搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

对应于铯原子D1 线连续可调谐正交压缩态光场的制备

张岩 蔚娟 杨鹏飞 张俊香

引用本文:
Citation:

对应于铯原子D1 线连续可调谐正交压缩态光场的制备

张岩, 蔚娟, 杨鹏飞, 张俊香

Preparation of continuously tunable orthogonal squeezed light filed corresponding to cesium D1 line

Zhang Yan, Yu Juan, Yang Peng-Fei, Zhang Jun-Xiang
PDF
HTML
导出引用
  • 铯原子D1 线的非经典光由于其波长接近于量子点的独特优势, 在固态量子信息网络的发展中有着重要的应用前景. 在之前的工作中, 利用两镜连续简并光学参量振荡器中的参量下转换过程, 制备出2.8 dB 正交压缩真空态光场. 然而, 所产生光场的压缩度较低, 对于对压缩光具有实用意义的可调谐性能也未做进一步探究. 理论分析表明, 光学参量振荡器后腔镜对信号光透射率的增加及内腔损耗的减小可以提高压缩度. 因此, 本文在该研究基础上, 通过使用高光洁度腔镜及优化腔镜镀膜参数等方式对光学参量振荡器进行改良, 降低了光学参量腔阈值, 获得压缩度为3.3 dB 的单模正交压缩真空光. 当光学参量腔运转为参量反放大状态时, 在系统稳定运行的情况下, 制备的明亮压缩态光场能够连续调谐80 MHz, 为其在量子信息网络中的应用奠定了良好的基础.
    The non-classical light resonance on the cesium D1 (894.6 nm) line has important applications in solid-state quantum information networks due to its unique advantages. The cesium D1 line has a simplified hyperfine structure and can be used to realize a light-atom interface. In our previous work, we demonstrated 2.8-dB quadrature squeezed vacuum light at cesium D1 line in an optical parametric oscillator(OPO) with a periodically poled KTP(PPKTP) crystal. However, the squeezing level is relatively low, and the tunability that has practical significance for squeezed light has not been further investigated. Theoretically, the increase of the transmittance of output mirror and the decrease of the intra-cavity loss of the OPO can improve the squeezing level. Here, we use super-polished and optimal coating cavity mirrors to improve the nonlinear process in OPO. We prepare 447.3 nm blue light from 894.6 nm fundamental light by a second harmonic generation cavity (SHG). The SHG is a two-mirror standing-wave cavity with a PPKTP crystal as the nonlinear medium. The power of generated blue laser is 32 mW when the incident infrared power is 120 mW. Using the blue light to pump an OPO, we achieve quadrature squeezed vacuum light at cesium D1 line. The OPO is a two-mirror standing-wave cavity with a PPKTP crystal. The threshold of OPO is reduced to 28 mW. The squeezing level of generated quadrature squeezed vacuum light is increased to 3.3 dB when the pump power is 15 mW. Taking into account the overall detection efficiency, the actual squeezing reaches 5.5 dB. We inject a weak signal beam into the OPO cavity to act as an optical parametric amplifier (OPA), and test the tunability of squeezzed light. The blue light and the squeezed light are tuned by using a low-frequency triangular wave signal to scan the Ti: sapphire laser. Gradually increasing the amplitude of the scanning triangle wave signal, the generated bright squeezed light can be continuously tuned over a range around 80 MHz without losing the stability of the whole system. The generated squeezed light offers the possibility for the efficient coupling between the non-classical source and solid medium in the process of quantum interface.
      通信作者: 张俊香, junxiang_zhang@zju.edu.cn
    • 基金项目: 陕西省教育厅自然科学研究项目(批准号: 18JK0386, 21JK0694) 和国家自然科学基金青年科学基金(批准号: 62105256) 资助的课题
      Corresponding author: Zhang Jun-Xiang, junxiang_zhang@zju.edu.cn
    • Funds: Project supported by the Natural Science Research Program of the Education Department of Shaanxi Province, China (Grant Nos. 18JK0386, 21JK0694) and the Young Scientists Fund of the National Natural Science Foundation of China (Grant No. 62105256).
    [1]

    Kimble H J 2008 Nature 453 1023Google Scholar

    [2]

    陈鹏, 蔡有勋, 蔡晓菲, 施丽慧, 余旭涛 2015 物理学报 64 040301Google Scholar

    Chen P, Cai Y X, Cai X F, Shi L H, Yu X T 2015 Acta Phys. Sin. 64 040301Google Scholar

    [3]

    Nielsen M A, Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press) p3

    [4]

    Gisin N, Ribordy G, Tittel W, Zbinden H 2002 Rev. Mod. Phys. 74 145Google Scholar

    [5]

    Mayers D 2001 J. ACM 48 351Google Scholar

    [6]

    Han Y S, Wen X, He J, Yang B D, Wang Y H, Wang J M 2016 Opt. Express 24 2350Google Scholar

    [7]

    Shi S P, Wang Y J, Yang W H, Zheng Y H, Peng K C 2018 Opt. Letters 43 5411Google Scholar

    [8]

    聂丹丹, 冯晋霞, 戚蒙, 李渊骥, 张宽收 2020 物理学报 69 094205Google Scholar

    Nie D D, Feng J X, Qi M, Li Y J, Zhang K S 2020 Acta Phys. Sin. 69 094205Google Scholar

    [9]

    Eberle T, Steinlechner S, Bauchrowitz J, Handchen V, Vahlbruch H, Mehmet M, Muller-Ebhardt H, Schnabel R 2010 Phys. Rev. Lett. 104 251102Google Scholar

    [10]

    Mehmet M, Ast S, Eberle T, Steinlechner S, Vahlbruch H, Schnabel R 2011 Opt. Express 15 25763

    [11]

    李强, 邓晓玮, 张强, 苏晓龙 2016 光学学报 36 0427001

    Li Q, Deng X W, Zhang Q, Su X L 2016 Acta Optica Sin. 36 0427001

    [12]

    Yang W H, Shi S P, Wang Y J, Ma W G, Zheng Y H, Peng K C 2017 Opt. Lett. 42 4553Google Scholar

    [13]

    Sun X C, Wang Y J, Tian L, Zheng Y H, Peng K C 2019 Chin. Opt. Lett. 17 072701Google Scholar

    [14]

    Vahlbruch H, Mehmet M, Danzmann K, Schnabel R 2016 Phys. Rev. Lett. 117 110801Google Scholar

    [15]

    Tanimura T, Akamatsu D, Yokoi Y, Furusawa A, Kozuma M 2006 Opt. Lett. 31 2344Google Scholar

    [16]

    Hétet G, Glockl O, Pilypas K A, Harb C C, Buchler B C, Bachor H-A, Lam P K 2007 J. Phys. B:At. Mol. Opt. Phys. 40 221Google Scholar

    [17]

    Predojević A, Zhai Z, Caballero J M, Mitchell M W 2008 Phys. Rev. A 78 063820Google Scholar

    [18]

    Suzuki S, Yonezawa H, Kannari F, Sasaki M, Furusawa A 2006 Appl. Phys. Lett. 89 061116Google Scholar

    [19]

    Takeno Y, Yukawa M, Yonezawa H, Furusawa A 2007 Opt. Express 15 4321Google Scholar

    [20]

    Burks S, Ortalo J, Chiummo A, Jia X J, Villa F, Bramati A, Laurat J, Giacobino E 2009 Opt. Express 17 3777Google Scholar

    [21]

    Pinotsi D, Imamoglu A, 2008 Phys. Rev. Lett. 100 093603Google Scholar

    [22]

    张岩, 刘晋红, 马荣, 王丹, 韩宇宏, 张俊香 2017 光学学报 37 0519001Google Scholar

    Zhang Y, Liu J H, Ma R, Wang D, Han Y H, Zhang J X 2017 Acta Opt. Sin. 37 0519001Google Scholar

    [23]

    张岩 2017 博士学位论文 (太原: 山西大学)

    Zhang Y 2017 Ph. D. Dissertation (Taiyuan: Shanxi University) (in Chinese)

    [24]

    王俊萍, 张文慧, 李瑞鑫, 田龙, 王雅君, 郑耀辉 2020 物理学报 69 234204Google Scholar

    Wang J P, Zhang W H, Li R X, Tian L, Wang Y J, Zheng Y H 2020 Acta Phys. Sin. 69 234204Google Scholar

    [25]

    Zhang Y, Liu J H, Wu J Z, Ma R, Wang D, Zhang J X 2016 Opt. Express 24 19769Google Scholar

    [26]

    Drever R W P, Hall J L, Kowalski F V, Hough J, Ford G M, Munley A J, Ward H 1983 Appl. Phys. B 31 97

    [27]

    Schneider K, Bruckmeier R, Hansen H, Schiller S, Mlynek J 1996 Opt. Letters 21 1396Google Scholar

  • 图 1  实验装置图

    Fig. 1.  Experimental setup.

    图 2  抽运光功率为15 mW 时测得压缩真空的噪声曲线

    Fig. 2.  Observed quantum noise for vacuum squeezed light at the pump power of 15 mW.

    图 3  (a) 明亮压缩光的可调谐性测量; (b) 调谐80 MHz 时测得压缩

    Fig. 3.  (a) Continuously tunability of bright squeezed light when the laser is scanned. (b) squeezing trace when the laser is scanned 80 MHz.

  • [1]

    Kimble H J 2008 Nature 453 1023Google Scholar

    [2]

    陈鹏, 蔡有勋, 蔡晓菲, 施丽慧, 余旭涛 2015 物理学报 64 040301Google Scholar

    Chen P, Cai Y X, Cai X F, Shi L H, Yu X T 2015 Acta Phys. Sin. 64 040301Google Scholar

    [3]

    Nielsen M A, Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press) p3

    [4]

    Gisin N, Ribordy G, Tittel W, Zbinden H 2002 Rev. Mod. Phys. 74 145Google Scholar

    [5]

    Mayers D 2001 J. ACM 48 351Google Scholar

    [6]

    Han Y S, Wen X, He J, Yang B D, Wang Y H, Wang J M 2016 Opt. Express 24 2350Google Scholar

    [7]

    Shi S P, Wang Y J, Yang W H, Zheng Y H, Peng K C 2018 Opt. Letters 43 5411Google Scholar

    [8]

    聂丹丹, 冯晋霞, 戚蒙, 李渊骥, 张宽收 2020 物理学报 69 094205Google Scholar

    Nie D D, Feng J X, Qi M, Li Y J, Zhang K S 2020 Acta Phys. Sin. 69 094205Google Scholar

    [9]

    Eberle T, Steinlechner S, Bauchrowitz J, Handchen V, Vahlbruch H, Mehmet M, Muller-Ebhardt H, Schnabel R 2010 Phys. Rev. Lett. 104 251102Google Scholar

    [10]

    Mehmet M, Ast S, Eberle T, Steinlechner S, Vahlbruch H, Schnabel R 2011 Opt. Express 15 25763

    [11]

    李强, 邓晓玮, 张强, 苏晓龙 2016 光学学报 36 0427001

    Li Q, Deng X W, Zhang Q, Su X L 2016 Acta Optica Sin. 36 0427001

    [12]

    Yang W H, Shi S P, Wang Y J, Ma W G, Zheng Y H, Peng K C 2017 Opt. Lett. 42 4553Google Scholar

    [13]

    Sun X C, Wang Y J, Tian L, Zheng Y H, Peng K C 2019 Chin. Opt. Lett. 17 072701Google Scholar

    [14]

    Vahlbruch H, Mehmet M, Danzmann K, Schnabel R 2016 Phys. Rev. Lett. 117 110801Google Scholar

    [15]

    Tanimura T, Akamatsu D, Yokoi Y, Furusawa A, Kozuma M 2006 Opt. Lett. 31 2344Google Scholar

    [16]

    Hétet G, Glockl O, Pilypas K A, Harb C C, Buchler B C, Bachor H-A, Lam P K 2007 J. Phys. B:At. Mol. Opt. Phys. 40 221Google Scholar

    [17]

    Predojević A, Zhai Z, Caballero J M, Mitchell M W 2008 Phys. Rev. A 78 063820Google Scholar

    [18]

    Suzuki S, Yonezawa H, Kannari F, Sasaki M, Furusawa A 2006 Appl. Phys. Lett. 89 061116Google Scholar

    [19]

    Takeno Y, Yukawa M, Yonezawa H, Furusawa A 2007 Opt. Express 15 4321Google Scholar

    [20]

    Burks S, Ortalo J, Chiummo A, Jia X J, Villa F, Bramati A, Laurat J, Giacobino E 2009 Opt. Express 17 3777Google Scholar

    [21]

    Pinotsi D, Imamoglu A, 2008 Phys. Rev. Lett. 100 093603Google Scholar

    [22]

    张岩, 刘晋红, 马荣, 王丹, 韩宇宏, 张俊香 2017 光学学报 37 0519001Google Scholar

    Zhang Y, Liu J H, Ma R, Wang D, Han Y H, Zhang J X 2017 Acta Opt. Sin. 37 0519001Google Scholar

    [23]

    张岩 2017 博士学位论文 (太原: 山西大学)

    Zhang Y 2017 Ph. D. Dissertation (Taiyuan: Shanxi University) (in Chinese)

    [24]

    王俊萍, 张文慧, 李瑞鑫, 田龙, 王雅君, 郑耀辉 2020 物理学报 69 234204Google Scholar

    Wang J P, Zhang W H, Li R X, Tian L, Wang Y J, Zheng Y H 2020 Acta Phys. Sin. 69 234204Google Scholar

    [25]

    Zhang Y, Liu J H, Wu J Z, Ma R, Wang D, Zhang J X 2016 Opt. Express 24 19769Google Scholar

    [26]

    Drever R W P, Hall J L, Kowalski F V, Hough J, Ford G M, Munley A J, Ward H 1983 Appl. Phys. B 31 97

    [27]

    Schneider K, Bruckmeier R, Hansen H, Schiller S, Mlynek J 1996 Opt. Letters 21 1396Google Scholar

  • [1] 许凡, 赵妍, 吴宇航, 王文驰, 金雪莹. 高阶色散下双耦合微腔中克尔光频梳的稳定性和非线性动力学分析. 物理学报, 2022, 71(18): 184204. doi: 10.7498/aps.71.20220691
    [2] 黄文艺, 杨保东, 樊健, 王军民, 周海涛. 基于铯原子气室反抽运光增强相干蓝光. 物理学报, 2022, 71(18): 187801. doi: 10.7498/aps.71.20220480
    [3] 张岩, 蔚娟, 杨鹏飞, 张俊香. 对应于铯原子D1 线连续可调谐正交压缩态光场的制备. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211382
    [4] 尚玲玲, 钱轩, 孙天娇, 姬扬. 超快光脉冲照射GaAs晶体产生的干涉环. 物理学报, 2020, 69(21): 214202. doi: 10.7498/aps.69.20201055
    [5] 徐昕, 金雪莹, 胡晓鸿, 黄新宁. 光学微腔中倍频光场演化和光谱特性. 物理学报, 2020, 69(2): 024203. doi: 10.7498/aps.69.20191294
    [6] 张多多, 刘小峰, 邱建荣. 基于等离激元纳米结构非线性响应的超快光开关及脉冲激光器. 物理学报, 2020, 69(18): 189101. doi: 10.7498/aps.69.20200456
    [7] 彭万敬, 刘鹏. 基于偏振依赖多模-单模-多模光纤滤波器的波长间隔可调谐双波长掺铒光纤激光器. 物理学报, 2019, 68(15): 154202. doi: 10.7498/aps.68.20190297
    [8] 邓俊鸿, 李贵新. 非线性光学超构表面. 物理学报, 2017, 66(14): 147803. doi: 10.7498/aps.66.147803
    [9] 孙志妮, 冯晋霞, 万振菊, 张宽收. 1.5m光通信波段明亮压缩态光场的产生及其Wigner函数的重构. 物理学报, 2016, 65(4): 044203. doi: 10.7498/aps.65.044203
    [10] 张龙, 韩海年, 侯磊, 于子蛟, 朱政, 贾玉磊, 魏志义. 基于光子晶体光纤和拉锥式单模光纤的超连续光谱产生的实验研究. 物理学报, 2014, 63(19): 194208. doi: 10.7498/aps.63.194208
    [11] 冯天闰, 卢克清, 陈卫军, 刘书芹, 牛萍娟, 于莉媛. 线性电介质和中心对称光折变晶体界面表面波的研究. 物理学报, 2013, 62(23): 234205. doi: 10.7498/aps.62.234205
    [12] 陆晶晶, 冯苗, 詹红兵. 氧化石墨烯/壳聚糖复合薄膜材料的制备及其非线性光限幅效应的研究. 物理学报, 2013, 62(1): 014204. doi: 10.7498/aps.62.014204
    [13] 吉选芒, 姜其畅, 刘劲松. 光折变非相干耦合空间孤子族统一理论. 物理学报, 2012, 61(7): 074205. doi: 10.7498/aps.61.074205
    [14] 吉选芒, 姜其畅, 刘劲松. 外加电场光折变有机聚合物串联回路中独立空间孤子对. 物理学报, 2011, 60(3): 034212. doi: 10.7498/aps.60.034212
    [15] 吉选芒, 姜其畅, 刘劲松. 含分压电阻的非相干耦合光折变屏蔽光伏空间孤子对. 物理学报, 2010, 59(7): 4701-4706. doi: 10.7498/aps.59.4701
    [16] 沈学举, 王龙, 韩玉东, 李征. 甲基红掺杂碳纳米管悬浮液的光限幅特性研究. 物理学报, 2010, 59(4): 2532-2536. doi: 10.7498/aps.59.2532
    [17] 李林栗, 冯国英, 杨浩, 周国瑞, 周昊, 朱启华, 王建军, 周寿桓. 纳米光纤的色散特性及其超连续谱产生. 物理学报, 2009, 58(10): 7005-7011. doi: 10.7498/aps.58.7005
    [18] 孙 博, 姚建铨, 王 卓, 王 鹏. 利用各向同性半导体晶体差频产生可调谐THz辐射的理论研究. 物理学报, 2007, 56(3): 1390-1396. doi: 10.7498/aps.56.1390
    [19] 郝中华, 刘劲松. 无偏压的串联光折变晶体回路中高斯光束传播特性调节. 物理学报, 2002, 51(12): 2772-2777. doi: 10.7498/aps.51.2772
    [20] 周文远, 田建国, 臧维平, 张春平, 张光寅, 王肇圻. 厚非线性介质瞬态热光非线性效应的研究. 物理学报, 2002, 51(11): 2623-2628. doi: 10.7498/aps.51.2623
计量
  • 文章访问数:  3802
  • PDF下载量:  65
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-07-26
  • 修回日期:  2021-11-03
  • 上网日期:  2022-02-10
  • 刊出日期:  2022-02-20

/

返回文章
返回