搜索

x

留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

晶体X射线劳厄衍射分束特性研究

赵昌哲 司尚禹 张海鹏 薛莲 李中亮 肖体乔

引用本文:
Citation:

晶体X射线劳厄衍射分束特性研究

赵昌哲, 司尚禹, 张海鹏, 薛莲, 李中亮, 肖体乔

Beam splitting characteristics of crystal X-ray Laue diffraction

Zhao Chang-Zhe, Si Shang-Yu, Zhang Hai-Peng, Xue Lian, Li Zhong-Liang, Xiao Ti-Qiao
PDF
HTML
导出引用
  • 本文基于X射线衍射动力学分析了劳厄晶体的分束特性, 模拟了晶体吸收和入射光角发散对于透射光和衍射光摇摆曲线的影响, 定量给出晶体衍射面内角调节范围和晶体加工厚度对于劳厄衍射分束比的调制. 在实验中, 采用分析晶体和分束晶体的消色散配置限制入射光角发散的影响, 实现300 μm厚Si(220)晶体面内角调节劳厄衍射分束的精确测量, 并得到300 μm, 400 μm和500 μm 厚度Si晶体分束比的调节范围, 实现了透射光和衍射光强度的定量调制.
    The beam splitter is an optical element that divides a beam of light into two or more subbeams. It is an essential component in many optical experiments. X-ray has the characteristics of short wavelength and strong penetration ability, making it hard to use the optical elements in the visible-light region. Therefore, it is necessary to develop optical elements suitable for X-rays. The atomic layer spacing of the perfect crystal is of the same order of magnitude as the X-ray wavelength, so the crystal diffraction effect can be used to achieve the X-ray modulation. In this paper, the beam splitting characteristics of Laue crystal are analyzed based on X-ray diffraction dynamics and the influences of crystal absorption and incident light angular divergence on the rocking curves of transmission and diffraction are simulated. The modulation of the crystal diffraction in-plane angle and crystal thickness to Laue diffraction beam-splitting ratio is presented quantitatively. The results show that the kinematical theory of X-ray diffraction is not enough to analyze the beam splitting characteristics of the crystal. It is necessary to consider the interaction between the wave fields in the crystal and use the Pendellӧsung effect in the dynamical theory of X-ray diffraction to explain the change of the crystal beam-splitting ratio quantitatively. The influence of angular divergence and crystal absorption are considered in the simulation. The angular divergence broadens the bandwidth of the diffraction, thereby reducing diffraction intensity. The crystal absorption results in asymmetry and peak shift of the transmission curve and affects the intensity of diffraction and the intensity of transmission beam. The experimental results show that the non-dispersive (+n, –n) configuration can effectively eliminate the influence of angle divergence. The beam-splitting ratio can be adjusted in a small range (±2%) by changing the in-plane angle and adjusted in a wide range (±75%) by changing the crystal thickness, thereby realizing the quantitative modulation of the intensity of transmission and diffraction beam.
      通信作者: 司尚禹, sishangyu@zjlab.org.cn ; 肖体乔, xiaotiqiao@zjlab.org.cn
    • 基金项目: 中国科学院青年促进会项目(批准号: 2018297)和国家重点研发计划项目(批准号: 2017YFA0206004, 2017YFA0403801)资助的项目
      Corresponding author: Si Shang-Yu, sishangyu@zjlab.org.cn ; Xiao Ti-Qiao, xiaotiqiao@zjlab.org.cn
    • Funds: Project supported by the Youth Innovation Promotion Association of Chinese Academy of Sciences (Grant No. 2018297) and the National Key R&D Program of China (Grant Nos. 2017YFA0206004, 2017YFA0403801)
    [1]

    张克从 1998 近代晶体学基础(下册)(北京: 科学出版社) 第2−7页

    Zhang K C 1998 Fundamentals of Modern Crystallography (Vol. 2) (Beijing: Science Press) pp2−7 (in Chinese)

    [2]

    徐朝银 2013 同步辐射光学与工程(合肥: 中国科学技术大学出版社) 第181−254页

    Xu C Y 2013 Synchrotron Radiation Optics and Engineering (Hefei: Press of University of Science and Technology of China) pp181−254 (in Chinese)

    [3]

    Xu H J, Zhao Z T 2008 Nucl. Sci. Tech 19 1Google Scholar

    [4]

    邰仁忠 2021 物理 50 501Google Scholar

    Tai R Z 2021 Physics 50 501Google Scholar

    [5]

    Pelliccia D, Olbinado M P, Rack A, Kingston A M, Myers G R, Paganin D M 2018 IUCrJ 5 428Google Scholar

    [6]

    Kingston A M, Pelliccia D, Rack A, Olbinado M P, Cheng Y, Myers G R, Paganin D M 2018 Optica 5 1516Google Scholar

    [7]

    Villanueva-Perez P, Pedrini B, Mokso R, Vagovic P, Guzenko V A, Leake S J, Willmott P R, Oberta P, David C, Chapman H N, Stampanoni M 2018 Optica 5 1521Google Scholar

    [8]

    Schmidt K E, Spence J C H, Weierstall U, Kirian R, Wang X, Starodub D, Chapman H N, Howells M R, Doak R B 2008 Phys. Rev. Lett. 101 115507Google Scholar

    [9]

    Batterman B W, Cole H 1964 Rev. Modern Phys. 36 681Google Scholar

    [10]

    Bonse U, Hart M 1965 Appl. Phys. Lett. 6 155Google Scholar

    [11]

    Pelliccia D, Rack A, Scheel M, Cantelli V, Paganin D M 2016 Phys. Rev. Lett. 117 113902Google Scholar

    [12]

    Schori A, Shwartz S 2017 Opt. Express 25 14822Google Scholar

    [13]

    von Laue M, 1931 Ergeb. Exakt. Naturwiss 10 133

    [14]

    Kato N, 1960 Acta Crystallography 13 349Google Scholar

    [15]

    Hirsch P B, 1952 Acta Crystallography 5 176Google Scholar

    [16]

    麦振洪 2020 X射线衍射动力学: 理论与应用(北京: 科学出版社) 第10−49页

    Mai Z H 2020 X-ray Diffraction Dynamics: Theory and Applications (Beijing: Science Press) pp10−49 (in Chinese)

    [17]

    Zhao Z T, Xu H J 2004 Proceedings of European Particle Accelerator Conference Lucerne, Switzerland, June 5–9, 2004 p2368

    [18]

    杨俊亮, 李中亮, 李瑭, 朱晔, 宋丽, 薛莲, 张小威 2020 物理学报 69 104101Google Scholar

    Yang J L, Li Z L, Li T, Zhu Y, Song L, Xue L, Zhang X W 2020 Acta Phys. Sin. 69 104101Google Scholar

    [19]

    Río M, Dejus R J 2011 Proc. Spie. 8141 259

    [20]

    Zachariasen, W. H 1967 Phys. Rev. Lett. 18 195Google Scholar

    [21]

    del Rio M S, Perez-Bocanegra N, Shi X B, Honkimaki V, Zhang L 2015 J. Appl. Crystallogr. 48 477Google Scholar

    [22]

    Li Z L, Fan Y C, Xue L, Zhang Z Y, Wang J 2019 2019 AIP Conference Proceedings 2054 Taiwan, China, June 10−15, 2019 p060040

    [23]

    Penning P, Polder D 1961 Philips Res. Rep. 16 419

  • 图 1  透射率与反射率随偏移角$\Delta \theta $的变化曲线(1 arcsec = 1/3600 degrees)

    Fig. 1.  Transmittance and reflectance curve with offset angle $\Delta \theta $(1 arcsec = 1/3600 degrees).

    图 2  XOP模拟出的不同厚度Si单晶的摇摆曲线 Si单晶厚度分别为300 μm (a), 300.5 μm (b), 301 μm (c)的衍射和透射强度分布曲线, 没有经过强度平均的处理

    Fig. 2.  The rocking curves of Si crystal with different thicknesses simulated by XOP: Diffraction and transmission intensity distribution curves of Si crystal with thickness of 300 μm (a), 300.5 μm (b), 301 μm (c), without intensity averaging.

    图 3  XOP模拟出的不同厚度Si单晶的摇摆曲线 (a)—(c)Si单晶厚度分别为300 μm, 400 μm和500 μm的衍射和透射强度分布曲线, 经过2.6″角度窗口强度平均的处理; (d)—(f)与(a)—(b)对应, 为无吸收情况下的衍射和透射强度分布曲线, 经过2.6″角度窗口强度平均的处理

    Fig. 3.  The rocking curves of Si crystal with different thicknesses simulated by XOP. (a)–(c) Diffraction and transmission intensity distribution curves of Si crystal with thickness of 300 μm, 400 μm and 500 μm, under 2.6″ angle window intensity averaging; (d)–(f) correspond to (a)–(c), which are the diffraction and transmission intensity distribution curves without absorption, which are processed by 2.6" angle window intensity averaging.

    图 4  (a)完美晶体衍射的DuMond图; (b)消色散(+n, –n)配置条件下, 分束晶体扫描分析晶体出射光的DuMond图; (c)色散(+n, +n)配置条件下, 分束晶体扫描分析晶体出射光的DuMond图. 斜线区域是分析晶体的DuMond窗口, 散点区域是分束晶体的DuMond窗口

    Fig. 4.  (a) DuMond diagram for perfect crystal diffraction; (b) DuMond diagrams during scanning the output beam of the analyzer by beam splitter with the non-dispersive (+n, –n) configuration; (c) DuMond diagrams during scanning the output beam of the analyzer by beam splitter with the dispersive (+n, +n) configuration. The oblique line region is the DuMond window of the analyzer and the point region is the DuMond window of the beam splitter.

    图 5  分析晶体和分束晶体的消色散实验光路图

    Fig. 5.  Experimental configuration of dispersive consists of analyzer and beam splitter.

    图 6  晶体厚度为300 μm且$\varphi = - {3^ \circ }$时的透射曲线与衍射曲线

    Fig. 6.  Transmission and diffraction curves when the crystal thickness is 300 μm and $\varphi = - {3^ \circ }$.

    图 7  不同φ角下的透射曲线和衍射曲线

    Fig. 7.  Transmission and diffraction curves at different φ.

    图 8  (a)不同φ角下的强度分束比, 红线是数值拟合曲线; (b)不同φ角下的布拉格峰位置; (c)不同φ角下的摇摆曲线的峰值半高宽(FWHM), 其中红色虚线为晶体本征达尔文宽度

    Fig. 8.  (a) Intensity splitting ratio (transmission intensity/diffraction intensity) at different φ, the red line is the linear fitting curve; (b) the peak positions of the diffraction curve at different φ; (c) the full width at half maximum (FWHM) of the rocking curve at different φ, where the red dashed line is the intrinsic Darwin Width of the crystal.

    图 9  不同晶体厚度条件下的透射曲线和衍射曲线

    Fig. 9.  Transmission curve and diffraction curve with different crystal thickness.

    表 1  不同晶体厚度条件下得到的分束比、摇摆曲线半高宽测量值

    Table 1.  Beam splitting ratio, rocking curve FWHM measurement value obtained with different crystal thickness.

    晶体厚度/
    μm
    分束比(T/D)摇摆曲线半高宽
    测量值/arcsec
    本征达尔文带宽/
    arcsec
    3001.903.762.60
    4001.152.96
    5001.403.89
    下载: 导出CSV
  • [1]

    张克从 1998 近代晶体学基础(下册)(北京: 科学出版社) 第2−7页

    Zhang K C 1998 Fundamentals of Modern Crystallography (Vol. 2) (Beijing: Science Press) pp2−7 (in Chinese)

    [2]

    徐朝银 2013 同步辐射光学与工程(合肥: 中国科学技术大学出版社) 第181−254页

    Xu C Y 2013 Synchrotron Radiation Optics and Engineering (Hefei: Press of University of Science and Technology of China) pp181−254 (in Chinese)

    [3]

    Xu H J, Zhao Z T 2008 Nucl. Sci. Tech 19 1Google Scholar

    [4]

    邰仁忠 2021 物理 50 501Google Scholar

    Tai R Z 2021 Physics 50 501Google Scholar

    [5]

    Pelliccia D, Olbinado M P, Rack A, Kingston A M, Myers G R, Paganin D M 2018 IUCrJ 5 428Google Scholar

    [6]

    Kingston A M, Pelliccia D, Rack A, Olbinado M P, Cheng Y, Myers G R, Paganin D M 2018 Optica 5 1516Google Scholar

    [7]

    Villanueva-Perez P, Pedrini B, Mokso R, Vagovic P, Guzenko V A, Leake S J, Willmott P R, Oberta P, David C, Chapman H N, Stampanoni M 2018 Optica 5 1521Google Scholar

    [8]

    Schmidt K E, Spence J C H, Weierstall U, Kirian R, Wang X, Starodub D, Chapman H N, Howells M R, Doak R B 2008 Phys. Rev. Lett. 101 115507Google Scholar

    [9]

    Batterman B W, Cole H 1964 Rev. Modern Phys. 36 681Google Scholar

    [10]

    Bonse U, Hart M 1965 Appl. Phys. Lett. 6 155Google Scholar

    [11]

    Pelliccia D, Rack A, Scheel M, Cantelli V, Paganin D M 2016 Phys. Rev. Lett. 117 113902Google Scholar

    [12]

    Schori A, Shwartz S 2017 Opt. Express 25 14822Google Scholar

    [13]

    von Laue M, 1931 Ergeb. Exakt. Naturwiss 10 133

    [14]

    Kato N, 1960 Acta Crystallography 13 349Google Scholar

    [15]

    Hirsch P B, 1952 Acta Crystallography 5 176Google Scholar

    [16]

    麦振洪 2020 X射线衍射动力学: 理论与应用(北京: 科学出版社) 第10−49页

    Mai Z H 2020 X-ray Diffraction Dynamics: Theory and Applications (Beijing: Science Press) pp10−49 (in Chinese)

    [17]

    Zhao Z T, Xu H J 2004 Proceedings of European Particle Accelerator Conference Lucerne, Switzerland, June 5–9, 2004 p2368

    [18]

    杨俊亮, 李中亮, 李瑭, 朱晔, 宋丽, 薛莲, 张小威 2020 物理学报 69 104101Google Scholar

    Yang J L, Li Z L, Li T, Zhu Y, Song L, Xue L, Zhang X W 2020 Acta Phys. Sin. 69 104101Google Scholar

    [19]

    Río M, Dejus R J 2011 Proc. Spie. 8141 259

    [20]

    Zachariasen, W. H 1967 Phys. Rev. Lett. 18 195Google Scholar

    [21]

    del Rio M S, Perez-Bocanegra N, Shi X B, Honkimaki V, Zhang L 2015 J. Appl. Crystallogr. 48 477Google Scholar

    [22]

    Li Z L, Fan Y C, Xue L, Zhang Z Y, Wang J 2019 2019 AIP Conference Proceedings 2054 Taiwan, China, June 10−15, 2019 p060040

    [23]

    Penning P, Polder D 1961 Philips Res. Rep. 16 419

  • [1] 汪书兴, 李天钧, 黄新朝, 朱林繁. 内壳层体系的X射线腔量子光学. 物理学报, 2024, 73(24): . doi: 10.7498/aps.73.20241218
    [2] 赵昌哲, 司尚禹, 张海鹏, 薛莲, 李中亮, 肖体乔. 晶体X射线劳厄衍射分束特性研究. 物理学报, 2021, (): . doi: 10.7498/aps.70.20211674
    [3] 周光照, 胡哲, 杨树敏, 廖可梁, 周平, 刘科, 滑文强, 王玉柱, 边风刚, 王劼. 上海光源硬X射线相干衍射成像实验方法初探. 物理学报, 2020, 69(3): 034102. doi: 10.7498/aps.69.20191586
    [4] 杨俊亮, 李中亮, 李瑭, 朱晔, 宋丽, 薛莲, 张小威. 多晶体光路配置的X射线衍射特性及在表征同步辐射光束线带宽上的应用. 物理学报, 2020, 69(10): 104101. doi: 10.7498/aps.69.20200165
    [5] 王海波, 罗震林, 刘清青, 靳常青, 高琛, 张丽. 共振X射线衍射研究高温超导Sr2CuO3.4晶体中的调制结构. 物理学报, 2019, 68(18): 187401. doi: 10.7498/aps.68.20190494
    [6] 李晓东, 李晖, 李鹏善. 同步辐射高压单晶衍射实验技术. 物理学报, 2017, 66(3): 036203. doi: 10.7498/aps.66.036203
    [7] 温志文, 祁辉荣, 代洪亮, 张余炼, 魏堃, 张建, 欧阳群, 邵剑雄. 一维丝室气体探测器衍射像差的修正方法研究. 物理学报, 2015, 64(8): 082901. doi: 10.7498/aps.64.082901
    [8] 戚俊成, 叶琳琳, 陈荣昌, 谢红兰, 任玉琦, 杜国浩, 邓彪, 肖体乔. 第三代同步辐射光源X射线相干性测量研究. 物理学报, 2014, 63(10): 104202. doi: 10.7498/aps.63.104202
    [9] 闫芬, 张继超, 李爱国, 杨科, 王华, 毛成文, 梁东旭, 闫帅, 李炯, 余笑寒. 基于同步辐射的快速扫描X射线微束荧光成像方法. 物理学报, 2011, 60(9): 090702. doi: 10.7498/aps.60.090702
    [10] 薛艳玲, 肖体乔, 吴立宏, 陈灿, 郭荣怡, 杜国浩, 谢红兰, 邓彪, 任玉琦, 徐洪杰. 利用X射线相衬显微研究野山参的特征结构. 物理学报, 2010, 59(8): 5496-5507. doi: 10.7498/aps.59.5496
    [11] 张祥志, 许子健, 甄香君, 王勇, 郭智, 严睿, 常睿, 周冉冉, 邰仁忠. 基于软X射线谱学显微双能衬度图像的元素空间分布研究. 物理学报, 2010, 59(7): 4535-4541. doi: 10.7498/aps.59.4535
    [12] 乐孜纯, 董文, 刘魏, 张明, 梁静秋, 全必胜, 刘恺, 梁中翥, 朱佩平, 伊福廷, 黄万霞. 抛物面型X射线组合折射透镜聚焦性能的理论与实验研究. 物理学报, 2010, 59(3): 1977-1984. doi: 10.7498/aps.59.1977
    [13] 唐小锋, 牛铭理, 周晓国, 刘世林. 基于阈值光电子-光离子符合技术的分子离子光谱和解离动力学研究. 物理学报, 2010, 59(10): 6940-6947. doi: 10.7498/aps.59.6940
    [14] 汪 敏, 胡小方. 衍射增强计算机断层技术研究. 物理学报, 2007, 56(8): 4989-4993. doi: 10.7498/aps.56.4989
    [15] 舒 航, 朱佩平, 王寯越, 高 欣, 伊红霞, 刘 波, 袁清习, 黄万霞, 罗述谦, 高秀来, 吴自玉, 方守贤. 衍射增强成像方法在计算机断层成像中的应用. 物理学报, 2006, 55(3): 1099-1106. doi: 10.7498/aps.55.1099
    [16] 朱佩平, 袁清习, 黄万霞, 王寯越, 舒 航, 吴自玉, 冼鼎昌. 衍射增强成像原理. 物理学报, 2006, 55(3): 1089-1098. doi: 10.7498/aps.55.1089
    [17] 黄万霞, 朱佩平, 袁清习, 王寯越, 舒 航, 胡天斗, 吴自玉. 衍射增强成像方法中两种晶体排列方式的对比研究. 物理学报, 2006, 55(10): 5178-5185. doi: 10.7498/aps.55.5178
    [18] 易荣清, 杨国洪, 崔延莉, 杜华冰, 韦敏习, 董建军, 赵屹东, 崔明启, 郑 雷. 北京同步辐射3B3中能束线X射线探测系统性能研究. 物理学报, 2006, 55(12): 6287-6292. doi: 10.7498/aps.55.6287
    [19] 朱佩平, 王寯越, 袁清习, 田玉莲, 黄万霞, 黎 刚, 胡天斗, 姜晓明, 吴自玉. 两块晶体衍射增强成像方法研究. 物理学报, 2005, 54(1): 58-63. doi: 10.7498/aps.54.58
    [20] 黄万霞, 袁清习, 田玉莲, 朱佩平, 姜晓明, 王寯越. 同步辐射硬x射线衍射增强成像新进展. 物理学报, 2005, 54(2): 677-681. doi: 10.7498/aps.54.677
计量
  • 文章访问数:  5260
  • PDF下载量:  184
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-09-08
  • 修回日期:  2021-10-28
  • 上网日期:  2022-02-16
  • 刊出日期:  2022-02-20

/

返回文章
返回