phys. Lett. 33 117201Google Scholar
[12] Hofmann A, Maisi V F, Krähenmann T, et al. 2017 Phys. Rev. Lett. 119 176807Google Scholar
[13] Ferdous R, Chan K W, Veldhorst M, et al. 2018 Phys. Rev. B 97 241401Google Scholar
[14] Governale M 2002 Phys. Rev. Lett. 892 06802
[15] Li W P, Yin J W, Yu Y F, Xiao J L 2010 J. Low Temp. Phys. 160 112
[16] Yin J W, Li W P, Yu Y F, Xiao J L 2011 J. Low Temp. Phys. 163 53
[17] Lee J, Spector H N 2006 J. Appl. Phys. 99 113708Google Scholar
[18] Bandyopadhyay S, Cahay M 2002 Superlattice Microst. 32 171Google Scholar
[19] Li Z X, Yin C H, Zhu X Y 2015 Mode. Phys. Lett. B 29 1550124
[20] Peeters F M, Wu X G, Devreese J T 1986 Phys. Rev. B 33 3926Google Scholar
[21] Shan S P, Chen S H, Xiao J L 2014 Low Temp. Phys. 40 712
计量
- 文章访问数: 4421
- PDF下载量: 78
- 被引次数: 0