搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

利用重归一化Numerov方法研究超冷双原子碰撞

白净 谢廷

引用本文:
Citation:

利用重归一化Numerov方法研究超冷双原子碰撞

白净, 谢廷

Ultracold atom-atom collisions by renormalized Numerov method

Bai Jing, Xie Ting
PDF
HTML
导出引用
  • 采用重归一化Numerov算法求解关于超低温双原子碰撞问题的非含时薛定谔方程组. 以39K-133Cs碰撞为例, 研究了超低温下双原子Feshbach共振的性质. 结果表明, 重归一化Numerov算法可以很精确地描述超冷条件下碰撞过程. 与改进的logarithmic derivative算法相比, 在同等参数条件下, 重归一化Numerov方法在计算效率上虽然有一定劣势, 但在大格点步长参数范围内有着更好的稳定性. 提出重归一化Numerov和logarithmic derivative算法相结合的传播方法, 在保证结果精度的同时大大减少了计算时间. 此项算法也可以应用于求解任意温度下的两体碰撞耦合薛定谔方程组.
    The renormalized Numerov algorithm is applied to solving time-independent Schrödinger equation relating to atom-atom collisions at ultralow temperature. The proprieties of Feshbach resonance in 39K-133Cs collisions are investigated as an example. The results show that the renormalized Numerov method can give excellent results for ultracold colliding process. In contrast to improved log derivative method, the renormalized Numerov method displays a certain weakness in computational efficiency under the same condition. However, it is much stable in a wide range of grid step size. Hence a new propagating method is proposed by combining renormalized Numerov and logarithmic derivative method which can save computational time with a better accuracy. This algorithm can be used to solve close-coupling Schrödinger equation at arbitrary temperature for two-body collisions.
      通信作者: 谢廷, tingxie1113@dicp.ac.cn
      Corresponding author: Xie Ting, tingxie1113@dicp.ac.cn
    [1]

    Chin C, Grimm R, Julienne P, Tiesinga E 2010 Rev. Mod. Phys. 82 1225Google Scholar

    [2]

    Vogels J M, Tsai C C, Freeland R S, Kokkelmans S J J M F, Verhaar B J, Heinzen D J 1997 Phys. Rev. A 56 R1067Google Scholar

    [3]

    Pellegrini P, Gacesa M, Côté R 2008 Phys. Rev. Lett. 101 053201Google Scholar

    [4]

    Giorgini S, Pitaevskii L P, Stringari S 2008 Rev. Mod. Phys. 80 1215Google Scholar

    [5]

    Gao B 1998 Phys. Rev. A 58 1728Google Scholar

    [6]

    Tiecke T G, Goosen M R, Walraven J T M, Kokkelmans S J J M F 2010 Phys. Rev. A 82 042712Google Scholar

    [7]

    Li Z, Madison K W 2009 Phys. Rev. A 79 042711Google Scholar

    [8]

    Johnson B R 1973 J. Comput. Phys. 13 445Google Scholar

    [9]

    Stechel E B, Walker R B, Light J C 1978 J. Chem. Phys. 69 3518Google Scholar

    [10]

    李磐, 时雷, 毛庆和 2013 物理学报 62 154205Google Scholar

    Li P, Shi L, Mao Q H 2013 Acta Phys. Sin. 62 154205Google Scholar

    [11]

    Dunn D, Grieves B 1989 J. Phys. A: Math. Gen. 22 L1093Google Scholar

    [12]

    Du M L 1993 Comput. Phys. Commun. 76 39Google Scholar

    [13]

    Johnson B R 1977 J. Chem. Phys. 67 4086Google Scholar

    [14]

    Colavecchia F D, Mrugala F, Parker G A, Pack R T 2003 J. Chem. Phys. 118 10387Google Scholar

    [15]

    Karman T, Janssen L M C, Sprenkels R, Groenenboom G C 2014 J. Chem. Phys. 141 064102Google Scholar

    [16]

    Blandon J, Park G A, Madrid C 2016 J. Phys. Chem. A 120 785Google Scholar

    [17]

    DeMille D 2002 Phys. Rev. Lett. 88 067901Google Scholar

    [18]

    Borsalino D, Vexiau R, Aymar M, Luc-Koening E, Dulieu O, Bouloufa-Maafa N 2016 J. Phys. B 49 055301Google Scholar

    [19]

    Gonzales-Sanchez L, Tacconi M, Bodo E, Gianturco F A 2008 Eur. Phys. J. D 49 85Google Scholar

    [20]

    Burke V M, Nobel C J 1995 Comput. Phys. Commun. 85 471Google Scholar

    [21]

    Gao B, Tiesinga E, Williams C J, Julienne P S 2005 Phys. Rev. A 72 042719Google Scholar

    [22]

    Patel H J, Blackley C L, Cornish S L, Hutson J M 2014 Phys. Rev. A 90 032716Google Scholar

    [23]

    Köppinger M P, Mccarron D J, Jenkin D L, Molony P K, Cho H W, Cornish S L, Ruth Le Sueur C, Blackley C L, Hutson J M 2014 Phys. Rev. A 89 033604Google Scholar

    [24]

    Ferber R, Nikolayeva O, Tamanis M, Knöckel H, Tiemann E 2013 Phys. Rev. A 88 012516Google Scholar

    [25]

    Gröbner M, Weinmann P, Kirilov E, Nägerl H C, Julienne P S, Ruth Le Sueur C, Hutson J M 2017 Phys. Rev. A 95 022715Google Scholar

    [26]

    D’Errico C, Zaccanti M, Fattori M, Roati G, Inguscio M, Modugno G, Simoni A 2007 New J. Phys. 9 223Google Scholar

    [27]

    Tiecke T G, Goosen M R, Ludewig A, Gensemer S D, Kraft S, Kokkelmans S J J M F, Walraven J T M 2010 Phys. Rev. Lett. 104 053202Google Scholar

    [28]

    Manolopoulos D E 1986 J. Chem. Phys. 85 6425Google Scholar

  • 图 1  39K-133Cs体系基单重态和三重态相互作用势

    Fig. 1.  Ground electronic potential curves of singlet and triplet states in 39K-133Cs.

    图 2  在入射通道$ \left| {{f_{\text{K}}} = 1, \;{m_{f{\text{K}}}} = 1} \right\rangle + \left| {{f_{{\text{Cs}}}} = 3, \;{m_{f{\text{Cs}}}} = 3} \right\rangle $计算的磁场0—1000 G范围内的s波散射长度, 红线标记录5个共振位置

    Fig. 2.  Calculated s-wave scattering length in the incoming channel $ \left| {{f_{\text{K}}} = 1, \;{m_{f{\text{K}}}} = 1} \right\rangle + \left| {{f_{{\text{Cs}}}} = 3, \;{m_{f{\text{Cs}}}} = 3} \right\rangle $ with field range 0–1000 G. The five resonant positions are labeled with red lines.

    图 3  (a)采用两种方法计算100个磁场强度下散射长度的计算时间随格点数的变化; (b)在磁场为1 G时散射长度随格点数的变化

    Fig. 3.  (a) Computational time of scattering length at 100 magnetic fields as a function of number of sectors by using two methods; (b) the scattering lengths as a function of number of sectors at 1 G.

    表 1  两种计算方法得到的共振位置、共振宽度和背景散射长度参量

    Table 1.  Calculated resonant positions, widths and background scattering lengths in the incoming channel $ \left| {{f_{\text{K}}} = 1, \;{m_{f{\text{K}}}} = 1} \right\rangle + \left| {{f_{{\text{Cs}}}} = 3, \;{m_{f{\text{Cs}}}} = 3} \right\rangle $ by both methods.

    RNLOGD
    B0 /GΔB/GabgB0/GΔB/Gabg
    $ \begin{gathered} \left| {{f_{\text{K}}} = 1, \;{m_{f{\text{K}}}} = 1} \right\rangle + \\ \left| {{f_{{\text{Cs}}}} = 3, \;{m_{f{\text{Cs}}}} = 3} \right\rangle \\ \end{gathered} $341.894.879.1a0341.904.879.0a0
    421.350.474.7a0421.360.474.7a0
    831.144 × 10–480.9a0831.143 × 10–481.0a0
    860.500.0582.1a0860.520.0582.0 a0
    915.571.280.2a0915.561.280.1a0
    下载: 导出CSV

    表 2  采用短程RN和长程变步长LOGD相结合的传播方法得到的共振位置总误差, 这里两种方法的接合点在R = 20a0. 第一列ΔR表示在RN方法中使用的固定格点步长, 第二列NRN表示RN方法在短程传播的总步数, 第三列NLOGD表示在变步长LOGD方法在长程传播的总步数, 第四列$ B_0^{\rm error} $表示使用两者结合方法产生的所有共振位置误差的绝对值总和

    Table 2.  Total errors of resonant positions by using the method combining RN method in short range with LOGD with variable step size in long range, where the connected point is located at 20a0. The first column, ΔR, represents the fixed step size in RN method. The second and third columns, NRN and NLOGD, denote the steps propagated in RN and LOGD methods, respectively. The last column is the sum of errors for all resonant positions.

    ΔRNRNNLOGD$ B_0^{\rm error} $/G
    0.004a0425119900.02
    0.006a0283419900.11
    0.008a0212619900.57
    0.010a0170119902.31
    下载: 导出CSV
  • [1]

    Chin C, Grimm R, Julienne P, Tiesinga E 2010 Rev. Mod. Phys. 82 1225Google Scholar

    [2]

    Vogels J M, Tsai C C, Freeland R S, Kokkelmans S J J M F, Verhaar B J, Heinzen D J 1997 Phys. Rev. A 56 R1067Google Scholar

    [3]

    Pellegrini P, Gacesa M, Côté R 2008 Phys. Rev. Lett. 101 053201Google Scholar

    [4]

    Giorgini S, Pitaevskii L P, Stringari S 2008 Rev. Mod. Phys. 80 1215Google Scholar

    [5]

    Gao B 1998 Phys. Rev. A 58 1728Google Scholar

    [6]

    Tiecke T G, Goosen M R, Walraven J T M, Kokkelmans S J J M F 2010 Phys. Rev. A 82 042712Google Scholar

    [7]

    Li Z, Madison K W 2009 Phys. Rev. A 79 042711Google Scholar

    [8]

    Johnson B R 1973 J. Comput. Phys. 13 445Google Scholar

    [9]

    Stechel E B, Walker R B, Light J C 1978 J. Chem. Phys. 69 3518Google Scholar

    [10]

    李磐, 时雷, 毛庆和 2013 物理学报 62 154205Google Scholar

    Li P, Shi L, Mao Q H 2013 Acta Phys. Sin. 62 154205Google Scholar

    [11]

    Dunn D, Grieves B 1989 J. Phys. A: Math. Gen. 22 L1093Google Scholar

    [12]

    Du M L 1993 Comput. Phys. Commun. 76 39Google Scholar

    [13]

    Johnson B R 1977 J. Chem. Phys. 67 4086Google Scholar

    [14]

    Colavecchia F D, Mrugala F, Parker G A, Pack R T 2003 J. Chem. Phys. 118 10387Google Scholar

    [15]

    Karman T, Janssen L M C, Sprenkels R, Groenenboom G C 2014 J. Chem. Phys. 141 064102Google Scholar

    [16]

    Blandon J, Park G A, Madrid C 2016 J. Phys. Chem. A 120 785Google Scholar

    [17]

    DeMille D 2002 Phys. Rev. Lett. 88 067901Google Scholar

    [18]

    Borsalino D, Vexiau R, Aymar M, Luc-Koening E, Dulieu O, Bouloufa-Maafa N 2016 J. Phys. B 49 055301Google Scholar

    [19]

    Gonzales-Sanchez L, Tacconi M, Bodo E, Gianturco F A 2008 Eur. Phys. J. D 49 85Google Scholar

    [20]

    Burke V M, Nobel C J 1995 Comput. Phys. Commun. 85 471Google Scholar

    [21]

    Gao B, Tiesinga E, Williams C J, Julienne P S 2005 Phys. Rev. A 72 042719Google Scholar

    [22]

    Patel H J, Blackley C L, Cornish S L, Hutson J M 2014 Phys. Rev. A 90 032716Google Scholar

    [23]

    Köppinger M P, Mccarron D J, Jenkin D L, Molony P K, Cho H W, Cornish S L, Ruth Le Sueur C, Blackley C L, Hutson J M 2014 Phys. Rev. A 89 033604Google Scholar

    [24]

    Ferber R, Nikolayeva O, Tamanis M, Knöckel H, Tiemann E 2013 Phys. Rev. A 88 012516Google Scholar

    [25]

    Gröbner M, Weinmann P, Kirilov E, Nägerl H C, Julienne P S, Ruth Le Sueur C, Hutson J M 2017 Phys. Rev. A 95 022715Google Scholar

    [26]

    D’Errico C, Zaccanti M, Fattori M, Roati G, Inguscio M, Modugno G, Simoni A 2007 New J. Phys. 9 223Google Scholar

    [27]

    Tiecke T G, Goosen M R, Ludewig A, Gensemer S D, Kraft S, Kokkelmans S J J M F, Walraven J T M 2010 Phys. Rev. Lett. 104 053202Google Scholar

    [28]

    Manolopoulos D E 1986 J. Chem. Phys. 85 6425Google Scholar

  • [1] 厉桂华, 张梦雅, 马慧, 田悦, 焦安欣, 郑林启, 王畅, 陈明, 刘向东, 李爽, 崔清强, 李冠华. 低温促进表面等离激元共振效应及肌酐的超灵敏表面增强拉曼散射探测. 物理学报, 2022, 71(14): 146101. doi: 10.7498/aps.71.20220151
    [2] 刘雪梅, 芮扬, 张亮, 武跃龙, 武海斌. 用于冷原子的高精度磁场锁定系统. 物理学报, 2022, 71(14): 145205. doi: 10.7498/aps.71.20220399
    [3] 白净, 谢廷. 利用重归一化Numerov方法研究超冷双原子碰撞. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211308
    [4] 康志伟, 刘拓, 刘劲, 马辛, 陈晓. 基于自归一化神经网络的脉冲星候选体选择. 物理学报, 2020, 69(6): 069701. doi: 10.7498/aps.69.20191582
    [5] 刘广凯, 全厚德, 康艳梅, 孙慧贤, 崔佩璋, 韩月明. 一种随机共振增强正弦信号的二次多项式接收方法. 物理学报, 2019, 68(21): 210501. doi: 10.7498/aps.68.20190952
    [6] 苏新宇, 王丽嘉, 朱艳春. 基于心脏电影磁共振图像的一种新的右心室多图谱分割方法. 物理学报, 2019, 68(19): 190701. doi: 10.7498/aps.68.20190582
    [7] 石悦然, 卢倬成, 王璟琨, 张威. 轨道Feshbach共振附近类碱土金属原子的杂质态问题. 物理学报, 2019, 68(4): 040305. doi: 10.7498/aps.68.20181937
    [8] 刁鹏鹏, 邓书金, 李芳, 武海斌. 超冷费米气体的膨胀动力学研究新进展. 物理学报, 2019, 68(4): 046702. doi: 10.7498/aps.68.20182293
    [9] 毛延凯, 蒋杰, 周斌, 窦威. 一步掩膜法制备超低压ITO沟道纸上薄膜晶体管. 物理学报, 2012, 61(4): 047202. doi: 10.7498/aps.61.047202
    [10] 谢小平, 陈宏平, 曹志彤, 何国光. 归一化KLD系数及多维序列相关和同步的检测. 物理学报, 2012, 61(13): 130505. doi: 10.7498/aps.61.130505
    [11] 王宁, 金贻荣, 邓辉, 吴玉林, 郑国林, 李绍, 田野, 任育峰, 陈莺飞, 郑东宁. 基于高温超导量子干涉仪的超低场核磁共振成像研究. 物理学报, 2012, 61(21): 213302. doi: 10.7498/aps.61.213302
    [12] 朱亦鸣, Kaz Hirakawa, 陈麟, 何波涌, 黄元申, 贾晓轩, 张大伟, 庄松林. 超低温高电场下GaAs的电子太赫兹功耗谱的研究. 物理学报, 2009, 58(4): 2692-2696. doi: 10.7498/aps.58.2692
    [13] 林 敏, 毛谦敏, 郑永军, 李东升. 随机共振控制的频率匹配方法. 物理学报, 2007, 56(9): 5021-5025. doi: 10.7498/aps.56.5021
    [14] 朱洪涛, 楼祺洪, 漆云凤, 董景星, 魏运荣. LD侧面抽运Nd:YAG陶瓷激光器运转条件下归一化热参数优化理论及实验研究. 物理学报, 2006, 55(10): 5221-5226. doi: 10.7498/aps.55.5221
    [15] 武宏宇, 尹 澜. 超流费米气体相滑移时的密度分布. 物理学报, 2006, 55(2): 490-493. doi: 10.7498/aps.55.490
    [16] 李文博, 李克轩. 开普勒径向方程的赝角动量解法及其归一化本征态和相干态. 物理学报, 2004, 53(9): 2964-2969. doi: 10.7498/aps.53.2964
    [17] 施伟, 陆福全, 吴松茂, 汤家镛, 杨福家. 光学共振方法测量离子能量. 物理学报, 1992, 41(4): 568-572. doi: 10.7498/aps.41.568
    [18] 刘淑琴, 董太乾. 一种在光抽运实验中检测射频共振的新方法. 物理学报, 1986, 35(7): 944-946. doi: 10.7498/aps.35.944
    [19] 孟庆安, 曹琪娟. LiKSO4低温相变的核磁共振研究. 物理学报, 1982, 31(10): 1405-1411. doi: 10.7498/aps.31.1405
    [20] 何祚庥, 周光召. 检验π介子散射过程是否存在p态共振的一个实验方法的建议. 物理学报, 1961, 17(3): 133-134. doi: 10.7498/aps.17.133
计量
  • 文章访问数:  3756
  • PDF下载量:  68
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-14
  • 修回日期:  2021-08-26
  • 上网日期:  2022-01-18
  • 刊出日期:  2022-02-05

/

返回文章
返回