搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

基于范阿伦卫星观测的槽区嘶声波冷等离子体色散关系的适用性评估

朱琪 马新 曹兴 倪彬彬 项正 付松 顾旭东 张援农

引用本文:
Citation:

基于范阿伦卫星观测的槽区嘶声波冷等离子体色散关系的适用性评估

朱琪, 马新, 曹兴, 倪彬彬, 项正, 付松, 顾旭东, 张援农

Assessment of applicability of cold plasma dispersion relation of slot region hiss based on Van Allen Probes observations

Zhu Qi, Ma Xin, Cao Xing, Ni Bin-Bin, Xiang Zheng, Fu Song, Gu Xu-Dong, Zhang Yuan-Nong
PDF
HTML
导出引用
  • 等离子体层嘶声波对电子的散射损失是地球内外辐射带之间的槽区(1.8 ≤ L ≤ 3)形成的主要机制. 冷等离子体色散关系被广泛地运用于量化嘶声波对高能电子的散射效应研究中, 而在真实的磁层环境中, 热等离子体的存在会修正嘶声波的色散特性. 基于范阿伦双星的观测数据, 对比了利用磁场观测数据得到的槽区嘶声波观测幅值和反演幅值, 并研究了空间位置与地磁活动水平对嘶声波冷等离子体色散关系适用性的影响. 结果表明, 冷等离子体近似整体上高估了嘶声波的幅值, 观测幅值与反演幅值的差异有着很强的日夜不对称性, 而没有明显的地磁活动强度依赖性. 此外发现, 波动磁场的反演强度在低频(高频)处显著低于(高于)观测强度, 意味着冷等离子体近似整体上高估(低估)了嘶声波对槽区较低(较高)能量电子的散射强度. 研究证明, 槽区嘶声波冷等离子体色散关系的适用范围有很强的空间区域与频率局限性, 这对深入理解槽区电子的动态演化过程有非常重要的意义.
    Electron scattering caused by plasmapheric hiss is the dominant mechanism that is responsible for the formation of slot region (1.8 ≤ L ≤ 3) between the Earth’s inner and outer radiation belts. The cold plasma dispersion relation of plasmaspheric hiss is widely used to quantify its scattering effect on energetic electrons. However, the existence of hot plasmas in the realistic magnetospheric environment will modify the dispersion properties of plasmaspheric hiss. According to Van Allen Probes observations, we select all hiss events in the slot region and compare the observed hiss wave amplitudes with the converted hiss wave amplitudes deduced from cold plasma dispersion relation and electric field observations, and then study the dependence of the applicability of cold plasma dispersion relation of slot region hiss on spatial position and geomagnetic activity. The results show that the cold plasma approximation tends to overestimate the amplitude of slot region hiss. The difference between the observed amplitude and the converted hiss wave amplitude has a strong day night asymmetry. However, it shows a slight dependence on the level of geomagnetic activities. In addition, we find that the converted wave magnetic field intensity is significantly lower (higher) than the observed magnetic field intensity at lower frequencies (higher frequencies), which indicates that the cold plasma approximation generally overestimates (underestimates) the scattering effects of hiss waves on the lower (higher) energy electrons in the slot region. Our study confirms that the application scope of the cold plasma dispersion relation of slot hiss has strong spatial and frequency limitations, which is of great importance in deepening our understanding of the dynamic evolution of electrons in the slot region.
      通信作者: 曹兴, cxing@whu.edu.cn ; 倪彬彬, bbni@whu.edu.cn
    • 基金项目: 国家自然科学基金(批准号: 42025404, 41904143, 41904144)、中国科学院先导B计划(批准号: XDB41000000)和中国博士后科学基金(批准号: 2020M672405, 2019M662700)资助的课题
      Corresponding author: Cao Xing, cxing@whu.edu.cn ; Ni Bin-Bin, bbni@whu.edu.cn
    • Funds: Project supported by the National Natural Science Foundation of China (Grant Nos. 42025404, 41904143, 41904144), the B-type Strategic Priority Program of the Chinese Academy of Sciences (Grant No. XDB41000000), and the China Postdoctoral Science Foundation (Grant Nos. 2020M672405, 2019M662700).
    [1]

    Thorne R M, Smith E J, Burton R. K, Holzer R E 1973 J. Geophys. Res. Space Phys. 78 1581Google Scholar

    [2]

    Thorne R M, Church S R, Gorney D J 1979 J. Geophys. Res. Space Phys. 84 5241Google Scholar

    [3]

    Ni B, Li W, Thorne R M, Bortnik J, Ma Q, Chen L, Kletzing C A, Kurth W S, Hospodarsky G B, Reeves G D, Spence H E, Blake J B, Fennell J F, Claudepierre S G 2014 Geophys. Res. Lett. 41 1854Google Scholar

    [4]

    Shi R, Li W, Ma Q, Reeves G D, Kletzing C A, Kurth W S, Hospodarsky G B, Spence H E, Blake J B, Fennell J F, Claudepierre S G 2017 J. Geophys. Res. Space Phys. 122 10263Google Scholar

    [5]

    Su Z, Liu N, Zheng H, Wang Y, Wang S 2018 Geophys. Res. Lett. 45 565Google Scholar

    [6]

    Su Z, Liu N, Zheng H, Wang Y, Wang S 2018 Geophys. Res. Lett. 45 10921Google Scholar

    [7]

    Zhang W, Fu S, Gu X, Ni B, Xiang Z, Summers D, Zou Z, Cao X, Lou Y, Hua M 2018 Geophys. Res. Lett. 45 4618Google Scholar

    [8]

    Zhang W, Ni B, Huang H, Summers D, Fu S, Xiang Z, Gu X, Cao X, Lou Y, Hua M 2019 Geophys. Res. Lett. 46 5670Google Scholar

    [9]

    Smith E J, Frandsen A, Tsurutani B T, Thorne R M, Chan K W 1974 J. Geophys. Res. Space Phys. 79 2507Google Scholar

    [10]

    Meredith N P, Horne R B, Thorne Richard M, Summers D, Anderson R R 2004 J. Geophys. Res. Space Phys. 109 A06209Google Scholar

    [11]

    Santolík O, Parrot M, Storey L, Pickett J S, Gurnett D A 2001 Geophys. Res. Lett. 28 1127Google Scholar

    [12]

    Bortnik J, Thorne R M, Meredith N P 2008 Nature 452 62Google Scholar

    [13]

    Lyons L R, Thorne R M, Kennel C F 1972 J. Geophys. Res. Space Phys. 77 3455Google Scholar

    [14]

    Lyons L R, Thorne R M 1973 J. Geophys. Res. Space Phys. 78 2142Google Scholar

    [15]

    Albert J M 1994 J. Geophys. Res. Space Phys. 99 23741Google Scholar

    [16]

    Abel B, Thorne R M 1998a J. Geophys. Res. Space Phys. 103 2385Google Scholar

    [17]

    Abel B, Thorne R M 1998b J. Geophys. Res. Space Phys. 103 2397Google Scholar

    [18]

    Meredith N P, Horne R B, Clilverd M A, Horsfall D, Thorne R M, Anderson R R 2006a J. Geophys. Res. Space Phys. 111 A09217Google Scholar

    [19]

    Meredith N P, Horne R B, Glauert S A, Thorne R M, Summers D, Albert J M, Anderson R R 2006b J. Geophys. Res. Space Phys. 111 A05212Google Scholar

    [20]

    李柳元, 曹晋滨, 周国成 2008 地球物理学报 51 316Google Scholar

    Li L Y, Cao J B, Zhou G C 2008 Chin J. Geophys. 51 316Google Scholar

    [21]

    宗秋刚, 王永福, 杨彪, 周煦之, 傅绥燕, 濮祖荫, 谢伦, Fritz T A 2009 中国科学: 技术科学 39 923Google Scholar

    Zong Q G, Wang Y F, Yang B, Zhou X Z, Fu S Y, Pu Z Y, Xie L, Fritz T A 2009 Science China: Earth Sciences 39 923Google Scholar

    [22]

    宗秋刚, 袁憧憬, 王永福, 苏振鹏 2013 中国科学: 地球科学 56 1118Google Scholar

    Zong Q G, Yuan C J, Wang Y F Su Z P 2013 Science China: Earth Sciences. 56 1118Google Scholar

    [23]

    Ma X, Xiang Z, Ni B, Fu S, Cao X, Hua M, Guo D, Guo Y, Gu X, Liu Z, Zhu Q 2020 Earth Planet. Phys. 4 598Google Scholar

    [24]

    Xiang Z, Li X, Ni B, Temerin M A, Zhao H, Zhang K, Khoo L Y 2020 J. Geophys. Res. Space Phys. 125 1127Google Scholar

    [25]

    王春琴, 张贤国, 沈国红, 张珅毅, 张效信, 黄聪, 李兴冀 2021 地球物理学报 64 1831Google Scholar

    Wang C Q, Zhang X G, Shen G H, Zhang K Y, Zhang X X, Huang C, Li X Y 2021 Chin J. Geophys. 64 1831Google Scholar

    [26]

    Summers D, Ni B B, Meredith N P 2007 J. Geophys. Res. Space Phys. 112 A04207Google Scholar

    [27]

    Ni B B, Bortnik J, Thorne R M, Ma Q, Chen L 2013 J. Geophys. Res. Space Phys. 118 7740Google Scholar

    [28]

    Breneman A W, Halford A, Millan R, Mccarthy M, Fennell J, Sample J, Woodger L, Hospodarsky G, Wygant J R, Cattell C A, Goldstein J, Malaspina D, Kletzing C A 2015 Nature 523 193Google Scholar

    [29]

    Ma Q, Li W, Thorne R M, Ni B, Kletzing C A, Kurth W S, Hospodarsky G B, Reeves G D, Henderson M G, Spence H E, Baker D N, Blake J B, Fennell J F, Claudepierre S G, Angelopoulos V 2015 Geophys. Res. Lett. 42 987Google Scholar

    [30]

    Cao X, Ni B B, Summers D, Zou Z, Fu S, Zhang W 2017 Geophys. Res. Lett. 44 9547Google Scholar

    [31]

    Fu S, Yi J, Ni B, Zhou R, Hu Z, Cao X, Gu X, Guo D 2020 Geophys. Res. Lett. 47 e2020GL086963Google Scholar

    [32]

    Ni B, Huang H, Zhang W, Gu X, Zhao H, Li X, Baker D, Fu S, Xiang Z, Cao X 2019 Geophys. Res. Lett. 46 4134Google Scholar

    [33]

    Zhao H, Ni B, Li X, Baker D N, Johnston W R, Zhang W, Xiang Z, Gu X, Jaynes A N, Kanekal S G, Blake J B, Claudepierre S G, Temerin M A, Funsten H O, Reeves G D, Boyd A J 2019 Nat. Phys. 15 367Google Scholar

    [34]

    Claudepierre S G, Ma Q, Bortnik J, O'Brien T P, Fennell J F, Blake J B 2020 Geophys. Res. Lett. 47 e2019GL086056Google Scholar

    [35]

    Kennel C F, Engelmann F 1966 Phys. Fluids 9 2377Google Scholar

    [36]

    Xiao F L, Su Z, Zheng H. Wang S 2009a J. Geophys. Res. Space Phys. 114 A03201Google Scholar

    [37]

    Xiao F L, Zong Q G, Chen L 2009b J. Geophys. Res. Space Phys. 114 A01215Google Scholar

    [38]

    Ma Q, Li W, Thorne R M, Nishimura Y, Zhang X J, Reeves G D, Kletzing C A, Kurth W S, Hospodarsky G B, Henderson M G, Spence H E, Baker D N, Blake J B, Fennell J F, Angelopoulos V 2016 J. Geophys. Res. Space Phys. 121 4217Google Scholar

    [39]

    Hua M, Li W, Ni B, Ma Q, Reeves G D 2020 Nat. Commun 11Google Scholar

    [40]

    Zhu Q, Cao X, Gu X, N i, B, Xiang Z, Fu S, Summers D, Hua M, Lou Y, Ma X, Guo Y, Guo D, Zhang W 2021 J. Geophys. Res. Space Phys. 126 A029057Google Scholar

    [41]

    Reeves G D, Fritz T A, Cayton T E, Belian R D 1990 Geophys. Res. Lett. 17 2015Google Scholar

    [42]

    Friedel R H W, Korth A, Kremser G 1996 J. Geophys. Res. Space Phys. 101 A00399Google Scholar

    [43]

    Baker D N, Pulkkinen T I, Hesse M, Mcpherron R L 1997 J. Geophys. Res. Space Phys. 102 A03961Google Scholar

    [44]

    Cao J B, Wei X H, Duan A Y, Fu H S, Zhang T L, Reme H, Dandouras I 2013 J. Geophys. Res. Space Phys. 118 1659Google Scholar

    [45]

    Chen L, Thorne R M, Shprits Y, Ni B 2013 J. Geophys. Res. Space Phys. 118 2185Google Scholar

    [46]

    Turner D L, Claudepierre S G, Fennell J F, O'Brien T P, Blake J B, Lemon C, Gkioulidou M, Takahashi K, Reeves G D, Thaller S, Breneman A, Wygant J R, Li W, Runov A, Angelopoulos V 2015 Geophys. Res. Lett. 42 2079Google Scholar

    [47]

    Cao X, Shprits Y, Ni B, Zhelavskaya I S 2017 Sci. Rep. 7 17719Google Scholar

    [48]

    Ni B, Cao X, Shprits Y Y, Summers D, Gu X, Fu S, Lou Y 2018 Geophys. Res. Lett. 45 21Google Scholar

    [49]

    Yu J, Li L Y, Cui J, Cao J B, Wang J 2019 Geophys. Res. Lett. 46 6306Google Scholar

    [50]

    Yu J, Li L Y, Cui J, Cao J B, Wang J, He Z, Yang J 2020 J. Geophys. Res. Space Phys. 125Google Scholar

    [51]

    Hartley D P, Kletzing C A, Kurth W S, Bounds S R, Averkamp T F, Hospodarsky G B, Wygant J R, Bonnell J W, Santolík O, Watt C E J 2016 J. Geophys. Res. Space Phys. 121 4590Google Scholar

    [52]

    Cao X, Ni B, Summers D, Fu S, Gu X, Shi R 2020 Astrophys. J. 896 118Google Scholar

    [53]

    Ma X, Cao X, Ni B, Zhu Q, Xiang Z 2021 Astrophys. J. 916Google Scholar

    [54]

    Selesnick R S, Blake J B, Mewaldt R A 2003 J. Geophys. Res. Space Phys. 108 1468Google Scholar

    [55]

    Kim K C, Shprits Y, Subbotin D, Ni B 2011 J. Geophys. Res. Space Phys. 116 A10214Google Scholar

    [56]

    Meredith N P, Horne R B, Glauert S A, Anderson R R 2007 J. Geophys. Res. Space Phys. 112 8214Google Scholar

    [57]

    Stix T H 1992 Waves in Plasmas (America Institute Physics)

    [58]

    Li W, Ma Q, Thorne R M, Bortnik J, Kletzing C A, Kurth W S, Hospodarsky G B, Nishimura Y 2015 J. Geophys. Res. Space Phys. 120 5

    [59]

    顾旭东, 殷倩, 倪彬彬, 项正, 曹兴, 邹正洋, 周晨, 付松, 石润, 赵正予, 谈家强, 王豪, 郑程耀, 贺丰明 2017 地球物理学报 60 1249Google Scholar

    Gu X D, Yin Q, Ni B B, Xiang Z, Cao X, Zou Z Y, Zhou C, Fu S, Shi R, Zhao Z Y, Tan J Q, Wang H, Zhen C Y, He F M 2017 Chin. J. Geophys. 60 1249Google Scholar

    [60]

    项正, 谭家强, 倪彬彬, 顾旭东, 曹兴, 邹正洋, 周晨, 付松, 石润, 赵正予, 贺丰明, 郑程耀, 殷倩, 王豪 2017 物理学报 66 039401Google Scholar

    Xiang Z, Tan J Q, Ni B B, Gu X D, Cao X, Zou Z Y, Zhou C, Fu S, Shi R, Zhao Z Y, He F M, Zhen C Y, Yin Q, Wang H 2017 Acta Phys. Sin 66 039401Google Scholar

    [61]

    Kurth W S, Pascuale S D, Faden J B, Kletzing C A, Hospodarsky G B, Thaller S, Wygant J R 2015 J. Geophys. Res. Space Phys. 120 904Google Scholar

    [62]

    Hartley D P, Chen Y, Kletzing C A, Denton M H, Kurth W S 2015 J. Geophys. Res. Space Phys. 120 1144Google Scholar

    [63]

    Hartley D P, Kletzing C A, Kurth W S, Hospodarsky G B, Bounds S R, Averkamp T F, Bonnell J W, Santolík O, Wygant J R 2017 J. Geophys. Res. Space Phys. 122 4420Google Scholar

  • 图 1  2015年5月23日范阿伦B观测到的嘶声波事件 (a)背景电子密度; (b) AE和Dst指数; (c)观测电场功率谱密度; (d)观测磁场功率谱密度; (e) 基于冷等离子理论的反演磁场功率谱密度; (f)传播角; (g)极化率; (h)平面度; (i)嘶声波观测(红色)和反演(蓝色)幅值. 图(c)—(e)中的品红线条对应下混杂频率fLHR

    Fig. 1.  Overview of a plasmaspheric hiss event observed by Van Allen Probe B on 23 May 2015: (a) Ambient electron density; (b) AE index and SYM_H index; observed power spectral intensity of (c) electric field and (d) magnetic field; (e) converted power spectral intensity of magnetic field based on the cold plasma dispersion relation; (f) wave normal angle; (g) wave ellipticity; (h) wave planarity; (i) observed (red) and converted (blue) hiss wave amplitudes. The magenta lines in panels (c)–(e) correspond to the lower hybrid resonance frequency fLHR.

    图 2  嘶声波观测幅值与反演幅值比值(${\rm{log}}_{10}\left( {{B}_{\rm{obs}}}/{{B}_{\rm{cvt}}}\right)$)的(a)均值与(b)方差随L和MLT的全球二维统计分布; (c)—(f)比值的均值与方差在不同MLT区间随L-shell的一维统计分布; (g)—(j)在不同L-shell区间随MLT的一维统计分布

    Fig. 2.  Global distribution of the (a) mean value and (b) variance of the ratio of observed hiss amplitudes and converted amplitudes (${\rm{log}}_{10}\left( {{B}_{\rm{obs}}}/{{B}_{\rm{cvt}}}\right)$) as a function of L-shell and MLT; (c)–(f) the mean value and variance of the ratio as a function of L-shell in different MLT sectors; (g)–(j) the mean value and variance of the ratio as a function of MLT in different L-shell ranges.

    图 3  不同地磁活动水平下, 嘶声波观测幅值与反演幅值比值(${\rm{log}}_{10}\left( {{B}_{\rm{obs}}}/{{B}_{\rm{cvt}}}\right)$)的均值和方差随L和MLT的全球统计分布(a)—(c)均值; (d)—(f)方差

    Fig. 3.  From left to right, global distribution of the mean value and variance of the ratio of observed hiss amplitudes and converted amplitudes (${\rm{log}}_{10}\left( {{B}_{\rm obs}}/{{B}_{\rm cvt}}\right)$) as a function of L-shell and MLT, in different geomagnetic conditions: (a)–(c) mean value; (d)–(f) variance of the ratio.

    图 4  嘶声波观测的磁场功率谱密度与反演的磁场功率谱密度比值(${\rm{log}}_{10}\left( {{B}_{\rm{obs}}}/{{B}_{\rm{cvt}}}\right)$)的均值(蓝线)和方差(红线)随波动频率的变化

    Fig. 4.  Mean value (blue) and variance (red) of the ratio of observed and converted power spectral intensity $( {\rm{log}}_{10}\left( {{B}_{\rm{obs}}}/{{B}_{\rm{cvt}}}\right)$) as a function of wave frequency.

  • [1]

    Thorne R M, Smith E J, Burton R. K, Holzer R E 1973 J. Geophys. Res. Space Phys. 78 1581Google Scholar

    [2]

    Thorne R M, Church S R, Gorney D J 1979 J. Geophys. Res. Space Phys. 84 5241Google Scholar

    [3]

    Ni B, Li W, Thorne R M, Bortnik J, Ma Q, Chen L, Kletzing C A, Kurth W S, Hospodarsky G B, Reeves G D, Spence H E, Blake J B, Fennell J F, Claudepierre S G 2014 Geophys. Res. Lett. 41 1854Google Scholar

    [4]

    Shi R, Li W, Ma Q, Reeves G D, Kletzing C A, Kurth W S, Hospodarsky G B, Spence H E, Blake J B, Fennell J F, Claudepierre S G 2017 J. Geophys. Res. Space Phys. 122 10263Google Scholar

    [5]

    Su Z, Liu N, Zheng H, Wang Y, Wang S 2018 Geophys. Res. Lett. 45 565Google Scholar

    [6]

    Su Z, Liu N, Zheng H, Wang Y, Wang S 2018 Geophys. Res. Lett. 45 10921Google Scholar

    [7]

    Zhang W, Fu S, Gu X, Ni B, Xiang Z, Summers D, Zou Z, Cao X, Lou Y, Hua M 2018 Geophys. Res. Lett. 45 4618Google Scholar

    [8]

    Zhang W, Ni B, Huang H, Summers D, Fu S, Xiang Z, Gu X, Cao X, Lou Y, Hua M 2019 Geophys. Res. Lett. 46 5670Google Scholar

    [9]

    Smith E J, Frandsen A, Tsurutani B T, Thorne R M, Chan K W 1974 J. Geophys. Res. Space Phys. 79 2507Google Scholar

    [10]

    Meredith N P, Horne R B, Thorne Richard M, Summers D, Anderson R R 2004 J. Geophys. Res. Space Phys. 109 A06209Google Scholar

    [11]

    Santolík O, Parrot M, Storey L, Pickett J S, Gurnett D A 2001 Geophys. Res. Lett. 28 1127Google Scholar

    [12]

    Bortnik J, Thorne R M, Meredith N P 2008 Nature 452 62Google Scholar

    [13]

    Lyons L R, Thorne R M, Kennel C F 1972 J. Geophys. Res. Space Phys. 77 3455Google Scholar

    [14]

    Lyons L R, Thorne R M 1973 J. Geophys. Res. Space Phys. 78 2142Google Scholar

    [15]

    Albert J M 1994 J. Geophys. Res. Space Phys. 99 23741Google Scholar

    [16]

    Abel B, Thorne R M 1998a J. Geophys. Res. Space Phys. 103 2385Google Scholar

    [17]

    Abel B, Thorne R M 1998b J. Geophys. Res. Space Phys. 103 2397Google Scholar

    [18]

    Meredith N P, Horne R B, Clilverd M A, Horsfall D, Thorne R M, Anderson R R 2006a J. Geophys. Res. Space Phys. 111 A09217Google Scholar

    [19]

    Meredith N P, Horne R B, Glauert S A, Thorne R M, Summers D, Albert J M, Anderson R R 2006b J. Geophys. Res. Space Phys. 111 A05212Google Scholar

    [20]

    李柳元, 曹晋滨, 周国成 2008 地球物理学报 51 316Google Scholar

    Li L Y, Cao J B, Zhou G C 2008 Chin J. Geophys. 51 316Google Scholar

    [21]

    宗秋刚, 王永福, 杨彪, 周煦之, 傅绥燕, 濮祖荫, 谢伦, Fritz T A 2009 中国科学: 技术科学 39 923Google Scholar

    Zong Q G, Wang Y F, Yang B, Zhou X Z, Fu S Y, Pu Z Y, Xie L, Fritz T A 2009 Science China: Earth Sciences 39 923Google Scholar

    [22]

    宗秋刚, 袁憧憬, 王永福, 苏振鹏 2013 中国科学: 地球科学 56 1118Google Scholar

    Zong Q G, Yuan C J, Wang Y F Su Z P 2013 Science China: Earth Sciences. 56 1118Google Scholar

    [23]

    Ma X, Xiang Z, Ni B, Fu S, Cao X, Hua M, Guo D, Guo Y, Gu X, Liu Z, Zhu Q 2020 Earth Planet. Phys. 4 598Google Scholar

    [24]

    Xiang Z, Li X, Ni B, Temerin M A, Zhao H, Zhang K, Khoo L Y 2020 J. Geophys. Res. Space Phys. 125 1127Google Scholar

    [25]

    王春琴, 张贤国, 沈国红, 张珅毅, 张效信, 黄聪, 李兴冀 2021 地球物理学报 64 1831Google Scholar

    Wang C Q, Zhang X G, Shen G H, Zhang K Y, Zhang X X, Huang C, Li X Y 2021 Chin J. Geophys. 64 1831Google Scholar

    [26]

    Summers D, Ni B B, Meredith N P 2007 J. Geophys. Res. Space Phys. 112 A04207Google Scholar

    [27]

    Ni B B, Bortnik J, Thorne R M, Ma Q, Chen L 2013 J. Geophys. Res. Space Phys. 118 7740Google Scholar

    [28]

    Breneman A W, Halford A, Millan R, Mccarthy M, Fennell J, Sample J, Woodger L, Hospodarsky G, Wygant J R, Cattell C A, Goldstein J, Malaspina D, Kletzing C A 2015 Nature 523 193Google Scholar

    [29]

    Ma Q, Li W, Thorne R M, Ni B, Kletzing C A, Kurth W S, Hospodarsky G B, Reeves G D, Henderson M G, Spence H E, Baker D N, Blake J B, Fennell J F, Claudepierre S G, Angelopoulos V 2015 Geophys. Res. Lett. 42 987Google Scholar

    [30]

    Cao X, Ni B B, Summers D, Zou Z, Fu S, Zhang W 2017 Geophys. Res. Lett. 44 9547Google Scholar

    [31]

    Fu S, Yi J, Ni B, Zhou R, Hu Z, Cao X, Gu X, Guo D 2020 Geophys. Res. Lett. 47 e2020GL086963Google Scholar

    [32]

    Ni B, Huang H, Zhang W, Gu X, Zhao H, Li X, Baker D, Fu S, Xiang Z, Cao X 2019 Geophys. Res. Lett. 46 4134Google Scholar

    [33]

    Zhao H, Ni B, Li X, Baker D N, Johnston W R, Zhang W, Xiang Z, Gu X, Jaynes A N, Kanekal S G, Blake J B, Claudepierre S G, Temerin M A, Funsten H O, Reeves G D, Boyd A J 2019 Nat. Phys. 15 367Google Scholar

    [34]

    Claudepierre S G, Ma Q, Bortnik J, O'Brien T P, Fennell J F, Blake J B 2020 Geophys. Res. Lett. 47 e2019GL086056Google Scholar

    [35]

    Kennel C F, Engelmann F 1966 Phys. Fluids 9 2377Google Scholar

    [36]

    Xiao F L, Su Z, Zheng H. Wang S 2009a J. Geophys. Res. Space Phys. 114 A03201Google Scholar

    [37]

    Xiao F L, Zong Q G, Chen L 2009b J. Geophys. Res. Space Phys. 114 A01215Google Scholar

    [38]

    Ma Q, Li W, Thorne R M, Nishimura Y, Zhang X J, Reeves G D, Kletzing C A, Kurth W S, Hospodarsky G B, Henderson M G, Spence H E, Baker D N, Blake J B, Fennell J F, Angelopoulos V 2016 J. Geophys. Res. Space Phys. 121 4217Google Scholar

    [39]

    Hua M, Li W, Ni B, Ma Q, Reeves G D 2020 Nat. Commun 11Google Scholar

    [40]

    Zhu Q, Cao X, Gu X, N i, B, Xiang Z, Fu S, Summers D, Hua M, Lou Y, Ma X, Guo Y, Guo D, Zhang W 2021 J. Geophys. Res. Space Phys. 126 A029057Google Scholar

    [41]

    Reeves G D, Fritz T A, Cayton T E, Belian R D 1990 Geophys. Res. Lett. 17 2015Google Scholar

    [42]

    Friedel R H W, Korth A, Kremser G 1996 J. Geophys. Res. Space Phys. 101 A00399Google Scholar

    [43]

    Baker D N, Pulkkinen T I, Hesse M, Mcpherron R L 1997 J. Geophys. Res. Space Phys. 102 A03961Google Scholar

    [44]

    Cao J B, Wei X H, Duan A Y, Fu H S, Zhang T L, Reme H, Dandouras I 2013 J. Geophys. Res. Space Phys. 118 1659Google Scholar

    [45]

    Chen L, Thorne R M, Shprits Y, Ni B 2013 J. Geophys. Res. Space Phys. 118 2185Google Scholar

    [46]

    Turner D L, Claudepierre S G, Fennell J F, O'Brien T P, Blake J B, Lemon C, Gkioulidou M, Takahashi K, Reeves G D, Thaller S, Breneman A, Wygant J R, Li W, Runov A, Angelopoulos V 2015 Geophys. Res. Lett. 42 2079Google Scholar

    [47]

    Cao X, Shprits Y, Ni B, Zhelavskaya I S 2017 Sci. Rep. 7 17719Google Scholar

    [48]

    Ni B, Cao X, Shprits Y Y, Summers D, Gu X, Fu S, Lou Y 2018 Geophys. Res. Lett. 45 21Google Scholar

    [49]

    Yu J, Li L Y, Cui J, Cao J B, Wang J 2019 Geophys. Res. Lett. 46 6306Google Scholar

    [50]

    Yu J, Li L Y, Cui J, Cao J B, Wang J, He Z, Yang J 2020 J. Geophys. Res. Space Phys. 125Google Scholar

    [51]

    Hartley D P, Kletzing C A, Kurth W S, Bounds S R, Averkamp T F, Hospodarsky G B, Wygant J R, Bonnell J W, Santolík O, Watt C E J 2016 J. Geophys. Res. Space Phys. 121 4590Google Scholar

    [52]

    Cao X, Ni B, Summers D, Fu S, Gu X, Shi R 2020 Astrophys. J. 896 118Google Scholar

    [53]

    Ma X, Cao X, Ni B, Zhu Q, Xiang Z 2021 Astrophys. J. 916Google Scholar

    [54]

    Selesnick R S, Blake J B, Mewaldt R A 2003 J. Geophys. Res. Space Phys. 108 1468Google Scholar

    [55]

    Kim K C, Shprits Y, Subbotin D, Ni B 2011 J. Geophys. Res. Space Phys. 116 A10214Google Scholar

    [56]

    Meredith N P, Horne R B, Glauert S A, Anderson R R 2007 J. Geophys. Res. Space Phys. 112 8214Google Scholar

    [57]

    Stix T H 1992 Waves in Plasmas (America Institute Physics)

    [58]

    Li W, Ma Q, Thorne R M, Bortnik J, Kletzing C A, Kurth W S, Hospodarsky G B, Nishimura Y 2015 J. Geophys. Res. Space Phys. 120 5

    [59]

    顾旭东, 殷倩, 倪彬彬, 项正, 曹兴, 邹正洋, 周晨, 付松, 石润, 赵正予, 谈家强, 王豪, 郑程耀, 贺丰明 2017 地球物理学报 60 1249Google Scholar

    Gu X D, Yin Q, Ni B B, Xiang Z, Cao X, Zou Z Y, Zhou C, Fu S, Shi R, Zhao Z Y, Tan J Q, Wang H, Zhen C Y, He F M 2017 Chin. J. Geophys. 60 1249Google Scholar

    [60]

    项正, 谭家强, 倪彬彬, 顾旭东, 曹兴, 邹正洋, 周晨, 付松, 石润, 赵正予, 贺丰明, 郑程耀, 殷倩, 王豪 2017 物理学报 66 039401Google Scholar

    Xiang Z, Tan J Q, Ni B B, Gu X D, Cao X, Zou Z Y, Zhou C, Fu S, Shi R, Zhao Z Y, He F M, Zhen C Y, Yin Q, Wang H 2017 Acta Phys. Sin 66 039401Google Scholar

    [61]

    Kurth W S, Pascuale S D, Faden J B, Kletzing C A, Hospodarsky G B, Thaller S, Wygant J R 2015 J. Geophys. Res. Space Phys. 120 904Google Scholar

    [62]

    Hartley D P, Chen Y, Kletzing C A, Denton M H, Kurth W S 2015 J. Geophys. Res. Space Phys. 120 1144Google Scholar

    [63]

    Hartley D P, Kletzing C A, Kurth W S, Hospodarsky G B, Bounds S R, Averkamp T F, Bonnell J W, Santolík O, Wygant J R 2017 J. Geophys. Res. Space Phys. 122 4420Google Scholar

  • [1] 王国东, 程锐, 王昭, 周泽贤, 骆夏辉, 史路林, 陈燕红, 雷瑜, 王瑜玉, 杨杰. 极化效应对Bohr速度能区O5+离子在低密度氢等离子体中的能损影响. 物理学报, 2023, 72(4): 043401. doi: 10.7498/aps.72.20221875
    [2] 林麦麦, 蒋蕾, 宋秋影, 付颖捷, 王明月, 文慧珊, 于腾萱. 含有Kappa分布电子的多组分等离子体中的 (3 + 1) 维非线性离子声波. 物理学报, 2022, 71(17): 175201. doi: 10.7498/aps.71.20212255
    [3] 王敬之, 马新, 项正, 顾旭东, 焦鹿怀, 雷良建, 倪彬彬. 等离子体层嘶声波对辐射带电子投掷角散射系数的多维建模. 物理学报, 2022, 71(22): 229401. doi: 10.7498/aps.71.20220655
    [4] 朱琪, 马新, 曹兴, 倪彬彬, 项正, 付松, 顾旭东, 张援农. 基于范阿伦卫星观测的槽区嘶声波冷等离子体色散关系的适用性评估. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211671
    [5] 张凯, 杜春光, 高健存. 长程表面等离子体的增强效应. 物理学报, 2017, 66(22): 227302. doi: 10.7498/aps.66.227302
    [6] 项正, 谈家强, 倪彬彬, 顾旭东, 曹兴, 邹正洋, 周晨, 付松, 石润, 赵正予, 贺丰明, 郑程耀, 殷倩, 王豪. 基于范阿伦卫星观测数据的等离子体层嘶声全球分布的统计分析. 物理学报, 2017, 66(3): 039401. doi: 10.7498/aps.66.039401
    [7] 刘三秋, 国洪梅. 极端相对论快电子分布等离子体中横振荡色散关系. 物理学报, 2011, 60(5): 055203. doi: 10.7498/aps.60.055203
    [8] 刘炳灿, 逯志欣, 于丽. 金属和Kerr非线性介质界面上表面等离子体激元的色散关系. 物理学报, 2010, 59(2): 1180-1184. doi: 10.7498/aps.59.1180
    [9] 李钢, 李轶明, 徐燕骥, 张翼, 李汉明, 聂超群, 朱俊强. 介质阻挡放电等离子体对近壁区流场的控制的实验研究. 物理学报, 2009, 58(6): 4026-4033. doi: 10.7498/aps.58.4026
    [10] 季沛勇, 鲁楠, 祝俊. 量子等离子体中波的色散关系以及朗道阻尼. 物理学报, 2009, 58(11): 7473-7478. doi: 10.7498/aps.58.7473
    [11] 朱希睿, 孟续军, 田明锋. 包含过渡区的等离子体电子状态方程的理论研究. 物理学报, 2008, 57(7): 4049-4058. doi: 10.7498/aps.57.4049
    [12] 於陆勒, 盛政明, 张 杰. 均匀等离子体光栅的色散特性研究. 物理学报, 2008, 57(10): 6457-6464. doi: 10.7498/aps.57.6457
    [13] 于全芝, 李玉同, 蒋小华, 刘永刚, 王哲斌, 董全力, 刘 峰, 张 喆, 黄丽珍, C. Danson, D. Pepler, 丁永坤, 傅世年, 张 杰. 激光等离子体的电子温度对Thomson散射离子声波双峰的影响. 物理学报, 2007, 56(1): 359-365. doi: 10.7498/aps.56.359
    [14] 赵国伟, 徐跃民, 陈 诚. 等离子体天线色散关系和辐射场数值计算. 物理学报, 2007, 56(9): 5298-5303. doi: 10.7498/aps.56.5298
    [15] 李毅. 热等离子体中的尾波加速. 物理学报, 1996, 45(4): 601-607. doi: 10.7498/aps.45.601
    [16] 吴俊伶. 等离子体中相对论性电子回旋波色散关系. 物理学报, 1993, 42(5): 775-784. doi: 10.7498/aps.42.775
    [17] 戴文龙, 贺贤土, 霍裕平, 刘之景. 等离子体中Langmuir波、横波和离子声波相互作用过程的孤立子行为. 物理学报, 1987, 36(1): 67-73. doi: 10.7498/aps.36.67
    [18] 郭世宠, 蔡诗东. 任意磁场位形下弱相对论等离子体的普遍色散关系. 物理学报, 1987, 36(7): 870-880. doi: 10.7498/aps.36.870
    [19] 陆全康. 无碰撞等离子体波导的色散关系. 物理学报, 1977, 26(1): 64-71. doi: 10.7498/aps.26.64
    [20] 徐正惠, 陆全康. 片形无碰撞等离子体中的TE波色散关系与稳定性. 物理学报, 1966, 22(7): 844-848. doi: 10.7498/aps.22.844
计量
  • 文章访问数:  4426
  • PDF下载量:  96
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-07
  • 修回日期:  2021-10-11
  • 上网日期:  2022-02-27
  • 刊出日期:  2022-03-05

/

返回文章
返回