搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

双锥对撞点火机制2020年冬季实验中的瑞利-泰勒不稳定性分析

方可 张喆 李玉同 张杰

引用本文:
Citation:

双锥对撞点火机制2020年冬季实验中的瑞利-泰勒不稳定性分析

方可, 张喆, 李玉同, 张杰

Analytical studies of Rayleigh-Taylor instability growth of double-cone ignition scheme in 2020 winter experimental campaign

Fang Ke, Zhang Zhe, Li Yu-Tong, Zhang Jie
PDF
HTML
导出引用
  • 直接驱动激光聚变通过整形后的纳秒脉冲激光辐照氘氚(DT)球壳靶, 经球对称压缩加速后, 在中心转滞获得高温等离子体热斑, 实现聚变点火. 在球壳靶受到压缩和加速过程中等离子体界面的流体力学不稳定性, 特别是瑞利-泰勒不稳定性的增长有可能会对压缩壳层造成破坏, 导致点火的失败. 本文通过理论解析和数值模拟, 对基于Zhang等提出的双锥对撞点火方案(2020 Philos. Trans. A Math. Phys. Eng. Sci. 378 20200015)在2020年冬季实验条件下的流体力学不稳定性增长进行了分析. 结果显示理论模型与一维数值模拟中对整体压缩和加速过程的描述基本一致, 在当前的近等熵波形下金锥中的壳层靶实现了低熵压缩, 同时瑞利-泰勒不稳定性增长导致的最危险时刻扰动振幅和壳层厚度比可以达到约0.25, 壳层依然处于安全状态, 但当初始壳层表面扰动均方根振幅大于22 nm时, 则可能出现壳层的破裂. 因此, 未来实验中的靶设计与驱动激光脉冲波形设计中可以通过增加靶壳层厚度、提高预脉冲强度、减小靶表面的粗糙度和提高激光辐照的匀滑度等方式来抑制不稳定性增长.
    In laser direct-driven fusion, high power lasers are used to ablate the target shell, compress and heat the fuel with the spherical focusing rocket effect, to approach to the fusion ignition conditions. The shaped nanosecond laser pulses compress and accelerate the DT target symmetrically, and forms a high density plasma hot-spot at stagnation. The hydrodynamic instabilities, especially the Rayleigh-Taylor instability, which happens at the interface of plasmas, may destroy the compressed shells, and thus reduce the temperature and density of the hot-spot. In this paper is analyzed theoretically the hydrodynamic instability growth under the conditions in the 2020 winter experiment of the double-cone ignition scheme proposed by Zhang et al. (2020 Philos. Trans. A Math. Phys. Eng. Sci. 378 20200015). Both analytical model and one-dimensional simulations indicate that the fuel shells are compressed with low adiabat under the current quasi-isentropic waveform. The Rayleigh-Taylor instability remains in safe region with a maximum perturbation amplitude reaching 0.25 of the shell thickness at the most peak grown moment. The growth of the hydrodynamic instabilities can be further reduced by increasing the thickness of the shell, through using high foot pre-pulses and improving the uniformity of the target surface and laser irradiation in the future design.
      通信作者: 张喆, zzhang@iphy.ac.cn ; 张杰, jzhang@iphy.ac.cn
    • 基金项目: 中国科学院战略性科技先导专项(批准号: XDA25010100, XDA25010300, XDA25030100)和国家自然科学基金(批准号: U1930107, 11827807)资助的课题
      Corresponding author: Zhang Zhe, zzhang@iphy.ac.cn ; Zhang Jie, jzhang@iphy.ac.cn
    • Funds: Project supported the Strategic Priority Research Program of the Chinese Academy of Sciences, China (Grant Nos. XDA25010100, XDA25010300, XDA25030100) and the National Natural Science Foundation of China (Grant Nos. U1930107, 11827807)
    [1]

    Nuckolls J, Wood L, Thiessen A, Zimmerman G 1972 Nature 239 139Google Scholar

    [2]

    McCrory R L, Regan S P, Loucks S J, et al. 2005 Nucl. Fusion 45 S283Google Scholar

    [3]

    Lindl J D, Amendt P, Berger R L, et al. 2004 Phys. Plasmas 11 339Google Scholar

    [4]

    Tabak M, Hammer J, Glinsky M E, et al. 1994 Phys. Plasmas 1 1626Google Scholar

    [5]

    Betti R, Hurricane O A 2016 Nat. Phys. 12 435Google Scholar

    [6]

    Gopalaswamy V, Betti R, Knauer J P, et al. 2019 Nature 565 581Google Scholar

    [7]

    Azechi H, Mima K, Shiraga S, et al. 2013 Nucl. Fusion 53 104021Google Scholar

    [8]

    Goncharov V N 1999 Phys. Rev. Lett. 82 2091Google Scholar

    [9]

    Peterson J L, Clark D S, Masse L P, Suter L J 2014 Phys. Plasmas 21 092710Google Scholar

    [10]

    Takabe H, Mima K, Montierth L, Morse R L 1985 Phys. Fluids 28 3676Google Scholar

    [11]

    Betti R, Goncharov V N, McCrory R L, Verdon C P 1998 Phys. Plasmas 5 1446Google Scholar

    [12]

    叶文华, 张维岩, 贺贤土 2000 物理学报 49 762Google Scholar

    Ye W H, Zhang W Y, He X T 2000 Acta Phys. Sin. 49 762Google Scholar

    [13]

    Smalyuk V A, Weber C R, Landen O L, et al. 2020 Plasma Phys. Contr. F. 62 014007Google Scholar

    [14]

    Marinak M M, Kerbel G D, Gentile N A, Jones O, Munro D, Pollaine S, Dittrich T R, Haan S W 2001 Phys. Plasmas 8 2275Google Scholar

    [15]

    Smalyuk V A, Casey D T, Clark D S, et al. 2014 Phys. Rev. Lett. 112 185003Google Scholar

    [16]

    缪文勇, 袁永腾, 丁永坤, 叶文华, 曹柱荣, 胡昕, 邓博, 吴俊峰, 张文海 2015 强激光与粒子束 27 032016Google Scholar

    Miao W Y, Yuan R T, Ding Y K, Ye W H, Cao Z R, Hu X, Deng B, Wu J F, Zhang W H 2015 High Power Laser and Particle Beams 27 032016Google Scholar

    [17]

    Wang L F, Wu J F, Ye W H, Dong J Q, Fang Z H, Jia G, Xie Z Y, Huang X G, Fu S Z, Zou S Y, Ding Y K, Zhang W Y, He X T 2020 Phys. Plasmas 27 072703Google Scholar

    [18]

    阿蔡塞等著 (沈百飞译) 2008 惯性聚变物理 (北京: 科学出版社) 第42, 175−176, 193−195, 212−213, 224−227页

    Atzeni S, Meyer-Ter-Vehn J (translated by Shen B F) 2008 The Physics of Inertial Fusion (Beijing: Science Press) pp42, 175−176, 193−195, 212−213, 224−227 (in Chinese)

    [19]

    Zhang J, Wang W M, Yang X H, Wu D, Ma Y Y, Jiao J L, Zhang Z, Wu F Y, Yuan X H, Li Y T, Zhu J Q 2020 Philos. Trans. A Math. Phys. Eng. Sci. 378 20200015Google Scholar

    [20]

    Azechi H, Sakaiya T, Watari T, et al. 2009 Phys. Rev. Lett. 102 235002Google Scholar

    [21]

    Ramis R, Meyer-ter-Vehn J 2016 Comput. Phys. Commun. 203 226Google Scholar

    [22]

    Betti R, Chang P Y, Spears B K, Anderson K S, Edwards J, Fatenejad M, Lindl J D, McCrory R L, Nora R, Shvarts D 2010 Phys. Plasmas 17 058102Google Scholar

    [23]

    Mora P 1982 Phys. Fluids 25 1051Google Scholar

    [24]

    Caruso A, Gratton R 1968 Plasma Phys. 10 867Google Scholar

    [25]

    Miller J E, Boehly T R, Melchior A, et al. 2007 Rev. Sci. Instrum. 78 034903Google Scholar

    [26]

    Robey H F, MacGowan B J, Landen O L, et al. 2013 Phys. Plasmas 20 052707Google Scholar

    [27]

    穆宝忠, 吴雯靓, 伊圣振, 王新, 蒋励, 朱京涛, 王占山, 方智恒, 王伟, 傅思祖 2013 强激光与粒子束 25 903Google Scholar

    Mu BZ, Wu W L, Yi S Z, Wang X, Jiang L, Zhu J T, Wang Z S, Fang Z H, Wang W, Fu S Z 2013 Power Laser and Particle Beams 25 903Google Scholar

    [28]

    Marshall F J, Oertel J A 1997 Rev. Sci. Instrum. 68 735Google Scholar

    [29]

    Craxton R S, Anderson K S, Boehly T R, et al. 2015 Phys. Plasmas 22 110501Google Scholar

    [30]

    吴俊峰, 叶文华, 张维岩, 贺贤土 2003 物理学报 52 1688Google Scholar

    Wu J F, Ye W H, Zhang W Y, He X T 2003 Acta Phys. Sin. 52 1688Google Scholar

    [31]

    Haan S W 1989 Phys. Rev. A Gen. Phys. 39 5812Google Scholar

    [32]

    Hu S X, Fiksel G, Goncharov V N, Skupsky S, Meyerhofer D D, Smalyuk V A 2012 Phys. Rev. Lett. 108 195003Google Scholar

    [33]

    杨冬, 李志超, 李三伟, 等 2018 中国科学: 物理学 力学 天文学 48 065203Google Scholar

    Yang D, Li Z C, Li S W, et al. 2018 Sci. Sin-Phys. Mech. Astron. 48 065203Google Scholar

    [34]

    余诗瀚, 李晓峰, 翁苏明, 赵耀, 马行行, 陈民, 盛政明 2021 强激光与粒子束 33 012006Google Scholar

    Yu S H, Li X F Feng S M, Zhao Y, Ma X X, Chen M, Sheng Z M 2021 Power Laser and Particle Beams 33 012006Google Scholar

  • 图 1  理论模型中的双锥靶和近等熵激光波形 (a) 双锥靶示意图; (b) 近等熵激光波形

    Fig. 1.  Double cone targets and quasi-isentropic waveform in the theoretical model: (a) Diagram of the double targets; (b) quasi-isentropic waveform.

    图 2  简化理论模型示意图

    Fig. 2.  Sketch of the simplified theoretical model.

    图 3  冲击波压缩阶段不同时刻空间密度分布 (a) 1.0 ns时刻空间密度分布; (b) 2.06 ns时刻空间密度分布; (c) 2.5 ns时刻空间密度分布; (d) 2.9 ns时刻空间密度分布

    Fig. 3.  Density profile at different time in shock wave compress stage: (a) Density profile at 1.0 ns; (b) density profile at 2.06 ns; (c) density profile at 2.5 ns; (d) density profile at 2.9 ns.

    图 4  壳层飞行轨迹和加速过程壳层厚度 (a) 壳层内外表面飞行轨迹; (b) 加速过程壳层厚度变化

    Fig. 4.  Trajectories of the shell and shell thickness during the acceleration-phase: (a) Trajectories of inside and outside surface of the shell; (b) variation of the shell thickness during the acceleration-phase.

    图 5  冬季实验对撞等离子体自发光信号强度变化

    Fig. 5.  Temporal evolution of self-emission signal of colliding plasma.

    图 6  壳层外表面最小密度梯度标长Lmin

    Fig. 6.  The minimum density-gradient scale length on the outside surface of the shell.

    图 7  壳层外表面最终扰动振幅

    Fig. 7.  Final perturbation amplitudes of the outside surface of the shell.

    图 8  不同时刻壳层厚度和外表面扰动振幅的演化

    Fig. 8.  Evolution of the thickness of the shell and perturbation amplitudes of the outside surface in different times.

    表 1  实验、理论和一维模拟中对撞等离子体自发光信号时间对比

    Table 1.  Temporal comparison of self-emission signal of colliding plasma in experiment, theoretical model and 1D simulation.

    Time/ns
    对撞信号开始时刻对撞信号结束时刻总持续时间
    实验1.01.80.8
    理论模型0.91.750.85
    一维模拟1.11.830.73
    下载: 导出CSV
  • [1]

    Nuckolls J, Wood L, Thiessen A, Zimmerman G 1972 Nature 239 139Google Scholar

    [2]

    McCrory R L, Regan S P, Loucks S J, et al. 2005 Nucl. Fusion 45 S283Google Scholar

    [3]

    Lindl J D, Amendt P, Berger R L, et al. 2004 Phys. Plasmas 11 339Google Scholar

    [4]

    Tabak M, Hammer J, Glinsky M E, et al. 1994 Phys. Plasmas 1 1626Google Scholar

    [5]

    Betti R, Hurricane O A 2016 Nat. Phys. 12 435Google Scholar

    [6]

    Gopalaswamy V, Betti R, Knauer J P, et al. 2019 Nature 565 581Google Scholar

    [7]

    Azechi H, Mima K, Shiraga S, et al. 2013 Nucl. Fusion 53 104021Google Scholar

    [8]

    Goncharov V N 1999 Phys. Rev. Lett. 82 2091Google Scholar

    [9]

    Peterson J L, Clark D S, Masse L P, Suter L J 2014 Phys. Plasmas 21 092710Google Scholar

    [10]

    Takabe H, Mima K, Montierth L, Morse R L 1985 Phys. Fluids 28 3676Google Scholar

    [11]

    Betti R, Goncharov V N, McCrory R L, Verdon C P 1998 Phys. Plasmas 5 1446Google Scholar

    [12]

    叶文华, 张维岩, 贺贤土 2000 物理学报 49 762Google Scholar

    Ye W H, Zhang W Y, He X T 2000 Acta Phys. Sin. 49 762Google Scholar

    [13]

    Smalyuk V A, Weber C R, Landen O L, et al. 2020 Plasma Phys. Contr. F. 62 014007Google Scholar

    [14]

    Marinak M M, Kerbel G D, Gentile N A, Jones O, Munro D, Pollaine S, Dittrich T R, Haan S W 2001 Phys. Plasmas 8 2275Google Scholar

    [15]

    Smalyuk V A, Casey D T, Clark D S, et al. 2014 Phys. Rev. Lett. 112 185003Google Scholar

    [16]

    缪文勇, 袁永腾, 丁永坤, 叶文华, 曹柱荣, 胡昕, 邓博, 吴俊峰, 张文海 2015 强激光与粒子束 27 032016Google Scholar

    Miao W Y, Yuan R T, Ding Y K, Ye W H, Cao Z R, Hu X, Deng B, Wu J F, Zhang W H 2015 High Power Laser and Particle Beams 27 032016Google Scholar

    [17]

    Wang L F, Wu J F, Ye W H, Dong J Q, Fang Z H, Jia G, Xie Z Y, Huang X G, Fu S Z, Zou S Y, Ding Y K, Zhang W Y, He X T 2020 Phys. Plasmas 27 072703Google Scholar

    [18]

    阿蔡塞等著 (沈百飞译) 2008 惯性聚变物理 (北京: 科学出版社) 第42, 175−176, 193−195, 212−213, 224−227页

    Atzeni S, Meyer-Ter-Vehn J (translated by Shen B F) 2008 The Physics of Inertial Fusion (Beijing: Science Press) pp42, 175−176, 193−195, 212−213, 224−227 (in Chinese)

    [19]

    Zhang J, Wang W M, Yang X H, Wu D, Ma Y Y, Jiao J L, Zhang Z, Wu F Y, Yuan X H, Li Y T, Zhu J Q 2020 Philos. Trans. A Math. Phys. Eng. Sci. 378 20200015Google Scholar

    [20]

    Azechi H, Sakaiya T, Watari T, et al. 2009 Phys. Rev. Lett. 102 235002Google Scholar

    [21]

    Ramis R, Meyer-ter-Vehn J 2016 Comput. Phys. Commun. 203 226Google Scholar

    [22]

    Betti R, Chang P Y, Spears B K, Anderson K S, Edwards J, Fatenejad M, Lindl J D, McCrory R L, Nora R, Shvarts D 2010 Phys. Plasmas 17 058102Google Scholar

    [23]

    Mora P 1982 Phys. Fluids 25 1051Google Scholar

    [24]

    Caruso A, Gratton R 1968 Plasma Phys. 10 867Google Scholar

    [25]

    Miller J E, Boehly T R, Melchior A, et al. 2007 Rev. Sci. Instrum. 78 034903Google Scholar

    [26]

    Robey H F, MacGowan B J, Landen O L, et al. 2013 Phys. Plasmas 20 052707Google Scholar

    [27]

    穆宝忠, 吴雯靓, 伊圣振, 王新, 蒋励, 朱京涛, 王占山, 方智恒, 王伟, 傅思祖 2013 强激光与粒子束 25 903Google Scholar

    Mu BZ, Wu W L, Yi S Z, Wang X, Jiang L, Zhu J T, Wang Z S, Fang Z H, Wang W, Fu S Z 2013 Power Laser and Particle Beams 25 903Google Scholar

    [28]

    Marshall F J, Oertel J A 1997 Rev. Sci. Instrum. 68 735Google Scholar

    [29]

    Craxton R S, Anderson K S, Boehly T R, et al. 2015 Phys. Plasmas 22 110501Google Scholar

    [30]

    吴俊峰, 叶文华, 张维岩, 贺贤土 2003 物理学报 52 1688Google Scholar

    Wu J F, Ye W H, Zhang W Y, He X T 2003 Acta Phys. Sin. 52 1688Google Scholar

    [31]

    Haan S W 1989 Phys. Rev. A Gen. Phys. 39 5812Google Scholar

    [32]

    Hu S X, Fiksel G, Goncharov V N, Skupsky S, Meyerhofer D D, Smalyuk V A 2012 Phys. Rev. Lett. 108 195003Google Scholar

    [33]

    杨冬, 李志超, 李三伟, 等 2018 中国科学: 物理学 力学 天文学 48 065203Google Scholar

    Yang D, Li Z C, Li S W, et al. 2018 Sci. Sin-Phys. Mech. Astron. 48 065203Google Scholar

    [34]

    余诗瀚, 李晓峰, 翁苏明, 赵耀, 马行行, 陈民, 盛政明 2021 强激光与粒子束 33 012006Google Scholar

    Yu S H, Li X F Feng S M, Zhao Y, Ma X X, Chen M, Sheng Z M 2021 Power Laser and Particle Beams 33 012006Google Scholar

  • [1] 张振驰, 唐桧波, 王金灿, 佀化冲, 王志, 蓝翔, 胡广月. 背景气体对激光等离子体和外磁场界面上槽纹不稳定性的影响. 物理学报, 2023, 72(22): 225201. doi: 10.7498/aps.72.20231108
    [2] 徐明, 徐立清, 赵海林, 李颖颖, 钟国强, 郝保龙, 马瑞瑞, 陈伟, 刘海庆, 徐国盛, 胡建生, 万宝年, EAST团队. EAST反磁剪切qmin$\approx $2条件下磁流体力学不稳定性及内部输运垒物理实验结果简述. 物理学报, 2023, 72(21): 215204. doi: 10.7498/aps.72.20230721
    [3] 孙伟, 吕冲, 雷柱, 仲佳勇. 磁场对激光驱动Rayleigh-Taylor不稳定性影响的数值研究. 物理学报, 2022, 71(15): 154701. doi: 10.7498/aps.71.20220362
    [4] 张喆, 远晓辉, 张翌航, 刘浩, 方可, 张成龙, 刘正东, 赵旭, 董全力, 刘高扬, 戴羽, 谷昊琛, 李玉同, 郑坚, 仲佳勇, 张杰. 超音速高密度喷流对撞过程中的高效能量转移. 物理学报, 2022, 71(15): 155201. doi: 10.7498/aps.71.20220361
    [5] 方可, 张喆, 李玉同, 张杰. 双锥对撞冬季实验中的瑞利-泰勒不稳定性分析. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211172
    [6] 孙伟, 安维明, 仲佳勇. 磁场对激光驱动Kelvin-Helmholtz不稳定性影响的二维数值研究. 物理学报, 2020, 69(24): 244701. doi: 10.7498/aps.69.20201167
    [7] 李树, 陈耀桦, 姬志成, 章明宇, 任国利, 霍文义, 闫威华, 韩小英, 李志超, 刘杰, 蓝可. 神光III主机上球腔辐射场实验的三维数值模拟与分析. 物理学报, 2018, 67(2): 025202. doi: 10.7498/aps.67.20170521
    [8] 王鹏, 薛纭, 楼智美. 黏性流体中超细长弹性杆的动力学不稳定性. 物理学报, 2017, 66(9): 094501. doi: 10.7498/aps.66.094501
    [9] 刘军, 冯其京, 周海兵. 柱面内爆驱动金属界面不稳定性的数值模拟研究. 物理学报, 2014, 63(15): 155201. doi: 10.7498/aps.63.155201
    [10] 王龙, 郭尔夫, 韩纪锋, 刘建波, 李永青, 周荣, 杨朝文. 静态真空对超声喷流气体团簇制备的实验研究. 物理学报, 2014, 63(20): 203601. doi: 10.7498/aps.63.203601
    [11] 袁永腾, 郝轶聃, 侯立飞, 涂绍勇, 邓博, 胡昕, 易荣清, 曹柱荣, 江少恩, 刘慎业, 丁永坤, 缪文勇. 流体力学不稳定性增长测量方法研究. 物理学报, 2012, 61(11): 115203. doi: 10.7498/aps.61.115203
    [12] 王石语, 过 振, 傅君眉, 蔡德芳, 文建国, 薛海中, 唐映德. 激光二极管抽运固体激光器场分布的热不稳定性研究. 物理学报, 2003, 52(2): 355-361. doi: 10.7498/aps.52.355
    [13] 张家泰, 刘松芬, 胡北来. 强激光部分离化等离子体成丝不稳定性. 物理学报, 2003, 52(7): 1668-1671. doi: 10.7498/aps.52.1668
    [14] 滕浩, 曹磊峰, 成金秀, 陈家斌, 杨向东, 刘忠礼, 郑志坚. 激光聚变爆推靶内爆区空间分布的测量. 物理学报, 2002, 51(4): 835-838. doi: 10.7498/aps.51.835
    [15] 李文飞, 张丰收. 非对称核物质的化学不稳定性与力学不稳定性. 物理学报, 2001, 50(10): 1888-1895. doi: 10.7498/aps.50.1888
    [16] 肖 峻, 吕百达, 姜 明. 零相关位相板准远场应用的数值研究. 物理学报, 2000, 49(12): 2383-2388. doi: 10.7498/aps.49.2383
    [17] 张家泰, 聂小波, 苏秀敏. 相干与非相干激光成丝不稳定性的数值模拟研究. 物理学报, 1994, 43(1): 52-63. doi: 10.7498/aps.43.52
    [18] 张立根, 陈楠鹏, 巴恩旭. 光反馈对CO2激光器不稳定性的影响. 物理学报, 1990, 39(2): 183-189. doi: 10.7498/aps.39.183
    [19] 杨国健, 胡岗. 注入信号激光系统的不稳定性分析. 物理学报, 1990, 39(12): 1900-1907. doi: 10.7498/aps.39.1900
    [20] 王守武, 王启明, 林世鸣. 双稳激光器的不稳定性本质研究. 物理学报, 1986, 35(8): 1095-1101. doi: 10.7498/aps.35.1095
计量
  • 文章访问数:  5877
  • PDF下载量:  203
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-06-22
  • 修回日期:  2021-09-09
  • 上网日期:  2022-01-23
  • 刊出日期:  2022-02-05

/

返回文章
返回